CN113643749A - Method and system for constructing model of grid cells - Google Patents
Method and system for constructing model of grid cells Download PDFInfo
- Publication number
- CN113643749A CN113643749A CN202110857920.5A CN202110857920A CN113643749A CN 113643749 A CN113643749 A CN 113643749A CN 202110857920 A CN202110857920 A CN 202110857920A CN 113643749 A CN113643749 A CN 113643749A
- Authority
- CN
- China
- Prior art keywords
- grid
- cells
- discharge
- cell
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 210000004027 cell Anatomy 0.000 claims abstract description 158
- 210000001020 neural plate Anatomy 0.000 claims abstract description 25
- 230000010354 integration Effects 0.000 claims abstract description 13
- 230000004044 response Effects 0.000 claims abstract description 10
- 210000004180 plasmocyte Anatomy 0.000 claims abstract description 7
- 238000007599 discharging Methods 0.000 claims abstract 2
- 210000002569 neuron Anatomy 0.000 claims description 37
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 238000010276 construction Methods 0.000 claims description 9
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 230000001537 neural effect Effects 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 230000002964 excitative effect Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 238000010304 firing Methods 0.000 description 10
- 241000700159 Rattus Species 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000001149 cognitive effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 235000009413 Ratibida columnifera Nutrition 0.000 description 1
- 241000510442 Ratibida peduncularis Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000001353 entorhinal cortex Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000002475 olfactory pathway Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明涉及神经生物学模型构建技术领域,具体来说,涉及一种网格细胞的模型构建方法及系统。The present invention relates to the technical field of neurobiological model construction, in particular, to a method and system for model construction of grid cells.
背景技术Background technique
Moser夫妇在大鼠海马体内嗅皮层的第二层中发现了网格细胞,但是与位置细胞和头朝向细胞不同的是,网格细胞比较分散且放电比较微弱。如图4所示,内嗅皮层中沿着背腹侧轴不同区域的网格细胞具有不同的网格周期尺度,各尺度的网格细胞族的放电规律基本相同,放电野形成一种稳定的六边形结构,相互之间呈120度夹角。The Moser couple found grid cells in the second layer of the olfactory cortex in the rat hippocampus, but unlike place cells and head-facing cells, grid cells were more dispersed and had weaker firing. As shown in Figure 4, the grid cells in different regions along the dorsal-ventral axis in the entorhinal cortex have different grid period scales. Hexagonal structure, 120 degree angle to each other.
Hafting等人为了进一步验证网格细胞的存在,设计了变换试验箱大小的实验。当大鼠探索未知环境的时候,网格细胞网络会发生变化,之后会保持稳定。即使动物运动过程中该环境发生的巨大变化,网格细胞网络也会基本保持不变。每个网格细胞都不只有一个放电野,当大鼠运动到空间中某些特定位置时,网格细胞就会放电。网格细胞的放电活动也不依赖于外部线索,将大鼠放置在黑暗环境中,只要不变换新环境,网格细胞的活动模式就不会改变。而且网格细胞的网格野总能在覆盖到空间环境的所有区域,生物学家猜测着网格细胞可能具有对空间的路径积分作用。In order to further verify the existence of grid cells, Hafting et al designed experiments to change the size of the test box. The grid cell network changed as the rats explored an unknown environment, but remained stable thereafter. Even with dramatic changes in this environment during animal movement, the grid cell network remains largely unchanged. Each grid cell does not have only one discharge field. When the rat moves to a certain position in space, the grid cell will fire. The firing activity of grid cells also did not depend on external cues. When rats were placed in a dark environment, the activity pattern of grid cells did not change as long as the new environment was not changed. Moreover, the grid field of grid cells can always cover all areas of the space environment. Biologists speculate that grid cells may have a path integration effect on the space.
以往的研究模型仅采用头朝向细胞和位置细胞构建任意尺度空间关系的认知地图,这种对单个头朝向细胞和位置细胞活动的离散表达,不足以支持从一个位置到另一个位置的导航行为。网格细胞为位置细胞提供了主要的信息输入,是大脑内部的路径积分器,其周期性放电野能随着动物在环境中的探索而覆盖到整个空间环境,为认知地图的形成提供了空间度量。因此,本发明提出了一种网格细胞的模型构建方法及系统。Previous research models only used head-orientation cells and place cells to construct cognitive maps of spatial relationships at arbitrary scales. This discrete representation of the activities of individual head-orientation cells and place cells is not sufficient to support the navigation behavior from one location to another. . Grid cells provide the main information input for place cells and are path integrators inside the brain. The periodic discharge fields of which can cover the entire spatial environment as animals explore the environment, providing a basis for the formation of cognitive maps. Spatial measure. Therefore, the present invention provides a grid cell model construction method and system.
发明内容SUMMARY OF THE INVENTION
针对相关技术中的问题,本发明提出一种网格细胞的模型构建方法及系统,以克服现有相关技术所存在的上述技术问题。In view of the problems in the related art, the present invention proposes a grid cell model construction method and system to overcome the above-mentioned technical problems existing in the related art.
为此,本发明采用的具体技术方案如下:For this reason, the concrete technical scheme that the present invention adopts is as follows:
根据本发明的一个方面,提供了一种网格细胞的模型构建方法,该方法包括以下步骤:According to one aspect of the present invention, a method for constructing a grid cell model is provided, the method comprising the following steps:
S1、采用二维平面连续吸引子模型对网格细胞群进行建模;S1. Use a two-dimensional plane continuous attractor model to model the grid cell population;
S2、构建一个由平面分布的网格细胞组成的神经板;S2. Construct a neural plate composed of grid cells distributed in a plane;
S3、利用条纹细胞中产生的条纹放电来编码特定方向的路径积分结果;S3. Use the streak discharges generated in the streak cells to encode the path integration results in a specific direction;
S4、将多个不同方向相同间距的条纹细胞族的浆细胞放电投射到同一网格细胞神经板上;S4. Project the plasma cell discharges of a plurality of stripe cell families with the same spacing in different directions to the same grid cell neural plate;
S5、利用网格细胞产生叠加放电响应形成网格放电。S5, using grid cells to generate superimposed discharge responses to form grid discharges.
进一步的,所述S1中吸引子模型中的吸引子代表网格细胞,且所述网格细胞的活动状态关联于上游条纹细胞的前向输入。Further, the attractors in the attractor model in S1 represent grid cells, and the active state of the grid cells is related to the forward input of the upstream stripe cells.
进一步的,所述S2中每个网格细胞的激活输入从对应相位上各个方向的条纹细胞中得到。Further, the activation input of each grid cell in S2 is obtained from the streak cells in all directions on the corresponding phase.
进一步的,所述网格细胞的网格放电野具有网格间距、网格定向及网格相位的三个空间特征参数,其中,所述网格间距表示相邻放电野之间的距离,所述网格定向表示放电野节点之间连线相对于外部参考点的倾斜角,所述网格相位表示相对于外部参考点的位移。Further, the grid discharge fields of the grid cells have three spatial characteristic parameters of grid spacing, grid orientation and grid phase, wherein the grid spacing represents the distance between adjacent discharge fields, so The grid orientation represents the inclination angle of the connection line between the discharge field nodes relative to the external reference point, and the grid phase represents the displacement relative to the external reference point.
进一步的,所述条纹细胞的放电动力学模型如下:Further, the discharge kinetic model of the striped cells is as follows:
其中,τ表示神经元的时间常量,神经元传递函数f是一个简单的非线性整流函数,当x>0时,f(x)=x,当x<0时,f(x)=0,当前位置神经元i的放电状态为si,Wij是在该条状神经板中神经元j到神经元i的连接权值,∑jWijsj是投射到神经元i的抑制性递归输入,Bi是来自于上游头朝向细胞的前向性兴奋性输入;Among them, τ represents the time constant of the neuron, and the neuron transfer function f is a simple nonlinear rectification function. When x>0, f(x)=x, when x<0, f(x)=0, The firing state of neuron i at the current position is s i , W ij is the connection weight of neuron j to neuron i in the neural strip, ∑ j W ij s j is the inhibitory recursion projected to neuron i input, B i is the forward excitatory input from the upstream head toward the cell;
所述条纹细胞的连接权值矩阵为:The connection weight matrix of the striped cells is:
其中,表示沿θj方向的单位向量。in, represents the unit vector along the θ j direction.
根据本发明的另一个方面,提供了一种网格细胞的模型构建系统,该系统包括网格细胞群建模模块、神经板构建模块、路径积分结果编码模块、放电投射模块及网格放电模块;According to another aspect of the present invention, a grid cell model building system is provided, the system includes a grid cell population modeling module, a neural plate building module, a path integral result encoding module, a discharge projection module and a grid discharge module ;
所述网格细胞群建模模块用于采用二维平面连续吸引子模型对网格细胞群进行建模;The grid cell group modeling module is used for modeling the grid cell group using a two-dimensional plane continuous attractor model;
所述神经板构建模块用于构建一个由平面分布的网格细胞组成的神经板;The neural board building module is used to construct a neural board composed of grid cells distributed in a plane;
所述路径积分结果编码模块用于利用条纹细胞中产生的条纹放电来编码特定方向的路径积分结果;The path integration result encoding module is used to encode the path integration result of a specific direction by using the streak discharges generated in the streak cells;
所述放电投射模块用于将多个不同方向相同间距的条纹细胞族的浆细胞放电投射到同一网格细胞神经板上;The discharge projection module is used for projecting the plasma cell discharges of a plurality of stripe cell families with the same spacing in different directions to the same grid cell neural plate;
所述网格放电模块用于利用网格细胞产生叠加放电响应形成网格放电。The grid discharge module is used for using grid cells to generate superimposed discharge responses to form grid discharges.
进一步的,所述吸引子模型中的吸引子代表网格细胞,且所述网格细胞的活动状态关联于上游条纹细胞的前向输入。Further, the attractors in the attractor model represent grid cells, and the active state of the grid cells is related to the forward input of the upstream stripe cells.
进一步的,每个所述网格细胞的激活输入从对应相位上各个方向的条纹细胞中得到。Further, the activation input of each grid cell is obtained from streak cells in all directions on the corresponding phase.
进一步的,所述网格细胞的网格放电野具有网格间距、网格定向及网格相位的三个空间特征参数,其中,所述网格间距表示相邻放电野之间的距离,所述网格定向表示放电野节点之间连线相对于外部参考点的倾斜角,所述网格相位表示相对于外部参考点的位移。Further, the grid discharge fields of the grid cells have three spatial characteristic parameters of grid spacing, grid orientation and grid phase, wherein the grid spacing represents the distance between adjacent discharge fields, so The grid orientation represents the inclination angle of the connection line between the discharge field nodes relative to the external reference point, and the grid phase represents the displacement relative to the external reference point.
本发明的有益效果为:本发明提出了将条纹细胞放电作为网格细胞的前向信号输入,多条流动的条纹波联合驱动网格细胞对空间进行编码,形成流动的二维放电网格,使得信息传递和处理方式符合生理学依据;此外,本发明中当大鼠运动时驱动条纹细胞放电模态流动,使得网格细胞也产生流动的放电网格,因而能实现网格细胞对空间的路径信息的整合。The beneficial effects of the invention are as follows: the invention proposes that the discharge of the stripe cells is used as the forward signal input of the grid cells, and multiple flowing stripe waves jointly drive the grid cells to encode the space to form a flowing two-dimensional discharge grid. The method of information transmission and processing conforms to the physiological basis; in addition, in the present invention, when the rat moves, the discharge modal flow of the stripe cells is driven, so that the grid cells also generate flowing discharge grids, so that the path of the grid cells to the space can be realized. integration of information.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是根据本发明实施例的一种网格细胞的模型构建方法的流程示意图;1 is a schematic flowchart of a method for constructing a grid cell model according to an embodiment of the present invention;
图2是根据本发明实施例的一种网格细胞的模型构建方法中网格特性参数示意图;2 is a schematic diagram of grid characteristic parameters in a method for constructing a grid cell model according to an embodiment of the present invention;
图3是根据本发明实施例的一种网格细胞的模型构建方法中网格细胞模型编码原理示意图;3 is a schematic diagram of a grid cell model coding principle in a grid cell model construction method according to an embodiment of the present invention;
图4是根据本发明实施例的一种网格细胞的模型构建方法中条纹细胞神经板模型的示意图;4 is a schematic diagram of a streak cell neural plate model in a method for constructing a grid cell model according to an embodiment of the present invention;
图5是根据本发明实施例的一种网格细胞的模型构建方法中墨西哥帽权值轮廓示意图;5 is a schematic diagram of a Mexican hat weight profile in a method for constructing a grid cell model according to an embodiment of the present invention;
图6是根据本发明实施例的一种网格细胞的模型构建方法中条纹细胞权值偏移轮廓示意图。FIG. 6 is a schematic diagram of the offset contour of stripe cell weights in a method for constructing a grid cell model according to an embodiment of the present invention.
具体实施方式Detailed ways
为进一步说明各实施例,本发明提供有附图,这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理,配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点,图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。In order to further illustrate the various embodiments, the present invention provides accompanying drawings, which are part of the disclosure of the present invention, and are mainly used to illustrate the embodiments, and can be used in conjunction with the relevant descriptions in the specification to explain the operation principles of the embodiments. For these, those of ordinary skill in the art will understand other possible implementations and the advantages of the present invention. Components in the figures are not drawn to scale, and similar component symbols are generally used to represent similar components.
根据本发明的实施例,提供了一种网格细胞的模型构建方法及系统。According to the embodiments of the present invention, a method and system for constructing a grid cell model are provided.
现结合附图和具体实施方式对本发明进一步说明,如图1-6所示,根据本发明的一个实施例,提供了一种网格细胞的模型构建方法,该方法包括以下步骤:The present invention will now be further described with reference to the accompanying drawings and specific embodiments. As shown in Figures 1-6, according to an embodiment of the present invention, a method for constructing a grid cell model is provided, and the method includes the following steps:
S1、采用二维平面连续吸引子模型对网格细胞群进行建模;S1. Use a two-dimensional plane continuous attractor model to model the grid cell population;
其中,所述吸引子模型中的每个吸引子代表一个网格细胞,且所述网格细胞的活动状态与上游条纹细胞的前向输入有关。Wherein, each attractor in the attractor model represents a grid cell, and the activity state of the grid cell is related to the forward input of the upstream stripe cell.
S2、构建一个由平面分布的网格细胞组成的神经板;S2. Construct a neural plate composed of grid cells distributed in a plane;
其中,所述S2中每个网格细胞得从对应相位上各个方向的条纹细胞中获得激活输入,即对条纹放电信息叠加。Wherein, each grid cell in S2 has to obtain activation input from the stripe cells in all directions on the corresponding phase, that is, superimpose the stripe discharge information.
S3、利用条纹细胞中产生的条纹放电来编码特定方向的路径积分结果(即相对位移);S3. Use the streak discharges generated in the streak cells to encode the path integration result (ie relative displacement) in a specific direction;
根据吸引子模型理论,本实施例中构建如图4所示条状神经板,神经元之间在长度方向有突触连接,在宽度方向没有连接。每个神经板可对一个特定方向的运动发生放电响应,这个特定方向取决于其上游头朝向细胞的优先方向。在上游头朝向细胞编码的速度信息驱动下神经元产生周期性放电,这样就会在神经板上产生流动的条纹波,可根据条纹波的相位变化来编码大鼠的位置。机器人的探索的环境无法估量,而神经元面板尺寸是有限的,这就不可避免的涉及到了吸引子网络边界问题。为了解决该问题,将条状神经板的长度方向左右两侧的神经元进行连接,形成环状连续吸引子模型。According to the attractor model theory, the strip-shaped neural plate shown in Figure 4 is constructed in this embodiment, and there are synaptic connections between neurons in the length direction and no connection in the width direction. Each neural plate can fire in response to movement in a specific direction, which is determined by the preferential direction of its upstream head toward the cell. The periodic firing of neurons, driven by the velocity information encoded by the upstream head toward the cell, produces a flowing streak wave on the neural plate, which encodes the position of the rat based on the phase change of the streak wave. The environment for robots to explore is immeasurable, and the size of the neuron panel is limited, which inevitably involves the boundary problem of the attractor network. In order to solve this problem, the neurons on the left and right sides of the longitudinal direction of the strip neural plate are connected to form a ring-shaped continuous attractor model.
由于条状神经板的宽度方向神经元之间没有连接关系,放电响应是相互独立的,模型计算时只考虑长度方向上的相位。为了形成条纹放电特性,设定长度方向神经元之间突触连接权值为互相抑制性的,将头朝向细胞产生的速度调节信号作为条纹细胞的前向输入。可以构建如下基于放电率的条纹细胞放电动力学模型,所述条纹细胞的放电动力学模型如下:Since there is no connection between neurons in the width direction of the strip neural plate, the firing responses are independent of each other, and only the phase in the length direction is considered in the model calculation. In order to form the streak discharge characteristics, the synaptic connection weights between neurons in the length direction are set to be mutually inhibitory, and the velocity regulation signal generated by the head-facing cell is used as the forward input of the streak cell. The following firing rate-based firing kinetic model of streak cells can be constructed, and the firing kinetic model of the streak cells is as follows:
其中,τ表示神经元的时间常量,神经元传递函数f是一个简单的非线性整流函数,当x>0时,f(x)=x,当x<0时,f(x)=0,当前位置神经元i的放电状态为si,Wij是在该条状神经板中神经元j到神经元i的连接权值,∑jWijsj是投射到神经元i的抑制性递归输入,Bi是来自于上游头朝向细胞的前向性兴奋性输入;Among them, τ represents the time constant of the neuron, and the neuron transfer function f is a simple nonlinear rectification function. When x>0, f(x)=x, when x<0, f(x)=0, The firing state of neuron i at the current position is s i , W ij is the connection weight of neuron j to neuron i in the neural strip, ∑ j W ij s j is the inhibitory recursion projected to neuron i input, B i is the forward excitatory input from the upstream head toward the cell;
为实现来自头朝向细胞的前向兴奋输入对条纹的驱动,设定左右相邻相位的神经元i和i+1对应优先方向相反的两类上游头朝向细胞,并设定神经元对周围神经元的抑制性权值矩阵会朝其优先方向偏移。当只有神经元之间的抑制性输入时,神经板会自发形成稳态的条纹放电。当有前向兴奋输入时,只有优先方向一致的那一半神经元获得兴奋输入,另一半优先方向相反的神经元输入为零,因而原有的稳态被打破,所有的神经元受到的周围神经元抑制性输入的权值矩阵会往速度方向偏移,进而驱动条纹波与速度产生耦合运动。In order to realize the driving of the stripes by the forward excitation input from the head-facing cells, the neurons i and i+1 in the left and right adjacent phases are set to correspond to two types of upstream head-facing cells with opposite preferential directions, and the neurons are set to the peripheral nerves. The element's inhibitory weight matrix is offset in its preferred direction. When there is only inhibitory input between neurons, the neural plate spontaneously forms steady-state streak firing. When there is forward excitatory input, only the half of neurons with the same preferential direction get the excitatory input, and the other half of the neurons with the opposite preferential direction have zero input, so the original steady state is broken, and all neurons are affected by peripheral nerves. The weight matrix of the meta-inhibitory input will be shifted in the direction of velocity, thereby driving the fringe wave and velocity to produce coupled motion.
所述条纹细胞的连接权值矩阵为:The connection weight matrix of the striped cells is:
其中,表示沿θj方向的单位向量,如图5所示权值矩阵形成一个中间高两边低的墨西哥帽形状分布。设定每个神经元的投射出去的权值矩阵会沿优先方向偏移k个神经元位置,由于神经板上的相邻神经元具有相反的优先方向,如图6所示,神经细胞权值矩阵的中心位置为x-k,x+k。我们设定γ=1.05×β,β=3/λ2,λ是神经板上形成条纹的周期。当a=1时,所有的连接都是抑制性的,局部周围抑制性连接通过相互作用,产生条纹细胞响应。in, Represents a unit vector along the direction of θ j , as shown in Figure 5, the weight matrix forms a Mexican hat-shaped distribution with high middle and low sides. Setting the projected weight matrix of each neuron will shift k neuron positions along the preferential direction. Since the adjacent neurons on the neuron board have opposite preferential directions, as shown in Figure 6, the neuron weights The center position of the matrix is xk, x+k. We set γ=1.05×β, β=3/λ 2 , where λ is the period of streak formation on the neural plate. When a=1, all junctions are inhibitory, and local peripheral inhibitory junctions interact to generate streak cell responses.
神经元i上的前向输入为:The forward input on neuron i is:
其中,表示沿神经元i所在的优先方向上的单位矢量,为大鼠当前速度方向上的单位矢量。若系数k或a为0,则生成静态条纹。如果k和a都为非0,则大鼠的速度与条纹神经板的动力学耦合,驱动形成流动的条纹波。k和a的乘积决定速度输入对条纹流驱动的强度。条纹波只有在输出权值偏移量k比较小的时候才能保持稳定的条纹图案。在k固定的基础上,则由a决定条纹细胞网络对速度响应的增益。如果远远小于1时,输入的速度驱动不会破坏已形成的条纹形态。in, represents the unit vector along the preferential direction in which neuron i is located, is the unit vector in the direction of the current speed of the rat. If the coefficient k or a is 0, static fringes are generated. If both k and a are non-zero, the speed of the rat Coupling with the dynamics of the striated neural plate drives the formation of flowing striated waves. The product of k and a determines how strongly the velocity input drives the streak flow. The fringe wave can maintain a stable fringe pattern only when the output weight offset k is relatively small. On the basis of fixed k, the gain of the streak cell network to the velocity response is determined by a. if Much less than 1, the input velocity drive will not disrupt the formed fringe morphology.
S4、将多个不同方向相同间距的条纹细胞族的浆细胞放电投射到同一网格细胞神经板上;S4. Project the plasma cell discharges of a plurality of stripe cell families with the same spacing in different directions to the same grid cell neural plate;
S5、利用网格细胞产生叠加放电响应形成网格放电。S5, using grid cells to generate superimposed discharge responses to form grid discharges.
如图2所示,所述网格细胞的网格放电野具有网格间距(λ)、网格定向(θ)及网格相位(Δx,Δy)的三个空间特征参数,其中,所述网格间距表示相邻放电野之间的距离,所述网格定向表示放电野节点之间连线相对于外部参考点的倾斜角,所述网格相位表示相对于外部参考点的位移。As shown in FIG. 2 , the grid discharge field of the grid cell has three spatial characteristic parameters of grid spacing (λ), grid orientation (θ) and grid phase (Δx, Δy). The grid spacing represents the distance between adjacent discharge fields, the grid orientation represents the inclination angle of the connection line between the discharge field nodes relative to the external reference point, and the grid phase represents the displacement relative to the external reference point.
根据本发明的另一个实施例,提供了一种网格细胞的模型构建系统,该系统包括网格细胞群建模模块、神经板构建模块、路径积分结果编码模块、放电投射模块及网格放电模块;According to another embodiment of the present invention, a grid cell model building system is provided, which includes a grid cell population modeling module, a neural plate building module, a path integral result encoding module, a discharge projection module, and a grid discharge module. module;
所述网格细胞群建模模块用于采用二维平面连续吸引子模型对网格细胞群进行建模;The grid cell group modeling module is used for modeling the grid cell group using a two-dimensional plane continuous attractor model;
所述神经板构建模块用于构建一个由平面分布的网格细胞组成的神经板;The neural board building module is used to construct a neural board composed of grid cells distributed in a plane;
所述路径积分结果编码模块用于利用条纹细胞中产生的条纹放电来编码特定方向的路径积分结果;The path integration result encoding module is used to encode the path integration result of a specific direction by using the streak discharges generated in the streak cells;
所述放电投射模块用于将多个不同方向相同间距的条纹细胞族的浆细胞放电投射到同一网格细胞神经板上;The discharge projection module is used for projecting the plasma cell discharges of a plurality of stripe cell families with the same spacing in different directions to the same grid cell neural plate;
所述网格放电模块用于利用网格细胞产生叠加放电响应形成网格放电。The grid discharge module is used for using grid cells to generate superimposed discharge responses to form grid discharges.
其中,所述吸引子模型中的每个吸引子代表一个网格细胞,且所述网格细胞的活动状态与上游条纹细胞的前向输入有关;每个所述网格细胞的激活输入从对应相位上各个方向的条纹细胞中得到;所述网格细胞的网格放电野具有网格间距、网格定向及网格相位的三个空间特征参数,其中,所述网格间距表示相邻放电野之间的距离,所述网格定向表示放电野节点之间连线相对于外部参考点的倾斜角,所述网格相位表示相对于外部参考点的位移。Wherein, each attractor in the attractor model represents a grid cell, and the active state of the grid cell is related to the forward input of the upstream stripe cell; the activation input of each grid cell is derived from the corresponding obtained from streak cells in all directions on the phase; the grid discharge field of the grid cell has three spatial characteristic parameters of grid spacing, grid orientation and grid phase, wherein the grid spacing represents adjacent discharges The distance between the fields, the grid orientation represents the inclination angle of the connection line between the discharge field nodes relative to the external reference point, and the grid phase represents the displacement relative to the external reference point.
综上所述,借助于本发明的上述技术方案,本发明提出了将条纹细胞放电作为网格细胞的前向信号输入,多条流动的条纹波联合驱动网格细胞对空间进行编码,形成流动的二维放电网格,使得信息传递和处理方式符合生理学依据;此外,本发明中当大鼠运动时驱动条纹细胞放电模态流动,使得网格细胞也产生流动的放电网格,因而能实现网格细胞对空间的路径信息的整合。To sum up, with the help of the above technical solutions of the present invention, the present invention proposes that the discharge of the streak cells is used as the forward signal input of the grid cells, and multiple flowing streak waves jointly drive the grid cells to encode the space to form a flow. In addition, in the present invention, when the rat moves, the discharge modal flow of the stripe cells is driven, so that the grid cells also generate flowing discharge grids, so the realization of Grid cells integrate spatial path information.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110857920.5A CN113643749A (en) | 2021-07-28 | 2021-07-28 | Method and system for constructing model of grid cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110857920.5A CN113643749A (en) | 2021-07-28 | 2021-07-28 | Method and system for constructing model of grid cells |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113643749A true CN113643749A (en) | 2021-11-12 |
Family
ID=78418596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110857920.5A Pending CN113643749A (en) | 2021-07-28 | 2021-07-28 | Method and system for constructing model of grid cells |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113643749A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115019877A (en) * | 2022-08-05 | 2022-09-06 | 上海华模科技有限公司 | Method and device for modeling and updating biological tissue model and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106125730A (en) * | 2016-07-10 | 2016-11-16 | 北京工业大学 | A kind of robot navigation's map constructing method based on Mus cerebral hippocampal spatial cell |
CN106949896A (en) * | 2017-05-14 | 2017-07-14 | 北京工业大学 | A kind of situation awareness map structuring and air navigation aid based on mouse cerebral hippocampal |
CN108362284A (en) * | 2018-01-22 | 2018-08-03 | 北京工业大学 | A kind of air navigation aid based on bionical hippocampus cognitive map |
CN109668566A (en) * | 2018-12-05 | 2019-04-23 | 大连理工大学 | Robot scene cognition map construction and navigation method based on mouse brain positioning cells |
CN109886384A (en) * | 2019-02-15 | 2019-06-14 | 北京工业大学 | A biomimetic navigation method based on grid cell reconstruction in the mouse hippocampus |
CN111552298A (en) * | 2020-05-26 | 2020-08-18 | 北京工业大学 | Bionic positioning method based on rat brain hippocampus spatial cells |
-
2021
- 2021-07-28 CN CN202110857920.5A patent/CN113643749A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106125730A (en) * | 2016-07-10 | 2016-11-16 | 北京工业大学 | A kind of robot navigation's map constructing method based on Mus cerebral hippocampal spatial cell |
CN106949896A (en) * | 2017-05-14 | 2017-07-14 | 北京工业大学 | A kind of situation awareness map structuring and air navigation aid based on mouse cerebral hippocampal |
CN108362284A (en) * | 2018-01-22 | 2018-08-03 | 北京工业大学 | A kind of air navigation aid based on bionical hippocampus cognitive map |
CN109668566A (en) * | 2018-12-05 | 2019-04-23 | 大连理工大学 | Robot scene cognition map construction and navigation method based on mouse brain positioning cells |
CN109886384A (en) * | 2019-02-15 | 2019-06-14 | 北京工业大学 | A biomimetic navigation method based on grid cell reconstruction in the mouse hippocampus |
CN111552298A (en) * | 2020-05-26 | 2020-08-18 | 北京工业大学 | Bionic positioning method based on rat brain hippocampus spatial cells |
Non-Patent Citations (1)
Title |
---|
于乃功;苑云鹤;李倜;蒋晓军;罗子维;: "一种基于海马认知机理的仿生机器人认知地图构建方法", 自动化学报, no. 01, 3 January 2017 (2017-01-03), pages 52 - 73 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115019877A (en) * | 2022-08-05 | 2022-09-06 | 上海华模科技有限公司 | Method and device for modeling and updating biological tissue model and storage medium |
CN115019877B (en) * | 2022-08-05 | 2022-11-04 | 上海华模科技有限公司 | Method and device for modeling and updating biological tissue model and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm | |
Zhu et al. | Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based genetic algorithm with double-chromosome encoding | |
CN106125730B (en) | A Robot Navigation Map Construction Method Based on Mouse Hippocampal Spatial Cells | |
CN106444701B (en) | Leader-follower type multi-agent system finite time Robust Fault Diagnosis design method | |
CN112305918A (en) | Multi-agent system sliding mode fault-tolerant consistency control algorithm under supercoiled observer | |
CN113051723B (en) | A swarm UAV fault propagation analysis method based on time series network | |
CN106873629B (en) | Unmanned plane aviation job task distribution method and device | |
CN111047087A (en) | Intelligent optimization method and device for path under cooperation of unmanned aerial vehicle and vehicle | |
Song et al. | Unmanned aerial vehicle coverage path planning algorithm based on cellular automata | |
Ong et al. | Cooperative collision avoidance via proximal message passing | |
Yan et al. | Iterative learning approach for traffic signal control of urban road networks | |
CN113643749A (en) | Method and system for constructing model of grid cells | |
CN114815856A (en) | Time-varying formation of nonholonomic multi-agent system including control method, device and equipment | |
CN118131791A (en) | A method for task allocation and path planning of unmanned system group collaborative search | |
Yao et al. | FEA-Net: a deep convolutional neural network with physicsprior for efficient data driven PDE learning | |
Cheng et al. | Linear system on dimension-varying state space | |
Lyu et al. | MMPA: A modified marine predator algorithm for 3D UAV path planning in complex environments with multiple threats | |
Yu et al. | Distributed generation and control of persistent formation for multi-agent systems | |
Hao et al. | Effect of network structure on the stability margin of large vehicle formation with distributed control | |
Cui et al. | Scalable task-driven robotic swarm control via collision avoidance and learning mean-field control | |
Patley et al. | Modified particle swarm optimization based path planning for multi-UAV formation | |
Hoogendoorn et al. | Game-theoretical approach to decentralized multi-drone conflict resolution and emergent traffic flow operations | |
CN107483309A (en) | A minimum weight vertex cover solution method for distributed network systems based on game theory | |
Zhao et al. | Formation of cognitive maps in large-scale environments by sensorimotor integration | |
Peiravi et al. | A fast algorithm for connectivity graph approximation using modified Manhattan distance in dynamic networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |