CN113643722B - 一种基于多层矩阵随机神经网络的城市噪声识别方法 - Google Patents

一种基于多层矩阵随机神经网络的城市噪声识别方法 Download PDF

Info

Publication number
CN113643722B
CN113643722B CN202110995007.1A CN202110995007A CN113643722B CN 113643722 B CN113643722 B CN 113643722B CN 202110995007 A CN202110995007 A CN 202110995007A CN 113643722 B CN113643722 B CN 113643722B
Authority
CN
China
Prior art keywords
matrix
output
encoder
random
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110995007.1A
Other languages
English (en)
Other versions
CN113643722A (zh
Inventor
曹九稳
张诗晨
王天磊
杨洁
邓木清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110995007.1A priority Critical patent/CN113643722B/zh
Publication of CN113643722A publication Critical patent/CN113643722A/zh
Application granted granted Critical
Publication of CN113643722B publication Critical patent/CN113643722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
    • G10L25/30Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Signal Processing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了一种基于多层矩阵随机神经网络的城市噪声识别方法。本发明包括如下步骤:1、对采集到的城市噪声进行预处理,包括去噪、预加重、分帧、加窗等,其中帧长为L,帧移为2、将经过预处理的噪声信号转换成时频图;3、构建矩阵随机自编码器,以城市噪声二维时频图作为矩阵随机自编码器的输入,通过输出重建输入的方式进行训练,获得最优的输出权重作为编码器;同时将上一个相邻矩阵随机自编码器的编码输出作为下一个矩阵随机自编码器的输入,堆叠K个矩阵随机自编码器;4、构建矩阵均方误差损失函数,进行城市噪声分类识别。本发明加快了矩阵随机自编码器的训练速度。免去矢量化步骤、保留时频图信息同时实现有效的城市噪声识别。

Description

一种基于多层矩阵随机神经网络的城市噪声识别方法
技术领域
本发明属于声音信号识别领域,涉及一种基于多层矩阵随机神经网络的城市噪声识别方法。
背景技术
伴随着城市化建设进程的日益推进,城市噪声问题愈发严重,给人类的日常生活和身体健康都带来了不可忽视的影响,因此,采用机器学习的方法,建立实时全天候的城市噪声监测系统进行控制是至关重要的。
目前采用声信号特征提取方法,并结合传统的分类器搭建的实时监控系统,其问题在于,传统的声特征提取方法往往是针对语音信号而设计的,并不完全适用于城市噪声信号;针对城市噪声的特征提取方法无法覆盖到各种声源的特性;此外,由于声信号的非平稳性,这些特征提取方法均是基于一段短时范围内的声信号,其包含的信息有限。
相比较于在一维短时声信号上进行特征提取,采用以时间为横轴,频域特征为纵轴构成的二维时频图,是现在主流的声信号识别所采取的方法,其所包含的信息量是远大于一维短时声信号的。在此基础上,采用卷积神经网络进行学习,或者采用深度迁移特征进行特征提取,结合传统分类器进行识别,是目前流行的两种方式。然而卷积神经网络训练时间长,而深度迁移特征对时频图的表示能力弱,因此目前缺乏有效快速的基于时频图的城市噪声识别方法。
发明内容
为了克服上述城市噪声识别中存在的问题,本发明提出了一种基于多层矩阵随机神经网络的城市噪声识别方法。
本发明的技术方案主要包括如下步骤:
步骤1、对采集到的城市噪声进行预处理,包括去噪、预加重、分帧、加窗等,其中帧长为L,帧移为
步骤2、将经过预处理的噪声信号转换成时频图。
2-1.对经过预处理后的每一帧噪声信号,进行离散傅里叶变换(DFT),将时域信号转换为频域信号。
2-2.对经过DFT后的各帧信号,对各频率点的幅值进行平方,获得该频率点下的能量;
2-3.组合连续的LN帧信号,以频率为纵坐标,横坐标为连续的LN帧信号,构成二维时频图,其中像素点(m,n)的大小表示第m帧,第n个频率点的能量。
步骤3、构建矩阵随机自编码器,以城市噪声二维时频图作为矩阵随机自编码器的输入,通过输出重建输入的方式进行训练,获得最优的输出权重作为编码器。同时将上一个相邻矩阵随机自编码器的编码输出作为下一个矩阵随机自编码器的输入,堆叠K个矩阵随机自编码器。
3-1.通过步骤2处理之后,得到具有N个样本的训练数据集X=[x1,x2,…,xi,…,xN],其中表示由第i张尺寸为d1×d2的时频图,i=1,2,…,N。并记Y(0)=X,即
3-2.将作为输入,随机生成输入权重矩阵/>以及隐藏层偏置矩计算隐藏层输出为:
其中g(·)激活函数。
3-3.构建矩阵随机自编码器的损失函数为:
其中表示第k次进行训练获得的输出权重,C为正则项参数,采用随机梯度下降法求解上述损失函数。
3-4.基于训练好的第k个矩阵随机自编码器的输出权重,获得第k个矩阵随机自编码器的编码输出为:
3-5.重复步骤3-2、3-3、3-4,训练K个矩阵随机自编码器,并得到最终的编码输出
步骤4、构建矩阵均方误差损失函数,进行城市噪声分类识别。
4-1.基于步骤3中获得的K个矩阵随机自编码器的编码输出构造如下的损失函数:
其中C为权重衰减参数,T=[t1,t2,…,tN]T表示训练样本的期望输出,为需要进行训练的输出权重。此处的权重βu和βv与前述自编码器的权重有所区别,此处的权重是为了进行分类而训练的,为了与自编码器的权重进行区分,此处不带上标。
4-2.利用随机梯度下降法进行训练,获得训练好的βu和βv
步骤5、对新的声音信号进行分类预测。
对于未知信号,通过预处理之后转换为时频图xp,并输入到多层矩阵随机神经网络中,获得编码输出为:
将所得的输出传输给Decision Layer进行决策分类:
最终所得的yp是一个向量,其元素中数值最大的元素所对应的位置即为该样本所属的类别。
本发明有益效果如下:
本发明针对城市噪声监控问题,提出了多层矩阵随机神经网络方法进行实时高效全天候监控,该方法的效益在于:
1)采用矩阵随机自编码器对城市噪声时频图进行自动快速的特征表示。相比较于传统的一维声音信号特征,采用二维时频图包含有更多的信息;相比较于传统的自编码器,提出的矩阵自编码器能够直接以二维矩阵作为输入,在二维图上直接进行特征提取,充分保留了时频图的结构信息,同时采用矩阵的方式可以大大减少待训练参数数量;采用隐藏层参数随机生成的方式,可以大大加快矩阵随机自编码器的训练速度。
2)采用堆叠矩阵随机自编码器,利用逐层贪婪训练搭建起来的多层矩阵随机神经网络,可以学习到更加有效的关于城市噪声有效的特征表示;同时结合构建的矩阵均方误差损失函数,可以免去全连接层中的矢量化步骤,在充分保留时频图结构信息的基础上,实现有效的城市噪声识别。
附图说明
图1是AE模型结构图;
图2是本发明总体模型结构图。
具体实施方式
下面结合附图和具体实施方式对本发明作详细说明,以下描述仅作为示范和解释,并不对本发明作任何形式上的限制。本发明分别采用以下方式进行改进,包括1)构建矩阵随机自编码器,以二维时频图直接作为随机自编码器的输入,通过在重建输入的时频图过程中,学习到有效的针对于城市噪声的特征表示,既充分保留了图像内部的结构信息,同时又免去了繁琐的矢量化步骤,实现更好的利用音频特征,使得能够有效的处理多种高维复杂特征;2)以训练好的矩阵随机自编码器的输出权重作为多层矩阵随机神经网络的连接权重,采用贪婪式方法进行矩阵随机自编码器的堆叠,构建多层矩阵神经网络结构,采用隐藏层参数随机生成的方式可以有效提高训练速度,减少训练时间,此外,采用矩阵的形式大大减少了待训练参数的数量;3)构建矩阵均方误差损失函数,进行城市噪声分类识别,有效提高分类器的分类识别能力。
以多种城市噪声为例,使用Mat ELM-AE网络进行分类,图2是整体的处理流程示意图,具体实现如下:
步骤1、对采集到的城市噪声进行预加重、去噪、分帧、加窗,其中采用的一阶高通滤波器特性为H(z)=1-z-1;帧长为1024,帧移为512,采用汉宁窗作为窗函数。
步骤2、将经过预处理的噪声信号转换成时频图。
分别取连续的11帧信号,对每一帧噪声信号进行DFT,并去掉尾部的对称的频率点,计算能量,得到维数为11×513的二维时频图。
步骤3、本实例堆叠2个矩阵随机自编码器,训练2个矩阵随机自编码器。
N个样本的训练数据集X=[x1,x2,…,xN],其中表示第i张时频图,i=1,2,…,N。
对于第一个矩阵随机自编码器,以X=[x1,x2,…,xN]作为输入,记Y(0)=X,即我们设置隐藏层的维数为100×100,随机生成输入权重矩阵/>以及隐藏层偏置矩阵/>其中各元素值独立同分布,服从[-1,1]间的均匀分布。然后,计算隐藏层输出为
其中g(·)取非线性的sigmoid函数作为激活函数。构建矩阵随机自编码器的损失函数如下:
其中是需进行训练获得的输出权重,C为正则项参数。采用随机梯度下降法求解上述损失函数,获得输出权重矩阵。最后,获得第1个矩阵随即自编码器的编码输出为:
对于第2个矩阵随机自编码器,我们以第1个矩阵随机自编码器的编码输出作为输入,其中/>并设置隐藏层的维数为100×100,以均匀分布随机生成输入权重矩阵/>以及隐藏层偏置矩阵计算隐藏层输出为
最后求解如下的损失函数:
得到第2个矩阵随机自编码器的输出权重和/>获得编码输出结果为:
步骤4、构建矩阵均方误差损失函数,进行城市噪声分类识别。
基于经过2个矩阵随机自编码器后的编码输出构造如下的矩阵均方误差损失函数:
其中C为正则化参数,T=[t1,t2,…,tN]T表示训练样本的期望输出,为需要进行训练的输出权重,其中M1表示目标的类别数量。利用随机梯度下降法进行训练,获得训练好的βu和βv
步骤5、对新的声音信号进行分类预测。
对于未知信号,通过预处理之后转换为时频图xp,并输入到多层矩阵随机神经网络中,即:
最后得到识别输出为:
取yp的元素中数值最大的元素所对应的位置即为该样本所属的类别。

Claims (1)

1.一种基于多层矩阵随机神经网络的城市噪声识别方法,其特征在于包括如下步骤:
步骤1、对采集到的城市噪声进行预处理,包括去噪、预加重、分帧、加窗等,其中帧长为L,帧移为
步骤2、将经过预处理的噪声信号转换成时频图;
步骤3、构建矩阵随机自编码器,以城市噪声二维时频图作为矩阵随机自编码器的输入,通过输出重建输入的方式进行训练,获得最优的输出权重作为编码器;同时将上一个相邻矩阵随机自编码器的编码输出作为下一个矩阵随机自编码器的输入,堆叠K个矩阵随机自编码器;
步骤4、构建矩阵均方误差损失函数,进行城市噪声分类识别;
步骤2具体实现如下:
2-1.对经过预处理后的每一帧噪声信号,进行离散傅里叶变换,将时域信号转换为频域信号;
2-2.对经过傅里叶变换后的各帧信号,对各频率点的幅值进行平方,获得该频率点下的能量;
2-3.组合连续的LN帧信号,以频率为纵坐标,横坐标为连续的LN帧信号,构成二维时频图,其中像素点(m,n)的大小表示第m帧,第n个频率点的能量;
步骤3具体实现如下:
3-1.通过步骤2处理后,得到具有N个样本的训练数据集X=[x1,x2,…,xi,…,xN],其中表示由第i张尺寸为d1×d2的时频图,i=1,2,…,N;并记Y(0)=X,即
3-2.以作为输入,随机生成输入权重矩阵/>以及隐藏层偏置矩/>计算隐藏层输出为:
其中g(·)激活函数;
3-3.构建矩阵随机自编码器的损失函数为:
其中表示第k次进行训练获得的输出权重,C为正则项参数,采用随机梯度下降法求解上述损失函数;
3-4.基于训练好的第k个矩阵随机自编码器的输出权重,获得第k个矩阵随机自编码器的编码输出为:
3-5.重复步骤3-2、3-3、3-4,训练K个矩阵随机自编码器,并得到最终的编码输出
步骤4具体实现如下:
4-1.基于步骤3中获得的K个矩阵随机自编码器的编码输出构造如下的损失函数:
其中C为权重衰减参数,T=[t1,t2,…,tN]T表示训练样本的期望输出,为需要进行训练的输出权重;
4-2.利用随机梯度下降法进行训练,获得训练好的βu和βv
步骤5、对新的声音信号进行分类预测;
对于未知信号,通过预处理之后转换为时频图xp,并输入到多层矩阵随机神经网络中,获得编码输出为:
将所得的输出传输给Decision Layer进行决策分类:
最终所得的yp是一个向量,其元素中数值最大的元素所对应的位置即为该样本所属的类别。
CN202110995007.1A 2021-08-27 2021-08-27 一种基于多层矩阵随机神经网络的城市噪声识别方法 Active CN113643722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110995007.1A CN113643722B (zh) 2021-08-27 2021-08-27 一种基于多层矩阵随机神经网络的城市噪声识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110995007.1A CN113643722B (zh) 2021-08-27 2021-08-27 一种基于多层矩阵随机神经网络的城市噪声识别方法

Publications (2)

Publication Number Publication Date
CN113643722A CN113643722A (zh) 2021-11-12
CN113643722B true CN113643722B (zh) 2024-04-19

Family

ID=78424243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110995007.1A Active CN113643722B (zh) 2021-08-27 2021-08-27 一种基于多层矩阵随机神经网络的城市噪声识别方法

Country Status (1)

Country Link
CN (1) CN113643722B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819846A (zh) * 2015-04-10 2015-08-05 北京航空航天大学 一种基于短时傅里叶变换和稀疏层叠自动编码器的滚动轴承声音信号故障诊断方法
CN107610692A (zh) * 2017-09-22 2018-01-19 杭州电子科技大学 基于神经网络堆叠自编码器多特征融合的声音识别方法
CN108510009A (zh) * 2018-04-16 2018-09-07 北京工业大学 一种基于判别矩阵变量受限玻尔兹曼机的图像识别方法
CN108846410A (zh) * 2018-05-02 2018-11-20 湘潭大学 基于稀疏自动编码深度神经网络的电能质量扰动分类方法
CN109858509A (zh) * 2018-11-05 2019-06-07 杭州电子科技大学 基于多层随机神经网络单分类器异常检测方法
WO2019198265A1 (en) * 2018-04-13 2019-10-17 Mitsubishi Electric Corporation Speech recognition system and method using speech recognition system
CN111444832A (zh) * 2020-03-25 2020-07-24 哈尔滨工程大学 基于卷积神经网络的鲸鱼叫声分类方法
CN112086100A (zh) * 2020-08-17 2020-12-15 杭州电子科技大学 基于量化误差熵的多层随机神经网络的城市噪音识别方法
CN112381180A (zh) * 2020-12-09 2021-02-19 杭州拓深科技有限公司 一种基于互重构单类自编码器的电力设备故障监测方法
CN113191397A (zh) * 2021-04-09 2021-07-30 杭州电子科技大学 一种基于最大相关熵准则的多维信号特征融合方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819846A (zh) * 2015-04-10 2015-08-05 北京航空航天大学 一种基于短时傅里叶变换和稀疏层叠自动编码器的滚动轴承声音信号故障诊断方法
CN107610692A (zh) * 2017-09-22 2018-01-19 杭州电子科技大学 基于神经网络堆叠自编码器多特征融合的声音识别方法
WO2019198265A1 (en) * 2018-04-13 2019-10-17 Mitsubishi Electric Corporation Speech recognition system and method using speech recognition system
CN108510009A (zh) * 2018-04-16 2018-09-07 北京工业大学 一种基于判别矩阵变量受限玻尔兹曼机的图像识别方法
CN108846410A (zh) * 2018-05-02 2018-11-20 湘潭大学 基于稀疏自动编码深度神经网络的电能质量扰动分类方法
CN109858509A (zh) * 2018-11-05 2019-06-07 杭州电子科技大学 基于多层随机神经网络单分类器异常检测方法
CN111444832A (zh) * 2020-03-25 2020-07-24 哈尔滨工程大学 基于卷积神经网络的鲸鱼叫声分类方法
CN112086100A (zh) * 2020-08-17 2020-12-15 杭州电子科技大学 基于量化误差熵的多层随机神经网络的城市噪音识别方法
CN112381180A (zh) * 2020-12-09 2021-02-19 杭州拓深科技有限公司 一种基于互重构单类自编码器的电力设备故障监测方法
CN113191397A (zh) * 2021-04-09 2021-07-30 杭州电子科技大学 一种基于最大相关熵准则的多维信号特征融合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Urban noise recognition with convolutional neural network;jiuwen cao;multimedia tools and applications;第1-22页 *
深度稀疏自编码器在ECG特征提取中的应用;郑淋文 等;计算机工程与应用;第11卷(第57期);第156-161页 *

Also Published As

Publication number Publication date
CN113643722A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
CN110245608B (zh) 一种基于半张量积神经网络的水下目标识别方法
CN110751044B (zh) 基于深度网络迁移特征与增广自编码的城市噪声识别方法
CN109800700B (zh) 一种基于深度学习的水下声信号目标分类识别方法
CN108682418B (zh) 一种基于预训练和双向lstm的语音识别方法
CN106847309A (zh) 一种语音情感识别方法
CN110379412A (zh) 语音处理的方法、装置、电子设备及计算机可读存储介质
CN105488466B (zh) 一种深层神经网络和水声目标声纹特征提取方法
CN108827605B (zh) 一种基于改进稀疏滤波的机械故障特征自动提取方法
CN106682574A (zh) 一维深度卷积网络的水下多目标识别方法
CN108846410A (zh) 基于稀疏自动编码深度神经网络的电能质量扰动分类方法
CN111429947B (zh) 一种基于多级残差卷积神经网络的语音情感识别方法
CN106782511A (zh) 修正线性深度自编码网络语音识别方法
CN110334580A (zh) 基于集成增量的动态权重组合的设备故障分类方法
CN110175560A (zh) 一种雷达信号脉内调制识别方法
CN113191178B (zh) 一种基于听觉感知特征深度学习的水声目标识别方法
CN107068167A (zh) 融合多种端到端神经网络结构的说话人感冒症状识别方法
CN108847223A (zh) 一种基于深度残差神经网络的语音识别方法
Yang et al. A new cooperative deep learning method for underwater acoustic target recognition
CN113111786B (zh) 基于小样本训练图卷积网络的水下目标识别方法
CN113763965B (zh) 一种多重注意力特征融合的说话人识别方法
CN112259119B (zh) 基于堆叠沙漏网络的音乐源分离方法
CN108806725A (zh) 语音区分方法、装置、计算机设备及存储介质
CN113643722B (zh) 一种基于多层矩阵随机神经网络的城市噪声识别方法
CN113435276A (zh) 一种基于对抗残差网络的水声目标识别方法
CN116417011A (zh) 基于特征融合和残差cnn的水声目标识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant