CN113640388A - A method and device for calculating sound absorption coefficient of periodic non-flat interface porous materials - Google Patents

A method and device for calculating sound absorption coefficient of periodic non-flat interface porous materials Download PDF

Info

Publication number
CN113640388A
CN113640388A CN202110837185.1A CN202110837185A CN113640388A CN 113640388 A CN113640388 A CN 113640388A CN 202110837185 A CN202110837185 A CN 202110837185A CN 113640388 A CN113640388 A CN 113640388A
Authority
CN
China
Prior art keywords
coefficient
sound pressure
periodic
porous material
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110837185.1A
Other languages
Chinese (zh)
Other versions
CN113640388B (en
Inventor
杨玉真
贾晗
杨军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN202110837185.1A priority Critical patent/CN113640388B/en
Publication of CN113640388A publication Critical patent/CN113640388A/en
Application granted granted Critical
Publication of CN113640388B publication Critical patent/CN113640388B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

The invention belongs to the technical field of acoustic measurement of porous sound-absorbing materials, and particularly relates to a method and a device for calculating the sound-absorbing coefficient of a porous material with a periodic non-flat interface, wherein the method comprises the following steps: obtaining equivalent acoustic parameters of the porous material with the periodic non-flat interface; carrying out layering treatment on the periodic non-flat interface porous material, wherein each thin layer material is equivalent to an acoustic material modulated by a periodic rectangle; acquiring sound pressure and related acoustic parameters in the acoustic material equivalently modulated by the periodic rectangles of each thin-layer material, expanding the sound pressure and the related acoustic parameters into a hierarchical number expression form, substituting the hierarchical number expression form into a sound wave equation, and calculating the eigen state form of the sound pressure in each thin-layer material; calculating intensity coefficient vectors of all orders of eigen state forms of reflected sound pressure and intensity coefficient vectors of all orders of eigen state forms of transmitted sound pressure by adopting an iterative optimization algorithm according to the interlayer boundary continuity condition; and determining the total reflection coefficient and the total transmission coefficient according to the calculation result, and calculating the sound absorption coefficient of the porous material with the periodic non-flat interface.

Description

一种周期非平整界面多孔材料吸声系数的计算方法及装置A method and device for calculating sound absorption coefficient of periodic non-flat interface porous materials

技术领域technical field

本发明属于多孔吸声材料的声学测量技术领域,具体地说,涉及一种周期非平整界面多孔材料吸声系数的计算方法及测量装置。The invention belongs to the technical field of acoustic measurement of porous sound-absorbing materials, and in particular relates to a method and a measuring device for calculating the sound-absorbing coefficient of periodic non-flat interface porous materials.

背景技术Background technique

多孔材料由于能将声能转化为热能,而被广泛运用于噪声控制领域。将许多带有楔形或者半椭圆表面的周期波纹结构的多孔材料安装在墙体上,以达到吸声目的。与平面多孔材料相比,具有周期波纹结构的多孔材料在较宽的频率范围内,具有更好的吸声性能。Porous materials are widely used in the field of noise control due to their ability to convert acoustic energy into thermal energy. A number of porous materials with periodic corrugated structures with wedge-shaped or semi-elliptical surfaces are installed on the wall to achieve sound absorption. Compared with planar porous materials, porous materials with periodic corrugated structures have better sound absorption performance in a wider frequency range.

目前,对于周期非平整界面多孔材料吸声性能的研究,主要以实验测试为主。通过实验测试研究和优化多孔材料的吸声性能,通常需要制备大量不同材料参数、不同几何外形和不同结构参数的样件,进行大量重复的测量工作,然后对所有测试数据进行归纳统计并总结规律。这样的实验测试流程操作繁琐、耗时耗力,不利于工程应用中的快速优化设计。At present, the research on the sound absorption performance of periodic non-flat interface porous materials is mainly based on experimental tests. To study and optimize the sound absorption performance of porous materials through experimental tests, it is usually necessary to prepare a large number of samples with different material parameters, different geometric shapes and different structural parameters, carry out a large number of repeated measurements, and then summarize all the test data and summarize the rules. . Such an experimental test process is cumbersome, time-consuming and labor-intensive, which is not conducive to rapid optimization design in engineering applications.

针对周期非平整界面多孔材料吸声系数的计算,现有的计算方法主要包括有限元、边界元以及时域有限差分等理论计算方法,现有的方法主要需要几何建模和网格划分,其计算的复杂度和难度均非常大,大大降低了测量效率和测量精度。For the calculation of the sound absorption coefficient of porous materials with periodic non-flat interfaces, the existing calculation methods mainly include theoretical calculation methods such as finite element, boundary element and time domain finite difference. The existing methods mainly require geometric modeling and mesh division. The computational complexity and difficulty are very large, which greatly reduces the measurement efficiency and measurement accuracy.

发明内容SUMMARY OF THE INVENTION

为解决现有技术存在的上述缺陷,本发明提出了一种周期非平整界面多孔材料吸声系数的计算方法,该方法包括:In order to solve the above-mentioned defects in the prior art, the present invention proposes a method for calculating the sound absorption coefficient of periodic non-flat interface porous materials, the method comprising:

获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;Obtaining equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;

将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;

根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;According to the obtained equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the periodic rectangular modulated acoustic material equivalent to each thin-layer material are obtained and expanded into a series expression, and brought into the acoustic wave equation to calculate each thin-layer The eigenstate form of the sound pressure in the material;

通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;Through the interlayer boundary continuity condition, the iterative optimization algorithm is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure;

根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。According to the above calculation results, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated.

作为上述技术方案的改进之一,所述周期非平整界面多孔材料包括:周期排列的、非平整的、非完全填充的多孔材料尖端和完全填充的多孔材料基底。As one of the improvements of the above technical solutions, the periodic non-planar interface porous material includes: periodically arranged, non-planar, incompletely filled porous material tips and completely filled porous material bases.

作为上述技术方案的改进之一,所述获取周期非平整界面多孔材料的等效声学参数;其具体过程为:As one of the improvements of the above technical solutions, the acquisition of the equivalent acoustic parameters of the periodic non-flat interface porous material; the specific process is:

根据测量得到的第一厚度为t1多孔材料的平面结构的反射系数R1和第二厚度为t2多孔材料的平面结构的反射系数R2,分别计算第一厚度为t1多孔材料的平面结构的表面阻抗ζ1和第二厚度为t2多孔材料的平面结构的表面阻抗ζ2According to the measured reflection coefficient R 1 of the planar structure of the porous material with the first thickness t 1 and the reflection coefficient R 2 of the planar structure of the second porous material with thickness t 2 , the plane of the porous material with the first thickness t 1 is calculated respectively. the surface impedance ζ 1 of the structure and the surface impedance ζ 2 of the second thickness t 2 planar structure of the porous material;

ζ1=(1+R1)/(1-R1)ζ 1 =(1+R 1 )/(1-R 1 )

ζ2=(1+R2)/(1-R2)ζ 2 =(1+R 2 )/(1-R 2 )

其中,ζ1=Zpcoth(γt1);ζ2=Zpcoth(γt2);Wherein, ζ 1 =Z p coth(γt 1 ); ζ 2 =Z p coth(γt 2 );

根据ζ1tanh(γt1)-ζ2tanh(γt2)=0;According to ζ 1 tanh(γt 1 )-ζ 2 tanh(γt 2 )=0;

联合上式,计算得到复数传播常数γ和归一化的特性阻抗ZpCombined with the above formula, the complex propagation constant γ and the normalized characteristic impedance Z p are obtained by calculation;

根据下述公式,计算等效折射率np和等效密度ρpThe equivalent refractive index n p and the equivalent density ρ p are calculated according to the following formulas:

np=ω/(-jγc0);n p =ω/(-jγc 0 );

ρp=(-jγρ0c0Zp)/ω;ρ p =(-jγρ 0 c 0 Z p )/ω;

其中,c0是空气的声速;ρ0是空气的密度;ω为角频率;j为虚数单位;。Among them, c 0 is the sound speed of air; ρ 0 is the density of air; ω is the angular frequency; j is the imaginary unit; .

将计算得到的等效折射率和等效密度作为等效声学参数。Take the calculated equivalent refractive index and equivalent density as equivalent acoustic parameters.

作为上述技术方案的改进之一,所述将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;其具体过程为:As one of the improvements of the above technical solutions, the periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material; the specific process is as follows:

周期非平整界面多孔材料的尖端为非平整的、非完全填充的、具有多个薄层的多孔材料;对周期非平整界面多孔材料进行分层处理,得到多个薄层材料,每个薄层材料等效为周期矩形调制的声学材料;The tip of the periodic non-planar interface porous material is a non-planar, non-completely filled porous material with multiple thin layers; the periodic non-planar interface porous material is layered to obtain a plurality of thin layer materials, each thin layer The material is equivalent to an acoustic material with periodic rectangular modulation;

周期非平整界面多孔材料的基底为完全填充的多孔材料,该多孔材料为充填率为1的、完全填充的、周期矩形调制的声学材料。The base of the periodic non-planar interface porous material is a completely filled porous material, and the porous material is a completely filled, periodic rectangularly modulated acoustic material with a filling rate of 1.

作为上述技术方案的改进之一,所述根据多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;其具体过程为:As one of the improvements of the above technical solutions, according to the equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the acoustic material equivalent to the periodic rectangular modulation of each thin-layer material are obtained and expanded into a series expression, and Bring in the acoustic wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material; the specific process is as follows:

各个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式为:The expression of the sound pressure level in the equivalent periodic rectangular modulated acoustic material of each thin layer material is:

Figure BDA0003177578180000031
Figure BDA0003177578180000031

Figure BDA0003177578180000032
Figure BDA0003177578180000032

Figure BDA0003177578180000033
Figure BDA0003177578180000033

其中,PI是入射、反射区域的声压级数表达形式;PII是透射区域的声压级数表达形式,Pl是多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式;其中,l=1,2,…,L-1,L;Among them, P I is the expression form of the sound pressure level in the incident and reflection areas; P II is the expression form of the sound pressure level in the transmission area, and P l is the periodic rectangular modulation of the acoustic material equivalent to the lth thin layer of the porous material. The expression form of sound pressure level in ; where, l=1,2,...,L-1,L;

kx0=k0sinθ,kz0=k0cosθ,kxi=k0sinθ+iK,角标i是大于0的正整数,表示第i阶级数展开;K=2π/T,K是倒空间基矢;k x0 = k 0 sinθ, k z0 = k 0 cosθ, k xi = k 0 sinθ+iK, the index i is a positive integer greater than 0, indicating the i-th order number expansion; K=2π/T, K is the inverse space base vector;

当kxi<k0时,有

Figure BDA0003177578180000034
When k xi <k 0 , we have
Figure BDA0003177578180000034

当kxi>k0时,有

Figure BDA0003177578180000035
When k xi >k 0 , we have
Figure BDA0003177578180000035

其中,j是虚数单位;k0是空气中的波数;kxi表示x方向的波矢;kzi表示z方向的波矢;θ是入射角;T表示多孔材料的周期;D表示多孔材料的总厚度;Ri和Ti分别表示归一化的第i阶声压的反射系数和透射系数;Sli(z)是第l层周期多孔材料的第i阶声压系数;exp( )表示以自然常数e为底的指数函数;where j is the imaginary unit; k 0 is the wave number in air; k xi is the wave vector in the x direction; k zi is the wave vector in the z direction; θ is the incident angle; T is the period of the porous material; D is the total thickness; Ri and T i represent the reflection coefficient and transmission coefficient of the normalized i -th order sound pressure, respectively; S li (z) is the i-th order sound pressure coefficient of the l-th layer periodic porous material; exp( ) represents The exponential function with the natural constant e as the base;

相关声学参数的级数表达形式为:The series expression form of the relevant acoustic parameters is:

Figure BDA0003177578180000036
Figure BDA0003177578180000036

Figure BDA0003177578180000037
Figure BDA0003177578180000037

其中,ρl(x)为第l层周期多孔材料的等效密度;nl(x)为第l层周期多孔材料的等效折射率;where ρ l (x) is the equivalent density of the lth layer of periodic porous material; n l (x) is the equivalent refractive index of the lth layer of periodic porous material;

Figure BDA0003177578180000038
Figure BDA0003177578180000038

Figure BDA0003177578180000039
Figure BDA0003177578180000039

其中,fl是第l层周期多孔材料中多孔材料的占空比;np,ρp分别是多孔材料的等效折射率和等效密度;n0,ρ0分别是空气的折射率和密度;j为虚数单位;m为展开阶数;K为倒空间基矢;Among them, f l is the duty ratio of the porous material in the lth layer of periodic porous material; n p , ρ p are the equivalent refractive index and equivalent density of the porous material, respectively; n 0 , ρ 0 are the refractive index of air and Density; j is the imaginary unit; m is the expansion order; K is the inverse space basis vector;

将获取的各个薄层材料的声压和相关声学参数的级数表达形式,带入声波方程;其中,一维周期声学结构中,密度非均匀介质中的声波方程为:The obtained series expressions of the sound pressure and related acoustic parameters of each thin-layer material are brought into the acoustic wave equation; among them, in the one-dimensional periodic acoustic structure, the acoustic wave equation in the density inhomogeneous medium is:

Figure BDA0003177578180000041
Figure BDA0003177578180000041

其中,

Figure BDA0003177578180000042
为拉普拉斯算符;P为声压级数表达形式;P为入射、反射区域的声压级数表达形式PI,透射区域的声压级数表达形式PII,或多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式Pl;n(x)为周期多孔材料的多孔材料的等效折射率的级数表达形式;in,
Figure BDA0003177578180000042
is the Laplace operator; P is the sound pressure level expression form; P is the sound pressure level expression form P I in the incident and reflection areas, the sound pressure level expression form P II in the transmission area, or the first The sound pressure series expression P l in the acoustic material equivalent to the periodic rectangular modulation of the thin layer material; n(x) is the series expression form of the equivalent refractive index of the porous material of the periodic porous material;

得到各阶系数的耦合方程:The coupling equations for the coefficients of each order are obtained:

Figure BDA0003177578180000043
Figure BDA0003177578180000043

将上述耦合方程写成矩阵形式:Write the above coupling equation in matrix form:

[Sl″]=[Al][Sl][S l ″]=[A l ][S l ]

其中,Sl是由Sli组成的列向量;Sl″是由d2Sli/dz2组成的列向量;矩阵

Figure BDA0003177578180000044
Figure BDA0003177578180000045
Among them, S l is a column vector composed of S li ; S l ″ is a column vector composed of d 2 S li /dz 2 ; a matrix
Figure BDA0003177578180000044
Figure BDA0003177578180000045

其中,矩阵Xl和Yl的元素表达式分别是

Figure BDA0003177578180000046
Figure BDA0003177578180000047
Figure BDA0003177578180000048
其中,m1为行数;n1为列数;
Figure BDA0003177578180000049
Figure BDA00031775781800000410
均为系数;对角矩阵Kx的元素Ki,i=kxi;Among them, the element expressions of matrices X l and Y l are respectively
Figure BDA0003177578180000046
and
Figure BDA0003177578180000047
Figure BDA0003177578180000048
Among them, m1 is the number of rows; n1 is the number of columns;
Figure BDA0003177578180000049
and
Figure BDA00031775781800000410
are all coefficients; the elements of the diagonal matrix K x are K i,i =k xi ;

计算矩阵Al特征值和特征向量,得到第m个特征值的平方根

Figure BDA00031775781800000411
和对应的特征向量
Figure BDA00031775781800000412
Calculate the eigenvalues and eigenvectors of matrix A l , and get the square root of the mth eigenvalue
Figure BDA00031775781800000411
and the corresponding eigenvectors
Figure BDA00031775781800000412

那么声压系数Sli(z)的表达式:Then the expression of the sound pressure coefficient S li (z):

Figure BDA00031775781800000413
Figure BDA00031775781800000413

其中,l=1;

Figure BDA00031775781800000414
为第l薄层材料内声压的正向本征态形式;
Figure BDA00031775781800000415
为第l薄层材料内声压的反向本征态形式;
Figure BDA00031775781800000416
为正向传播本征态形式的强度系数;
Figure BDA00031775781800000417
为反向传播本征态形式的强度系数;d1为第一薄层的厚度;z为z方向的位置;Among them, l=1;
Figure BDA00031775781800000414
is the forward eigenstate form of the sound pressure in the first thin layer of material;
Figure BDA00031775781800000415
is the inverse eigenstate form of the sound pressure in the first thin layer of material;
Figure BDA00031775781800000416
is the strength coefficient of the forward propagation eigenstate form;
Figure BDA00031775781800000417
is the intensity coefficient in the form of back-propagating eigenstates; d 1 is the thickness of the first thin layer; z is the position in the z direction;

Figure BDA0003177578180000051
Figure BDA0003177578180000051

其中,l=2,3,…,L;dp为第p薄层的厚度;Among them, l=2,3,...,L; dp is the thickness of the pth thin layer;

根据声压系数Sli(z),确定第l薄层材料内声压的正向本征态形式

Figure BDA0003177578180000052
和第l薄层材料内声压的反向本征态形式
Figure BDA0003177578180000053
According to the sound pressure coefficient S li (z), determine the forward eigenstate form of the sound pressure in the material of the first thin layer
Figure BDA0003177578180000052
and the inverse eigenstate form of the sound pressure in the first thin layer of material
Figure BDA0003177578180000053

作为上述技术方案的改进之一,所述通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量和透射声压的各阶本征态的强度系数向量;其具体过程为:As one of the improvements of the above technical solutions, the iterative optimization algorithm is used to calculate the intensity coefficient vectors of the eigenstates of each order of the reflected sound pressure and the intensity of the eigenstates of each order of the transmitted sound pressure through the interlayer boundary continuity condition. Coefficient vector; its specific process is:

边界连续性条件包括声压和法向质点振速连续;Boundary continuity conditions include sound pressure and normal particle vibration velocity continuity;

法向质点振速vz表达式是The normal particle vibration velocity v z expression is

Figure BDA0003177578180000054
Figure BDA0003177578180000054

其中,j为虚数单位;ω为角频率;

Figure BDA0003177578180000055
为归一化密度的倒数;Among them, j is the imaginary unit; ω is the angular frequency;
Figure BDA0003177578180000055
is the inverse of the normalized density;

将归一化密度的倒数展开成相应的级数形式

Figure BDA0003177578180000056
Expand the reciprocal of the normalized density into the corresponding series form
Figure BDA0003177578180000056

其中,ρ0为空气密度;ρl(x)为l薄层的等效密度;

Figure BDA0003177578180000057
为展开系数;Among them, ρ 0 is the air density; ρ l (x) is the equivalent density of the l thin layer;
Figure BDA0003177578180000057
is the expansion coefficient;

第i阶质点振速

Figure BDA0003177578180000058
是:Vibration velocity of i-th order particle
Figure BDA0003177578180000058
Yes:

Figure BDA0003177578180000059
Figure BDA0003177578180000059

其中,l=1;Among them, l=1;

Figure BDA00031775781800000510
Figure BDA00031775781800000510

其中,l=2,3,…,L;

Figure BDA00031775781800000511
为归一化密度的倒数的展开系数;Among them, l=2,3,...,L;
Figure BDA00031775781800000511
is the expansion coefficient of the reciprocal of the normalized density;

对于入射、反射区域和周期多孔材料第一层的界面连续性条件为:The interfacial continuity conditions for the incident, reflective regions and the first layer of periodic porous materials are:

Figure BDA00031775781800000512
Figure BDA00031775781800000512

对于中间各界面的连续性条件为:The continuity conditions for the intermediate interfaces are:

Figure BDA00031775781800000513
Figure BDA00031775781800000513

对于周期多孔材料最后一层和透射区域的界面连续性条件为:The interfacial continuity conditions for the last layer and the transmission region of periodic porous materials are:

Figure BDA00031775781800000514
Figure BDA00031775781800000514

其中,R是由反射强度系数Ri组成的列向量;T是由透射强度系数Ti组成的列向量;

Figure BDA0003177578180000061
是正向传播本征态形式的强度系数
Figure BDA0003177578180000062
组成的列向量;和
Figure BDA0003177578180000063
是反向传播本征态形式的强度系数
Figure BDA0003177578180000064
组成的列向量;Wl是特征向量
Figure BDA0003177578180000065
构成的矩阵,I是单位矩阵;Δi0是0阶对应系数为1,其他项为0的列向量;第l薄层矩阵Vl=ZlWlQl,且矩阵Zl的元素为
Figure BDA0003177578180000066
第l薄层对角矩阵Ql,El和Kz分别是元素
Figure BDA0003177578180000067
元素
Figure BDA0003177578180000068
和元素kzi组成的矩阵;WL为特征向量
Figure BDA0003177578180000069
构成的矩阵;EL为特征向量
Figure BDA00031775781800000610
构成的矩阵;第L薄层VL=ZLWLQL;where R is a column vector composed of reflection intensity coefficients R i ; T is a column vector composed of transmission intensity coefficients T i ;
Figure BDA0003177578180000061
is the strength coefficient of the forward-propagating eigenstate form
Figure BDA0003177578180000062
a column vector consisting of; and
Figure BDA0003177578180000063
is the strength coefficient of the backpropagating eigenstate form
Figure BDA0003177578180000064
composed of column vectors; W l is the eigenvector
Figure BDA0003177578180000065
The matrix formed, I is the unit matrix; Δ i0 is the column vector with the 0-order corresponding coefficient of 1 and other terms of 0; the lth thin layer matrix V l =Z l W l Q l , and the elements of the matrix Z l are
Figure BDA0003177578180000066
The lth lamella diagonal matrices Q l , E l and K z are elements of
Figure BDA0003177578180000067
element
Figure BDA0003177578180000068
A matrix composed of elements k zi ; W L is the eigenvector
Figure BDA0003177578180000069
The matrix formed; E L is the eigenvector
Figure BDA00031775781800000610
The matrix formed; the Lth thin layer VL =Z L W L QL ;

通过矩阵计算,得到关于声压反射系数和透射系数的矩阵方程:Through matrix calculation, the matrix equations of sound pressure reflection coefficient and transmission coefficient are obtained:

Figure BDA00031775781800000611
Figure BDA00031775781800000611

采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量R和透射声压的各阶本征态的强度系数向量T;具体如下:The iterative optimization algorithm is used to calculate the intensity coefficient vector R of each order eigenstate of reflected sound pressure and the intensity coefficient vector T of each order eigenstate of transmitted sound pressure; the details are as follows:

将以上矩阵方程的最后四项表示为:Express the last four terms of the above matrix equation as:

Figure BDA00031775781800000612
Figure BDA00031775781800000612

引入了迭代矩阵fL+1和gL+1,且有fL+1=I,gL+1=jKz;再引入如下迭代矩阵:The iterative matrices f L+1 and g L+1 are introduced, and f L+1 =I, g L+1 =jK z ; and the following iterative matrices are introduced:

Figure BDA00031775781800000613
Figure BDA00031775781800000613

其中,aL、bL分别为引入的第一列中间矩阵和第二列中间矩阵;Among them, a L and b L are the first column intermediate matrix and the second column intermediate matrix introduced respectively;

Figure BDA00031775781800000614
通过整理得到如下关系:Have
Figure BDA00031775781800000614
The following relationship is obtained by sorting:

Figure BDA00031775781800000615
Figure BDA00031775781800000615

那么迭代矩阵表达式为:

Figure BDA00031775781800000616
通过迭代计算,获得矩阵方程:Then the iterative matrix expression is:
Figure BDA00031775781800000616
Through iterative calculation, the matrix equation is obtained:

Figure BDA00031775781800000617
Figure BDA00031775781800000617

求解该矩阵方程得到R和T1Solve the matrix equation to get R and T 1 ;

透射系数向量T1=(g1+jKzf1)-1(jKzΔi0+jk0cosθΔi0);Transmission coefficient vector T 1 =(g 1 +jK z f 1 ) -1 (jK z Δ i0 +jk 0 cosθΔ i0 );

反射声压的各阶本征态的强度系数向量R=f1T1i0The intensity coefficient vector R=f 1 T 1i0 of each order eigenstate of the reflected sound pressure;

透射声压的各阶本征态的强度系数向量

Figure BDA00031775781800000618
Intensity coefficient vector of each order eigenstate of transmitted sound pressure
Figure BDA00031775781800000618

作为上述技术方案的改进之一,所述确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数;其具体过程为:As one of the improvements of the above technical solutions, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated; the specific process is:

计算总反射系数R:Calculate the total reflection coefficient R:

Figure BDA0003177578180000071
Figure BDA0003177578180000071

其中,

Figure BDA0003177578180000072
为反射声压的各阶本征态的强度系数向量R中的反射强度系数Ri取共轭;in,
Figure BDA0003177578180000072
Take the conjugate for the reflection intensity coefficient R i in the intensity coefficient vector R of each order eigenstate of the reflected sound pressure;

计算总透射系数T:Calculate the total transmission coefficient T:

T=∑iTiTi*Re(kzi/kz0);T=∑ i T i T i *Re(k zi /k z0 );

其中,Ti *为透射声压的各阶本征态的强度系数向量T中的透射强度系数Ti取共轭;Re()为取实部;Among them, T i * is the conjugate of the transmission intensity coefficient T i in the intensity coefficient vector T of the eigenstates of each order of the transmitted sound pressure; Re() is the real part;

根据计算的总反射系数R和总透射系数T,计算周期非平整界面多孔材料的吸声系数α;According to the calculated total reflection coefficient R and total transmission coefficient T, calculate the sound absorption coefficient α of the periodic non-flat interface porous material;

α=1-R-T。a=1-R-T.

本发明还提供了一种周期非平整界面多孔材料吸声系数的测量装置,该装置包括:The present invention also provides a device for measuring the sound absorption coefficient of a periodic non-flat interface porous material, the device comprising:

声学参数获取模块,用于获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;an acoustic parameter acquisition module, used for acquiring equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;

分层模块,用于将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The layering module is used to layer the periodic non-flat interface porous material, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;

本征态计算模块,用于根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;The eigenstate calculation module is used to obtain the equivalent acoustic pressure and related acoustic parameters of each thin-layer material in the periodic rectangular-modulated acoustic material according to the obtained equivalent acoustic parameters of the porous material. Enter the sound wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material;

强度系数计算模块,用于通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;和The intensity coefficient calculation module is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure by using the iterative optimization algorithm through the continuity condition of the interlayer boundary ;and

吸声系数获取模块,用于根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。The sound absorption coefficient acquisition module is used to determine the total reflection coefficient and the total transmission coefficient according to the above calculation results, and calculate the sound absorption coefficient of the periodic non-flat interface porous material.

本发明与现有技术相比的有益效果是:The beneficial effects of the present invention compared with the prior art are:

1、本发明的方法,通过获取待测试的多孔材料的等效声学参数,即只需测量两个不同厚度的平面多孔材料的样品即可,不需要制备不同几何外形和结构尺寸的样件,也不需要进行大量重复的实验测试,大大提高了测量效率,从而能够更快速测量出周期非平整界面的多孔材料吸声系数;1. The method of the present invention obtains the equivalent acoustic parameters of the porous material to be tested, that is, only two samples of planar porous materials with different thicknesses are required to be measured, and there is no need to prepare samples of different geometric shapes and structural dimensions, There is no need to carry out a large number of repeated experimental tests, which greatly improves the measurement efficiency, so that the sound absorption coefficient of porous materials with periodic non-flat interfaces can be measured more quickly;

2、本发明的方法考虑了周期调制对吸声性能的影响,其中包含了倏逝波在内的高阶模态,提高了测得的吸声系数的准确性;2. The method of the present invention considers the influence of periodic modulation on the sound absorption performance, and includes high-order modes including evanescent waves, which improves the accuracy of the measured sound absorption coefficient;

3、本发明的方法在确定结构几何参数后,只需要带入各频率的等效声学参数,即可准确预测周期非平整界面多孔材料的宽频吸声系数,简化了计算复杂度,并节约了时间成本,大大提高了测量效率,对噪声控制领域的应用有重要意义。3. After determining the structural geometric parameters, the method of the present invention only needs to bring in the equivalent acoustic parameters of each frequency to accurately predict the broadband sound absorption coefficient of the periodic non-flat interface porous material, which simplifies the calculation complexity and saves money. The time cost greatly improves the measurement efficiency, which is of great significance to the application in the field of noise control.

附图说明Description of drawings

图1是本发明的一种周期非平整界面多孔材料吸声系数的计算方法的流程图;1 is a flow chart of a method for calculating the sound absorption coefficient of a periodic non-flat interface porous material of the present invention;

图2是在二传声器阻抗管中,测量该多孔材料的反射系数R的结构示意图;Fig. 2 is a structural schematic diagram of measuring the reflection coefficient R of the porous material in a microphone impedance tube;

图3是图1的方法中的周期非平整界面多孔材料的尖端和基底的结构示意图;3 is a schematic structural diagram of the tip and the base of the periodic non-planar interface porous material in the method of FIG. 1;

图4是图1的方法中的周期非平整界面多孔材料进行分层后,单层周期调制的多孔材料的结构示意图;4 is a schematic structural diagram of a single-layer periodically modulated porous material after the periodic non-planar interface porous material in the method of FIG. 1 is layered;

图5a是图1的方法中的多孔材料在宽频范围内的等效折射率的曲线示意图;5a is a schematic diagram of the equivalent refractive index of the porous material in the method of FIG. 1 in a wide frequency range;

图5b是图1的方法中的多孔材料在宽频范围内的等效密度的曲线示意图;FIG. 5b is a schematic diagram of the equivalent density of the porous material in the broad frequency range in the method of FIG. 1;

图6a是待测样本为三角形周期调制的吸声棉的几何形状的结构示意图;6a is a schematic structural diagram of the geometry of the sound-absorbing cotton whose sample to be tested is a triangular periodic modulation;

图6b是待测样本为矩形周期调制的吸声棉的几何形状的结构示意图;Fig. 6b is the structural schematic diagram of the geometric shape of the sound-absorbing cotton whose sample to be tested is a rectangular periodic modulation;

图7是图1的方法中的待测样本的吸声系数的计算结果和实验测试结果。FIG. 7 is a calculation result and an experimental test result of the sound absorption coefficient of the sample to be tested in the method of FIG. 1 .

具体实施方式Detailed ways

现结合附图和实例对本发明作进一步的描述。The present invention will now be further described with reference to the accompanying drawings and examples.

如图1所示,本发明提供了一种周期非平整界面多孔材料吸声系数的计算方法,本发明的方法,在确定结构几何参数后,只需要带入各频率的等效声学参数,即可准确预测周期非平整界面多孔材料的宽频吸声系数,简化了计算复杂度并节约了时间成本,对噪声控制领域的应用有重要意义。As shown in FIG. 1, the present invention provides a method for calculating the sound absorption coefficient of periodic non-flat interface porous materials. The method of the present invention only needs to bring in the equivalent acoustic parameters of each frequency after determining the structural geometric parameters, namely The broadband sound absorption coefficient of periodic non-flat interface porous materials can be accurately predicted, which simplifies the computational complexity and saves time and cost, which is of great significance for the application in the field of noise control.

该方法包括:The method includes:

获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;Obtaining equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;

具体地,如图2、3和4所示,在二传声器阻抗管中,将厚度为t的多孔材料的平面结构安装在刚性背衬上,并测量该多孔材料的反射系数R;Specifically, as shown in Figures 2, 3 and 4, in a microphone impedance tube, a planar structure of a porous material with a thickness t is mounted on a rigid backing, and the reflection coefficient R of the porous material is measured;

ζ=(1+R)/(1-R)ζ=(1+R)/(1-R)

其中,ζ为该多孔材料的表面阻抗,为已知值;其中,ζ=Zpcoth(γt);where ζ is the surface impedance of the porous material, which is a known value; where ζ=Z p coth(γt);

其中,γ为周期非平整界面多孔材料所具有的复数传播常数;Zp为周期非平整界面多孔材料所具有的归一化的特性阻抗;Among them, γ is the complex propagation constant of the periodic non-planar interface porous material; Z p is the normalized characteristic impedance of the periodic non-planar interface porous material;

基于上式,由测量得到的第一厚度为t1多孔材料的平面结构的反射系数R1和第二厚度为t2多孔材料的平面结构的反射系数R2,分别计算第一厚度为t1多孔材料的平面结构的表面阻抗ζ1和第二厚度为t2多孔材料的平面结构的表面阻抗ζ2Based on the above formula, from the measured reflection coefficient R 1 of the planar structure of the porous material with the first thickness t 1 and the reflection coefficient R 2 of the planar structure of the second porous material with thickness t 2 , the first thickness is calculated as t 1 , respectively. the surface impedance ζ 1 of the planar structure of the porous material and the surface impedance ζ 2 of the planar structure of the porous material with a second thickness t 2 ;

ζ1=(1+R1)/(1-R1)ζ 1 =(1+R 1 )/(1-R 1 )

ζ2=(1+R2)/(1-R2)ζ 2 =(1+R 2 )/(1-R 2 )

其中,ζ1=Zpcoth(γt1);ζ2=Zpcoth(γt2);Wherein, ζ 1 =Z p coth(γt 1 ); ζ 2 =Z p coth(γt 2 );

根据ζ1tanh(γt1)-ζ2tanh(γt2)=0;According to ζ 1 tanh(γt 1 )-ζ 2 tanh(γt 2 )=0;

联合上式,计算得到复数传播常数γ和归一化的特性阻抗ZpCombined with the above formula, the complex propagation constant γ and the normalized characteristic impedance Z p are obtained by calculation;

根据下述公式,计算等效折射率np和等效密度ρpThe equivalent refractive index n p and the equivalent density ρ p are calculated according to the following formulas:

np=ω/(-jγc0);n p =ω/(-jγc 0 );

ρp=(-jγρ0c0Zp)/ω;ρ p =(-jγρ 0 c 0 Z p )/ω;

其中,c0是空气的声速;ρ0是空气的密度;ω为角频率;j为虚数单位;。Among them, c 0 is the sound speed of air; ρ 0 is the density of air; ω is the angular frequency; j is the imaginary unit; .

将计算得到的等效折射率和等效密度作为等效声学参数。Take the calculated equivalent refractive index and equivalent density as equivalent acoustic parameters.

将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;

具体地,周期非平整界面多孔材料的尖端为非平整的、非完全填充的、具有多个薄层的多孔材料;对周期非平整界面多孔材料进行分层处理,得到多个薄层材料,每个薄层材料等效为周期矩形调制的声学材料;Specifically, the tip of the periodic non-planar interface porous material is a non-planar, incompletely filled porous material with multiple thin layers; the periodic non-planar interface porous material is layered to obtain a plurality of thin-layer materials, each of which is Each thin-layer material is equivalent to a periodic rectangular modulated acoustic material;

周期非平整界面多孔材料的基底为完全填充的多孔材料,该多孔材料为充填率为1的、完全填充的、周期矩形调制的声学材料。The base of the periodic non-planar interface porous material is a completely filled porous material, and the porous material is a completely filled, periodic rectangularly modulated acoustic material with a filling rate of 1.

其中,所述周期非平整界面多孔材料包括:周期排列的、非平整的、非完全填充的多孔材料尖端和完全填充的多孔材料基底。Wherein, the periodic non-planar interface porous material includes: periodically arranged, non-planar, non-completely filled porous material tips and completely filled porous material bases.

根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;According to the obtained equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the periodic rectangular modulated acoustic material equivalent to each thin-layer material are obtained and expanded into a series expression, and brought into the acoustic wave equation to calculate each thin-layer The eigenstate form of the sound pressure in the material;

具体地,各个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式为:Specifically, the expression form of the sound pressure level in the periodic rectangular modulated acoustic material equivalent to each thin layer material is:

Figure BDA0003177578180000101
Figure BDA0003177578180000101

Figure BDA0003177578180000102
Figure BDA0003177578180000102

Figure BDA0003177578180000103
Figure BDA0003177578180000103

其中,PI是入射、反射区域的声压级数表达形式;PII是透射区域的声压级数表达形式,Pl是多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式;其中,l=1,2,…,L-1,L;Among them, P I is the expression form of the sound pressure level in the incident and reflection areas; P II is the expression form of the sound pressure level in the transmission area, and P l is the periodic rectangular modulation of the acoustic material equivalent to the lth thin layer of the porous material. The expression form of sound pressure level in ; where, l=1,2,...,L-1,L;

kx0=k0sinθ,kz0=k0cosθ,kxi=k0sinθ+iK,角标i是大于0的正整数,表示第i阶级数展开;K=2π/T,K是倒空间基矢;k x0 = k 0 sinθ, k z0 = k 0 cosθ, k xi = k 0 sinθ+iK, the index i is a positive integer greater than 0, indicating the i-th order number expansion; K=2π/T, K is the inverse space base vector;

当kxi<k0时,有

Figure BDA0003177578180000104
When k xi <k 0 , we have
Figure BDA0003177578180000104

当kxi>k0时,有

Figure BDA0003177578180000105
When k xi >k 0 , we have
Figure BDA0003177578180000105

其中,j是虚数单位;k0是空气中的波数;kxi表示x方向的波矢;kzi表示z方向的波矢;θ是入射角;T表示多孔材料的周期;D表示多孔材料的总厚度;Ri和Ti分别表示归一化的第i阶声压的反射系数和透射系数;Sli(z)是第l层周期多孔材料的第i阶声压系数;exp()表示以自然常数e为底的指数函数;where j is the imaginary unit; k 0 is the wave number in air; k xi is the wave vector in the x direction; k zi is the wave vector in the z direction; θ is the incident angle; T is the period of the porous material; D is the total thickness; Ri and T i represent the reflection coefficient and transmission coefficient of the normalized i -th order sound pressure, respectively; S li (z) is the i-th order sound pressure coefficient of the l-th layer periodic porous material; exp() represents The exponential function with the natural constant e as the base;

相关声学参数的级数表达形式为:The series expression form of the relevant acoustic parameters is:

Figure BDA0003177578180000106
Figure BDA0003177578180000106

Figure BDA0003177578180000107
Figure BDA0003177578180000107

其中,ρl(x)为第l层周期多孔材料的等效密度;nl(x)为第l层周期多孔材料的等效折射率;where ρ l (x) is the equivalent density of the lth layer of periodic porous material; n l (x) is the equivalent refractive index of the lth layer of periodic porous material;

Figure BDA0003177578180000108
Figure BDA0003177578180000108

Figure BDA0003177578180000109
Figure BDA0003177578180000109

其中,fl是第l层周期多孔材料中多孔材料的占空比;np,ρp分别是多孔材料的等效折射率和等效密度;n0,ρ0分别是空气的折射率和密度;j为虚数单位;m为展开阶数;K为倒空间基矢;Among them, f l is the duty ratio of the porous material in the lth layer of periodic porous material; n p , ρ p are the equivalent refractive index and equivalent density of the porous material, respectively; n 0 , ρ 0 are the refractive index of air and Density; j is the imaginary unit; m is the expansion order; K is the inverse space basis vector;

将获取的各个薄层材料的声压和相关声学参数的级数表达形式,带入声波方程;其中,一维周期声学结构中,密度非均匀介质中的声波方程为:The obtained series expressions of the sound pressure and related acoustic parameters of each thin-layer material are brought into the acoustic wave equation; among them, in the one-dimensional periodic acoustic structure, the acoustic wave equation in the density inhomogeneous medium is:

Figure BDA0003177578180000111
Figure BDA0003177578180000111

其中,

Figure BDA0003177578180000112
为拉普拉斯算符;P为声压级数表达形式;P为入射、反射区域的声压级数表达形式PI,透射区域的声压级数表达形式PII,或多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式Pl;n(x)为周期多孔材料的多孔材料的等效折射率的级数表达形式;in,
Figure BDA0003177578180000112
is the Laplace operator; P is the sound pressure level expression form; P is the sound pressure level expression form P I in the incident and reflection areas, the sound pressure level expression form P II in the transmission area, or the first The sound pressure series expression P l in the acoustic material equivalent to the periodic rectangular modulation of the thin layer material; n(x) is the series expression form of the equivalent refractive index of the porous material of the periodic porous material;

得到各阶系数的耦合方程:The coupling equations for the coefficients of each order are obtained:

Figure BDA0003177578180000113
Figure BDA0003177578180000113

将上述耦合方程写成矩阵形式:Write the above coupling equation in matrix form:

[Sl″]=[Al][Sl][S l ″]=[A l ][S l ]

其中,Sl是由Sli组成的列向量;Sl″是由d2Sli/dz2组成的列向量;矩阵

Figure BDA0003177578180000114
Figure BDA0003177578180000115
Among them, S l is a column vector composed of S li ; S l ″ is a column vector composed of d 2 S li /dz 2 ; a matrix
Figure BDA0003177578180000114
Figure BDA0003177578180000115

其中,矩阵Xl和Yl的元素表达式分别是

Figure BDA0003177578180000116
Figure BDA0003177578180000117
Figure BDA0003177578180000118
其中,m1为行数;n1为列数;
Figure BDA0003177578180000119
Figure BDA00031775781800001110
均为系数;对角矩阵Kx的元素Ki,i=kxi;Among them, the element expressions of matrices X l and Y l are respectively
Figure BDA0003177578180000116
and
Figure BDA0003177578180000117
Figure BDA0003177578180000118
Among them, m1 is the number of rows; n1 is the number of columns;
Figure BDA0003177578180000119
and
Figure BDA00031775781800001110
are coefficients; the elements K i of the diagonal matrix K x , i =k xi ;

计算矩阵Al特征值和特征向量,得到第m个特征值的平方根

Figure BDA00031775781800001111
和对应的特征向量
Figure BDA00031775781800001112
Calculate the eigenvalues and eigenvectors of matrix A l , and get the square root of the mth eigenvalue
Figure BDA00031775781800001111
and the corresponding eigenvectors
Figure BDA00031775781800001112

那么声压系数Sli(z)的表达式:Then the expression of the sound pressure coefficient S li (z):

Figure BDA00031775781800001113
Figure BDA00031775781800001113

其中,l=1;

Figure BDA00031775781800001114
为第l薄层材料内声压的正向本征态形式;
Figure BDA00031775781800001115
为第l薄层材料内声压的反向本征态形式;
Figure BDA00031775781800001116
为正向传播本征态形式的强度系数;
Figure BDA00031775781800001117
为反向传播本征态形式的强度系数;d1为第一薄层的厚度;z为z方向的位置;Among them, l=1;
Figure BDA00031775781800001114
is the forward eigenstate form of the sound pressure in the first thin layer of material;
Figure BDA00031775781800001115
is the inverse eigenstate form of the sound pressure in the first thin layer of material;
Figure BDA00031775781800001116
is the strength coefficient of the forward propagation eigenstate form;
Figure BDA00031775781800001117
is the intensity coefficient in the form of back-propagating eigenstates; d 1 is the thickness of the first thin layer; z is the position in the z direction;

Figure BDA0003177578180000121
Figure BDA0003177578180000121

其中,l=2,3,…,L;dp为第p薄层的厚度;Among them, l=2,3,...,L; dp is the thickness of the pth thin layer;

根据声压系数Sli(z),确定第l薄层材料内声压的正向本征态形式

Figure BDA0003177578180000122
和第l薄层材料内声压的反向本征态形式
Figure BDA0003177578180000123
According to the sound pressure coefficient S li (z), determine the forward eigenstate form of the sound pressure in the material of the first thin layer
Figure BDA0003177578180000122
and the inverse eigenstate form of the sound pressure in the first thin layer of material
Figure BDA0003177578180000123

通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;Through the interlayer boundary continuity condition, the iterative optimization algorithm is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure;

具体地,边界连续性条件包括声压和法向质点振速连续;Specifically, the boundary continuity conditions include sound pressure and normal particle vibration velocity continuity;

法向质点振速vz表达式是The normal particle vibration velocity v z expression is

Figure BDA00031775781800001217
Figure BDA00031775781800001217

其中,j为虚数单位;ω为角频率;

Figure BDA0003177578180000124
为归一化密度的倒数;Among them, j is the imaginary unit; ω is the angular frequency;
Figure BDA0003177578180000124
is the inverse of the normalized density;

将归一化密度的倒数展开成相应的级数形式

Figure BDA0003177578180000125
Expand the reciprocal of the normalized density into the corresponding series form
Figure BDA0003177578180000125

其中,ρ0为空气密度;ρl(x)为l薄层的等效密度;

Figure BDA0003177578180000126
为展开系数;Among them, ρ 0 is the air density; ρ l (x) is the equivalent density of the l thin layer;
Figure BDA0003177578180000126
is the expansion coefficient;

第i阶质点振速

Figure BDA0003177578180000127
是:Vibration velocity of i-th order particle
Figure BDA0003177578180000127
Yes:

Figure BDA0003177578180000128
Figure BDA0003177578180000128

其中,l=1;Among them, l=1;

Figure BDA0003177578180000129
Figure BDA0003177578180000129

其中,l=2,3,…,L;

Figure BDA00031775781800001210
为归一化密度的倒数的展开系数;Among them, l=2,3,...,L;
Figure BDA00031775781800001210
is the expansion coefficient of the reciprocal of the normalized density;

对于入射、反射区域和周期多孔材料第一层的界面连续性条件为:The interfacial continuity conditions for the incident, reflective regions and the first layer of periodic porous materials are:

Figure BDA00031775781800001211
Figure BDA00031775781800001211

对于中间各界面的连续性条件为:The continuity conditions for the intermediate interfaces are:

Figure BDA00031775781800001212
Figure BDA00031775781800001212

对于周期多孔材料最后一层和透射区域的界面连续性条件为:The interfacial continuity conditions for the last layer and the transmission region of periodic porous materials are:

Figure BDA00031775781800001213
Figure BDA00031775781800001213

其中,R是由反射强度系数Ri组成的列向量;T是由透射强度系数Ti组成的列向量;

Figure BDA00031775781800001214
是正向传播本征态形式的强度系数
Figure BDA00031775781800001215
组成的列向量;和
Figure BDA00031775781800001216
是反向传播本征态形式的强度系数
Figure BDA0003177578180000131
组成的列向量;Wl是特征向量
Figure BDA0003177578180000132
构成的矩阵,I是单位矩阵;Δi0是0阶对应系数为1,其他项为0的列向量;第l薄层矩阵Vl=ZlWlQl,且矩阵Zl的元素为
Figure BDA0003177578180000133
第l薄层对角矩阵Ql,El和Kz分别是元素
Figure BDA0003177578180000134
元素
Figure BDA0003177578180000135
和元素kzi组成的矩阵;WL为特征向量
Figure BDA0003177578180000136
构成的矩阵;EL为特征向量
Figure BDA0003177578180000137
构成的矩阵;第L薄层VL=ZLWLQL;where R is a column vector composed of reflection intensity coefficients R i ; T is a column vector composed of transmission intensity coefficients T i ;
Figure BDA00031775781800001214
is the strength coefficient of the forward-propagating eigenstate form
Figure BDA00031775781800001215
a column vector consisting of; and
Figure BDA00031775781800001216
is the strength coefficient of the backpropagating eigenstate form
Figure BDA0003177578180000131
composed of column vectors; W l is the eigenvector
Figure BDA0003177578180000132
The matrix formed, I is the unit matrix; Δ i0 is the column vector with the 0-order corresponding coefficient of 1 and other terms of 0; the lth thin layer matrix V l =Z l W l Q l , and the elements of the matrix Z l are
Figure BDA0003177578180000133
The lth lamella diagonal matrices Q l , E l and K z are elements of
Figure BDA0003177578180000134
element
Figure BDA0003177578180000135
A matrix composed of elements k zi ; W L is the eigenvector
Figure BDA0003177578180000136
The matrix formed; E L is the eigenvector
Figure BDA0003177578180000137
The matrix formed; the Lth thin layer VL =Z L W L QL ;

通过矩阵计算,得到关于声压反射系数和透射系数的矩阵方程:Through matrix calculation, the matrix equations of sound pressure reflection coefficient and transmission coefficient are obtained:

Figure BDA0003177578180000138
Figure BDA0003177578180000138

采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量R和透射声压的各阶本征态的强度系数向量T;具体如下:The iterative optimization algorithm is used to calculate the intensity coefficient vector R of each order eigenstate of reflected sound pressure and the intensity coefficient vector T of each order eigenstate of transmitted sound pressure; the details are as follows:

将以上矩阵方程的最后四项表示为:Express the last four terms of the above matrix equation as:

Figure BDA0003177578180000139
Figure BDA0003177578180000139

引入了迭代矩阵fL+1和gL+1,且有fL+1=I,gL+1=jKz;再引入如下迭代矩阵:The iterative matrices f L+1 and g L+1 are introduced, and f L+1 =I, g L+1 =jK z ; and the following iterative matrices are introduced:

Figure BDA00031775781800001310
Figure BDA00031775781800001310

其中,aL、bL分别为引入的第一列中间矩阵和第二列中间矩阵;Among them, a L and b L are the first column intermediate matrix and the second column intermediate matrix introduced respectively;

Figure BDA00031775781800001311
通过整理得到如下关系:Have
Figure BDA00031775781800001311
The following relationship is obtained by sorting:

Figure BDA00031775781800001312
Figure BDA00031775781800001312

那么迭代矩阵表达式为:

Figure BDA00031775781800001313
通过迭代计算,获得矩阵方程:Then the iterative matrix expression is:
Figure BDA00031775781800001313
Through iterative calculation, the matrix equation is obtained:

Figure BDA00031775781800001314
Figure BDA00031775781800001314

求解该矩阵方程得到R和T1Solve the matrix equation to get R and T 1 ;

透射系数向量T1=(g1+jKzf1)-1(jKzΔi0+jk0cosθΔi0);Transmission coefficient vector T 1 =(g 1 +jK z f 1 ) -1 (jK z Δ i0 +jk 0 cosθΔ i0 );

反射声压的各阶本征态的强度系数向量R=f1T1i0The intensity coefficient vector R=f 1 T 1i0 of each order eigenstate of the reflected sound pressure;

透射声压的各阶本征态的强度系数向量

Figure BDA00031775781800001315
Intensity coefficient vector of each order eigenstate of transmitted sound pressure
Figure BDA00031775781800001315

根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。According to the above calculation results, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated.

具体地,计算总反射系数R:Specifically, the total reflection coefficient R is calculated:

Figure BDA00031775781800001316
Figure BDA00031775781800001316

其中,

Figure BDA0003177578180000141
为反射声压的各阶本征态的强度系数向量R中的反射强度系数Ri取共轭;in,
Figure BDA0003177578180000141
Take the conjugate for the reflection intensity coefficient R i in the intensity coefficient vector R of each order eigenstate of the reflected sound pressure;

计算总透射系数T:Calculate the total transmission coefficient T:

T=∑iTiT* iRe(kzi/kz0);T=∑ i T i T * i Re(k zi /k z0 );

其中,Ti *为透射声压的各阶本征态的强度系数向量T中的透射强度系数Ti取共轭;Re()为取实部;Among them, T i * is the conjugate of the transmission intensity coefficient T i in the intensity coefficient vector T of the eigenstates of each order of the transmitted sound pressure; Re() is the real part;

根据计算的总反射系数R和总透射系数T,计算周期非平整界面多孔材料的吸声系数α;According to the calculated total reflection coefficient R and total transmission coefficient T, calculate the sound absorption coefficient α of the periodic non-flat interface porous material;

α=1-R-T。a=1-R-T.

本发明还提供了一种周期非平整界面多孔材料吸声系数的测量装置,该装置包括:The present invention also provides a device for measuring the sound absorption coefficient of a periodic non-flat interface porous material, the device comprising:

声学参数获取模块,用于获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;an acoustic parameter acquisition module, used for acquiring equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;

分层模块,用于将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The layering module is used to layer the periodic non-flat interface porous material, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;

本征态计算模块,用于根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;The eigenstate calculation module is used to obtain the equivalent acoustic pressure and related acoustic parameters of each thin-layer material in the periodic rectangular-modulated acoustic material according to the obtained equivalent acoustic parameters of the porous material. Enter the sound wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material;

强度系数计算模块,用于通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;和The intensity coefficient calculation module is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure by using the iterative optimization algorithm through the continuity condition of the interlayer boundary ;and

吸声系数获取模块,用于根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。The sound absorption coefficient acquisition module is used to determine the total reflection coefficient and the total transmission coefficient according to the above calculation results, and calculate the sound absorption coefficient of the periodic non-flat interface porous material.

如图5a和5b所示,购买了常用的一种多孔吸声材料——高密度吸声棉,首先通过二传声器阻抗管系统测试该多孔材料的等效声学参数,实验测试了厚度分别为2cm和4.8cm的平面吸声棉的反射系数,再通过数值计算得到了该多孔材料的等效折射率和等效密度,结果如图5a和5b所示。As shown in Figures 5a and 5b, a commonly used porous sound-absorbing material, high-density sound-absorbing cotton, was purchased. First, the equivalent acoustic parameters of the porous material were tested through the microphone impedance tube system, and the thickness was 2 cm. and the reflection coefficient of the 4.8cm plane sound-absorbing cotton, and then the equivalent refractive index and equivalent density of the porous material were obtained by numerical calculation, and the results are shown in Figures 5a and 5b.

采用本发明的周期非平整界面多孔材料吸声系数的方法,测得的两种周期非平整界面的高密度吸声棉的吸声系数,并在二传声器阻抗管系统中对这两种吸声棉进行了实验测试,把实验测试的吸声系数和计算结果进行了对比。两种周期非平整界面的多孔材料分别是三角形和矩形周期调制的吸声棉,具体参数如图6a和6b所示,由此可以确定本发明的计算方法具有更高的准确性。Using the method for sound absorption coefficient of porous material with periodic non-flat interface of the present invention, the sound absorption coefficients of two kinds of high-density sound-absorbing cotton with periodic non-flat interface are measured, and the two kinds of sound absorption are measured in the two-microphone impedance tube system. Cotton was tested experimentally, and the experimentally tested sound absorption coefficient was compared with the calculated results. The porous materials of the two periodic non-flat interfaces are triangular and rectangular periodically modulated sound-absorbing cottons, respectively, and the specific parameters are shown in Figures 6a and 6b, from which it can be determined that the calculation method of the present invention has higher accuracy.

如图6a所示,三角形周期调制的吸声棉的几何参数包括周期Tt=5cm,基底厚度dt=1cm,三角形尖端厚度ht=3.7cm:As shown in Fig. 6a, the geometric parameters of the triangular periodically modulated sound-absorbing cotton include period T t = 5 cm, base thickness d t = 1 cm, and triangular tip thickness h t = 3.7 cm:

如图6b所示,矩形周期调制的吸声棉的几何参数包括周期Tr=3.3cm,基底厚度dr=1.9cm,矩形尖端厚度hr=2.8cm和矩形尖端宽度wr=1.5cm:As shown in Fig. 6b, the geometric parameters of the rectangular period modulated sound-absorbing cotton include period Tr = 3.3 cm, base thickness dr = 1.9 cm, rectangular tip thickness hr = 2.8 cm and rectangular tip width wr = 1.5 cm:

提供本发明的方法测量得到的多孔材料的吸声系数和实验测试结果如图7所示,两个计算结果十分接近,表明了本发明提出的周期非平整界面多孔材料吸声系数的计算方法十分有效。The sound absorption coefficient of the porous material measured by the method of the present invention and the experimental test results are shown in Figure 7. The two calculation results are very close, indicating that the calculation method of the sound absorption coefficient of the periodic non-flat interface porous material proposed by the present invention is very good. efficient.

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the embodiments, those of ordinary skill in the art should understand that any modification or equivalent replacement of the technical solutions of the present invention will not depart from the spirit and scope of the technical solutions of the present invention, and should be included in the present invention. within the scope of the claims.

Claims (8)

1.一种周期非平整界面多孔材料吸声系数的计算方法,该方法包括:1. A method for calculating the sound absorption coefficient of a periodic non-flat interface porous material, the method comprising: 获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;Obtaining equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density; 将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material; 根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;According to the obtained equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the periodic rectangular modulated acoustic material equivalent to each thin-layer material are obtained and expanded into a series expression, and brought into the acoustic wave equation to calculate each thin-layer The eigenstate form of the sound pressure in the material; 通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;Through the interlayer boundary continuity condition, the iterative optimization algorithm is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure; 根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。According to the above calculation results, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated. 2.根据权利要求1所述的周期非平整界面多孔材料吸声系数的计算方法,其特征在于,所述周期非平整界面多孔材料包括:周期排列的、非平整的、非完全填充的多孔材料尖端和完全填充的多孔材料基底。2 . The method for calculating the sound absorption coefficient of periodic non-planar interface porous materials according to claim 1 , wherein the periodic non-planar interface porous materials comprise: periodically arranged, non-planar, and incompletely filled porous materials. 3 . Tip and fully filled porous material base. 3.根据权利要求1所述的周期非平整界面多孔材料吸声系数的计算方法,其特征在于,所述获取周期非平整界面多孔材料的等效声学参数;其具体过程为:3. The method for calculating the sound absorption coefficient of periodic non-flat interface porous materials according to claim 1, wherein the acquisition of the equivalent acoustic parameters of the periodic non-planar interface porous materials; the specific process is: 根据测量得到的第一厚度为t1多孔材料的平面结构的反射系数R1和第二厚度为t2多孔材料的平面结构的反射系数R2,分别计算第一厚度为t1多孔材料的平面结构的表面阻抗ζ1和第二厚度为t2多孔材料的平面结构的表面阻抗ζ2According to the measured reflection coefficient R 1 of the planar structure of the porous material with the first thickness t 1 and the reflection coefficient R 2 of the planar structure of the second porous material with thickness t 2 , the plane of the porous material with the first thickness t 1 is calculated respectively. the surface impedance ζ 1 of the structure and the surface impedance ζ 2 of the second thickness t 2 planar structure of the porous material; ζ1=(1+R1)/(1-R1)ζ 1 =(1+R 1 )/(1-R 1 ) ζ2=(1+R2)/(1-R2)ζ 2 =(1+R 2 )/(1-R 2 ) 其中,ζ1=Zpcoth(γt1);ζ2=Zpcoth(γt2);Wherein, ζ 1 =Z p coth(γt 1 ); ζ 2 =Z p coth(γt 2 ); 根据ζ1tanh(γt1)-ζ2tanh(γt2)=0;According to ζ 1 tanh(γt 1 )-ζ 2 tanh(γt 2 )=0; 联合上式,计算得到复数传播常数γ和归一化的特性阻抗ZpCombined with the above formula, the complex propagation constant γ and the normalized characteristic impedance Z p are obtained by calculation; 根据下述公式,计算等效折射率np和等效密度ρpThe equivalent refractive index n p and the equivalent density ρ p are calculated according to the following formulas: np=ω/(-jγc0);n p =ω/(-jγc 0 ); ρp=(-jγρ0c0Zp)/ω;ρ p =(-jγρ 0 c 0 Z p )/ω; 其中,c0是空气的声速;ρ0是空气的密度;ω为角频率;j为虚数单位;where c 0 is the speed of sound of air; ρ 0 is the density of air; ω is the angular frequency; j is the imaginary unit; 将计算得到的等效折射率和等效密度作为等效声学参数。Take the calculated equivalent refractive index and equivalent density as equivalent acoustic parameters. 4.根据权利要求1所述的周期非平整界面多孔材料吸声系数的计算方法,其特征在于,所述将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;其具体过程为:4. The method for calculating the sound absorption coefficient of periodic non-planar interface porous material according to claim 1, wherein the periodic non-planar interface porous material is layered, and each thin layer material is equivalent to a periodic rectangle Modulated acoustic material; the specific process is: 周期非平整界面多孔材料的尖端为非平整的、非完全填充的、具有多个薄层的多孔材料;对周期非平整界面多孔材料进行分层处理,得到多个薄层材料,每个薄层材料等效为周期矩形调制的声学材料;The tip of the periodic non-planar interface porous material is a non-planar, non-completely filled porous material with multiple thin layers; the periodic non-planar interface porous material is layered to obtain a plurality of thin layer materials, each thin layer The material is equivalent to an acoustic material with periodic rectangular modulation; 周期非平整界面多孔材料的基底为完全填充的多孔材料,该多孔材料为充填率为1的、完全填充的、周期矩形调制的声学材料。The base of the periodic non-planar interface porous material is a completely filled porous material, and the porous material is a completely filled, periodic rectangularly modulated acoustic material with a filling rate of 1. 5.根据权利要求1所述的周期非平整界面多孔材料吸声系数的计算方法,其特征在于,所述根据多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;其具体过程为:5 . The method for calculating the sound absorption coefficient of a porous material with a periodic non-flat interface according to claim 1 , wherein, according to the equivalent acoustic parameters of the porous material, the acoustic equivalent periodic rectangular modulation of each thin-layer material is obtained. 6 . The sound pressure and related acoustic parameters in the material are expanded into a series expression, and brought into the acoustic wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material; the specific process is as follows: 各个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式为:The expression of the sound pressure level in the equivalent periodic rectangular modulated acoustic material of each thin layer material is:
Figure FDA0003177578170000021
Figure FDA0003177578170000021
Figure FDA0003177578170000022
Figure FDA0003177578170000022
Figure FDA0003177578170000023
Figure FDA0003177578170000023
其中,PI是入射、反射区域的声压级数表达形式;PII是透射区域的声压级数表达形式,Pl是多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式;其中,l=1,2,...,L-1,L;Among them, P I is the expression form of the sound pressure level in the incident and reflection areas; P II is the expression form of the sound pressure level in the transmission area, and P l is the periodic rectangular modulation of the acoustic material equivalent to the lth thin layer of the porous material. The expression form of sound pressure level in ; where, l=1,2,...,L-1,L; kx0=k0sinθ,kz0=k0cosθ,kxi=k0sinθ+iK,角标i是大于0的正整数,表示第i阶级数展开;K=2π/T,K是倒空间基矢;k x0 = k 0 sinθ, k z0 = k 0 cosθ, k xi = k 0 sinθ+iK, the index i is a positive integer greater than 0, indicating the i-th order number expansion; K=2π/T, K is the inverse space base vector; 当kxi<k0时,有
Figure FDA0003177578170000024
When k xi <k 0 , we have
Figure FDA0003177578170000024
当kxi>k0时,有
Figure FDA0003177578170000025
When k xi >k 0 , we have
Figure FDA0003177578170000025
其中,j是虚数单位;k0是空气中的波数;kxi表示x方向的波矢;kzi表示z方向的波矢;θ是入射角;T表示多孔材料的周期;D表示多孔材料的总厚度;Ri和Ti分别表示归一化的第i阶声压的反射系数和透射系数;Sli(z)是第l层周期多孔材料的第i阶声压系数;exp()表示以自然常数e为底的指数函数;where j is the imaginary unit; k 0 is the wave number in air; k xi is the wave vector in the x direction; k zi is the wave vector in the z direction; θ is the incident angle; T is the period of the porous material; D is the total thickness; Ri and T i represent the reflection coefficient and transmission coefficient of the normalized i -th order sound pressure, respectively; S li (z) is the i-th order sound pressure coefficient of the l-th layer periodic porous material; exp() represents The exponential function with the natural constant e as the base; 相关声学参数的级数表达形式为:The series expression form of the relevant acoustic parameters is:
Figure FDA0003177578170000031
Figure FDA0003177578170000031
Figure FDA0003177578170000032
Figure FDA0003177578170000032
其中,ρl(x)为第l层周期多孔材料的等效密度;nl(x)为第l层周期多孔材料的等效折射率;where ρ l (x) is the equivalent density of the lth layer of periodic porous material; n l (x) is the equivalent refractive index of the lth layer of periodic porous material;
Figure FDA0003177578170000033
Figure FDA0003177578170000033
Figure FDA0003177578170000034
Figure FDA0003177578170000034
其中,fl是第l层周期多孔材料中多孔材料的占空比;np,ρp分别是多孔材料的等效折射率和等效密度;n0,ρ0分别是空气的折射率和密度;j为虚数单位;m为展开阶数;K为倒空间基矢;Among them, f l is the duty ratio of the porous material in the lth layer of periodic porous material; n p , ρ p are the equivalent refractive index and equivalent density of the porous material, respectively; n 0 , ρ 0 are the refractive index of air and Density; j is the imaginary unit; m is the expansion order; K is the inverse space basis vector; 将获取的各个薄层材料的声压和相关声学参数的级数表达形式,带入声波方程;其中,一维周期声学结构中,密度非均匀介质中的声波方程为:The obtained series expressions of the sound pressure and related acoustic parameters of each thin-layer material are brought into the acoustic wave equation; among them, in the one-dimensional periodic acoustic structure, the acoustic wave equation in the density inhomogeneous medium is:
Figure FDA0003177578170000035
Figure FDA0003177578170000035
其中,
Figure FDA0003177578170000036
为拉普拉斯算符;P为声压级数表达形式;P为入射、反射区域的声压级数表达形式PI,透射区域的声压级数表达形式PII,或多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式Pl;n(x)为周期多孔材料的多孔材料的等效折射率的级数表达形式;
in,
Figure FDA0003177578170000036
is the Laplace operator; P is the sound pressure level expression form; P is the sound pressure level expression form P I in the incident and reflection areas, the sound pressure level expression form P II in the transmission area, or the first The sound pressure series expression P l in the acoustic material equivalent to the periodic rectangular modulation of the thin layer material; n(x) is the series expression form of the equivalent refractive index of the porous material of the periodic porous material;
得到各阶系数的耦合方程:The coupling equations for the coefficients of each order are obtained:
Figure FDA0003177578170000037
Figure FDA0003177578170000037
将上述耦合方程写成矩阵形式:Write the above coupling equation in matrix form: [Sl″]=[Al][Sl][S l ″]=[A l ][S l ] 其中,Sl是由Sli组成的列向量;Sl″是由d2Sli/dz2组成的列向量;矩阵
Figure FDA0003177578170000038
Figure FDA0003177578170000039
Among them, S l is a column vector composed of S li ; S l ″ is a column vector composed of d 2 S li /dz 2 ; a matrix
Figure FDA0003177578170000038
Figure FDA0003177578170000039
其中,矩阵Xl和Yl的元素表达式分别是
Figure FDA00031775781700000310
Figure FDA00031775781700000311
Figure FDA0003177578170000041
其中,m1为行数;n1为列数;
Figure FDA0003177578170000042
Figure FDA0003177578170000043
均为系数;对角矩阵Kx的元素Ki,i=kxi
Among them, the element expressions of matrices X l and Y l are respectively
Figure FDA00031775781700000310
and
Figure FDA00031775781700000311
Figure FDA0003177578170000041
Among them, m1 is the number of rows; n1 is the number of columns;
Figure FDA0003177578170000042
and
Figure FDA0003177578170000043
are coefficients; the elements K i of the diagonal matrix K x , i =k xi ;
计算矩阵Al特征值和特征向量,得到第m个特征值的平方根
Figure FDA0003177578170000044
和对应的特征向量
Figure FDA0003177578170000045
Calculate the eigenvalues and eigenvectors of matrix A l , and get the square root of the mth eigenvalue
Figure FDA0003177578170000044
and the corresponding eigenvectors
Figure FDA0003177578170000045
那么声压系数Sli(z)的表达式:Then the expression of the sound pressure coefficient S li (z):
Figure FDA0003177578170000046
Figure FDA0003177578170000046
其中,l=1;
Figure FDA0003177578170000047
为第l薄层材料内声压的正向本征态形式;
Figure FDA0003177578170000048
为第l薄层材料内声压的反向本征态形式;
Figure FDA0003177578170000049
为正向传播本征态形式的强度系数;
Figure FDA00031775781700000410
为反向传播本征态形式的强度系数;d1为第一薄层的厚度;z为z方向的位置;
Among them, l=1;
Figure FDA0003177578170000047
is the forward eigenstate form of the sound pressure in the first thin layer of material;
Figure FDA0003177578170000048
is the inverse eigenstate form of the sound pressure in the first thin layer of material;
Figure FDA0003177578170000049
is the strength coefficient of the forward propagation eigenstate form;
Figure FDA00031775781700000410
is the intensity coefficient in the form of back-propagating eigenstates; d 1 is the thickness of the first thin layer; z is the position in the z direction;
Figure FDA00031775781700000411
Figure FDA00031775781700000411
其中,l=2,3,...,L;dp为第p薄层的厚度;Among them, l=2,3,...,L; dp is the thickness of the pth thin layer; 根据声压系数Sli(z),确定第l薄层材料内声压的正向本征态形式
Figure FDA00031775781700000412
和第l薄层材料内声压的反向本征态形式
Figure FDA00031775781700000413
According to the sound pressure coefficient S li (z), determine the forward eigenstate form of the sound pressure in the material of the first thin layer
Figure FDA00031775781700000412
and the inverse eigenstate form of the sound pressure in the first thin layer of material
Figure FDA00031775781700000413
6.根据权利要求1所述的周期非平整界面多孔材料吸声系数的计算方法,其特征在于,所述通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量和透射声压的各阶本征态的强度系数向量;其具体过程为:6. The method for calculating the sound absorption coefficient of periodic non-flat interface porous materials according to claim 1, wherein, according to the interlayer boundary continuity condition, an iterative optimization algorithm is used to calculate the intrinsic properties of each order of reflected sound pressure The intensity coefficient vector of the state and the intensity coefficient vector of each order eigenstate of the transmitted sound pressure; the specific process is: 边界连续性条件包括声压和法向质点振速连续;Boundary continuity conditions include sound pressure and normal particle vibration velocity continuity; 法向质点振速vz表达式是The normal particle vibration velocity v z expression is
Figure FDA00031775781700000419
Figure FDA00031775781700000419
其中,j为虚数单位;ω为角频率;
Figure FDA00031775781700000414
为归一化密度的倒数;
Among them, j is the imaginary unit; ω is the angular frequency;
Figure FDA00031775781700000414
is the inverse of the normalized density;
将归一化密度的倒数展开成相应的级数形式
Figure FDA00031775781700000415
Expand the reciprocal of the normalized density into the corresponding series form
Figure FDA00031775781700000415
其中,ρ0为空气密度;ρl(x)为l薄层的等效密度;
Figure FDA00031775781700000416
为展开系数;
Among them, ρ 0 is the air density; ρ l (x) is the equivalent density of the l thin layer;
Figure FDA00031775781700000416
is the expansion coefficient;
第i阶质点振速
Figure FDA00031775781700000417
是:
Vibration velocity of i-th order particle
Figure FDA00031775781700000417
Yes:
Figure FDA00031775781700000418
Figure FDA00031775781700000418
其中,l=1;Among them, l=1;
Figure FDA0003177578170000051
Figure FDA0003177578170000051
其中,
Figure FDA0003177578170000052
为归一化密度的倒数的展开系数;
in,
Figure FDA0003177578170000052
is the expansion coefficient of the reciprocal of the normalized density;
对于入射、反射区域和周期多孔材料第一层的界面连续性条件为:The interfacial continuity conditions for the incident, reflective regions and the first layer of periodic porous materials are:
Figure FDA0003177578170000053
Figure FDA0003177578170000053
对于中间各界面的连续性条件为:The continuity conditions for the intermediate interfaces are:
Figure FDA0003177578170000054
Figure FDA0003177578170000054
对于周期多孔材料最后一层和透射区域的界面连续性条件为:The interfacial continuity conditions for the last layer and the transmission region of periodic porous materials are:
Figure FDA0003177578170000055
Figure FDA0003177578170000055
其中,R是由反射强度系数Ri组成的列向量;T是由透射强度系数Ti组成的列向量;
Figure FDA0003177578170000056
是正向传播本征态形式的强度系数
Figure FDA0003177578170000057
组成的列向量;和
Figure FDA0003177578170000058
是反向传播本征态形式的强度系数
Figure FDA0003177578170000059
组成的列向量;Wl是特征向量
Figure FDA00031775781700000510
构成的矩阵,I是单位矩阵;Δi0是0阶对应系数为1,其他项为0的列向量;第l薄层矩阵Vl=ZlWlQl,且矩阵Zl的元素为
Figure FDA00031775781700000511
第l薄层对角矩阵Ql,El和Kz分别是元素
Figure FDA00031775781700000512
元素
Figure FDA00031775781700000513
和元素kzi组成的矩阵;WL为特征向量
Figure FDA00031775781700000514
构成的矩阵;EL为特征向量
Figure FDA00031775781700000515
构成的矩阵;第L薄层VL=ZLWLQL
where R is a column vector composed of reflection intensity coefficients R i ; T is a column vector composed of transmission intensity coefficients T i ;
Figure FDA0003177578170000056
is the strength coefficient of the forward-propagating eigenstate form
Figure FDA0003177578170000057
a column vector consisting of; and
Figure FDA0003177578170000058
is the strength coefficient of the backpropagating eigenstate form
Figure FDA0003177578170000059
composed of column vectors; W l is the eigenvector
Figure FDA00031775781700000510
The matrix formed, I is the unit matrix; Δ i0 is the column vector with the 0-order corresponding coefficient of 1 and other terms of 0; the first thin layer matrix V l =Z l W l Q l , and the elements of the matrix Z l are
Figure FDA00031775781700000511
The lth lamella diagonal matrices Q l , E l and K z are elements of
Figure FDA00031775781700000512
element
Figure FDA00031775781700000513
A matrix composed of elements k zi ; W L is the eigenvector
Figure FDA00031775781700000514
The matrix formed; E L is the eigenvector
Figure FDA00031775781700000515
The matrix formed; the Lth thin layer VL =Z L W L QL ;
通过矩阵计算,得到关于声压反射系数和透射系数的矩阵方程:Through matrix calculation, the matrix equations of sound pressure reflection coefficient and transmission coefficient are obtained:
Figure FDA00031775781700000516
Figure FDA00031775781700000516
采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量R和透射声压的各阶本征态的强度系数向量T;具体如下:The iterative optimization algorithm is used to calculate the intensity coefficient vector R of each order eigenstate of reflected sound pressure and the intensity coefficient vector T of each order eigenstate of transmitted sound pressure; the details are as follows: 将以上矩阵方程的最后四项表示为:Express the last four terms of the above matrix equation as:
Figure FDA00031775781700000517
Figure FDA00031775781700000517
引入了迭代矩阵fL+1和gL+1,且有fL+1=I,gL+1=jKz;再引入如下迭代矩阵:The iterative matrices f L+1 and g L+1 are introduced, and f L+1 =I, g L+1 =jK z ; and the following iterative matrices are introduced:
Figure FDA00031775781700000518
Figure FDA00031775781700000518
其中,aL、bL分别为引入的第一列中间矩阵和第二列中间矩阵;Among them, a L and b L are the first column intermediate matrix and the second column intermediate matrix introduced respectively;
Figure FDA00031775781700000519
通过整理得到如下关系:
Have
Figure FDA00031775781700000519
The following relationship is obtained by sorting:
Figure FDA0003177578170000061
Figure FDA0003177578170000061
那么迭代矩阵表达式为:
Figure FDA0003177578170000062
Figure FDA0003177578170000063
通过迭代计算,获得矩阵方程:
Then the iterative matrix expression is:
Figure FDA0003177578170000062
Figure FDA0003177578170000063
Through iterative calculation, the matrix equation is obtained:
Figure FDA0003177578170000064
Figure FDA0003177578170000064
求解该矩阵方程得到R和T1Solve the matrix equation to get R and T 1 ; 透射系数向量T1=(g1+jKzf1)-1(jKzΔi0+jk0cosθΔi0);Transmission coefficient vector T 1 =(g 1 +jK z f 1 ) -1 (jK z Δ i0 +jk 0 cosθΔ i0 ); 反射声压的各阶本征态的强度系数向量R=f1T1i0The intensity coefficient vector R=f 1 T 1i0 of each order eigenstate of the reflected sound pressure; 透射声压的各阶本征态的强度系数向量
Figure FDA0003177578170000065
Intensity coefficient vector of each order eigenstate of transmitted sound pressure
Figure FDA0003177578170000065
7.根据权利要求6所述的周期非平整界面多孔材料吸声系数的计算方法,其特征在于,所述确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数;其具体过程为:7 . The method for calculating the sound absorption coefficient of periodic non-flat interface porous materials according to claim 6 , wherein the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated; The specific process is: 计算总反射系数R:Calculate the total reflection coefficient R:
Figure FDA0003177578170000066
Figure FDA0003177578170000066
其中,
Figure FDA0003177578170000067
为反射声压的各阶本征态的强度系数向量R中的反射强度系数Ri取共轭;
in,
Figure FDA0003177578170000067
Take the conjugate for the reflection intensity coefficient R i in the intensity coefficient vector R of each order eigenstate of the reflected sound pressure;
计算总透射系数T:Calculate the total transmission coefficient T:
Figure FDA0003177578170000068
Figure FDA0003177578170000068
其中,
Figure FDA0003177578170000069
为透射声压的各阶本征态的强度系数向量T中的透射强度系数Ti取共轭;Re()为取实部;
in,
Figure FDA0003177578170000069
is the conjugate of the transmission intensity coefficient T i in the intensity coefficient vector T of each order eigenstate of the transmitted sound pressure; Re() is the real part;
根据计算的总反射系数R和总透射系数T,计算周期非平整界面多孔材料的吸声系数α;According to the calculated total reflection coefficient R and total transmission coefficient T, calculate the sound absorption coefficient α of the periodic non-flat interface porous material; α=1-R-T。a=1-R-T.
8.一种周期非平整界面多孔材料吸声系数的测量装置,其特征在于,该装置包括:8. A measuring device for the sound absorption coefficient of a periodic non-flat interface porous material, characterized in that the device comprises: 声学参数获取模块,用于获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;an acoustic parameter acquisition module, used for acquiring equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density; 分层模块,用于将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The layering module is used to layer the periodic non-flat interface porous material, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material; 本征态计算模块,用于根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;The eigenstate calculation module is used to obtain the equivalent acoustic pressure and related acoustic parameters of each thin-layer material in the periodic rectangular-modulated acoustic material according to the obtained equivalent acoustic parameters of the porous material, and expand it into a series expression, with Enter the sound wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material; 强度系数计算模块,用于通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;和The intensity coefficient calculation module is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure by using the iterative optimization algorithm through the continuity condition of the interlayer boundary ;and 吸声系数获取模块,用于根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。The sound absorption coefficient acquisition module is used to determine the total reflection coefficient and the total transmission coefficient according to the above calculation results, and calculate the sound absorption coefficient of the periodic non-flat interface porous material.
CN202110837185.1A 2021-07-23 2021-07-23 Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface Active CN113640388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110837185.1A CN113640388B (en) 2021-07-23 2021-07-23 Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110837185.1A CN113640388B (en) 2021-07-23 2021-07-23 Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface

Publications (2)

Publication Number Publication Date
CN113640388A true CN113640388A (en) 2021-11-12
CN113640388B CN113640388B (en) 2022-10-04

Family

ID=78418243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110837185.1A Active CN113640388B (en) 2021-07-23 2021-07-23 Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface

Country Status (1)

Country Link
CN (1) CN113640388B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371224A (en) * 2021-12-03 2022-04-19 华南理工大学 A Test Method for Random Incidence Sound Absorption Coefficient of ABA Structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060596A (en) * 2020-01-02 2020-04-24 合肥工业大学 A kind of measurement method of sound absorption coefficient of sound absorbing material
CN111651874A (en) * 2020-05-25 2020-09-11 国网江西省电力有限公司电力科学研究院 A kind of calculation method of sound absorption performance of fiber material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060596A (en) * 2020-01-02 2020-04-24 合肥工业大学 A kind of measurement method of sound absorption coefficient of sound absorbing material
CN111651874A (en) * 2020-05-25 2020-09-11 国网江西省电力有限公司电力科学研究院 A kind of calculation method of sound absorption performance of fiber material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUZHEN YANG ET AL.: "Study on asymmetric diffraction of acoustic parity-time-symmetric gratings using rigorous coupled-wave analysis", 《J. ACOUST. SOC. AM.》 *
沈岳等: "活性炭纤维材料吸声性能预测模型", 《纺织学报》 *
马晓文等: "梯度穿缝型双孔隙率多孔材料的吸声性能", 《声学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371224A (en) * 2021-12-03 2022-04-19 华南理工大学 A Test Method for Random Incidence Sound Absorption Coefficient of ABA Structures
CN114371224B (en) * 2021-12-03 2023-08-22 华南理工大学 A Test Method for Random Incident Sound Absorption Coefficient of ABA Structure

Also Published As

Publication number Publication date
CN113640388B (en) 2022-10-04

Similar Documents

Publication Publication Date Title
Van Pamel et al. Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions
Magnani et al. Acoustic absorption modeling of single and multiple coiled-up resonators
Huthwaite Evaluation of inversion approaches for guided wave thickness mapping
CN100442030C (en) A sound field separation method
Ciochon et al. The impact of surface roughness on an additively manufactured acoustic material: An experimental and numerical investigation
Geyer et al. Experimental assessment of the noise generated at the leading edge of porous airfoils using microphone array techniques
CN109300464A (en) A design method of low frequency sound absorber with gradient cross section
Kino et al. Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibres of various cross-sectional shapes
Laly et al. Characterization and development of periodic acoustic metamaterials using a transfer matrix approach
Henneberg et al. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing
Hosseini et al. Damage localization in plates using mode conversion characteristics of ultrasonic guided waves
CN113593659B (en) A Method of Reversing the Parameters of Open Cell Foaming Materials Based on Genetic Algorithm
CN113640388B (en) Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface
Pind et al. A phenomenological extended-reaction boundary model for time-domain wave-based acoustic simulations under sparse reflection conditions using a wave splitting method
CN109783946A (en) A Nodal Integral Algorithm for Band Gap Simulation of Phononic Crystals
Zhao et al. Probabilistic diagnostic algorithm-based damage detection for plates with non-uniform sections using the improved weight function
Hameed et al. Transverse damage localization and quantitative size estimation for composite laminates based on Lamb waves
Jeon et al. Convolutional neural networks for estimating transport parameters of fibrous materials based on micro-computerized tomography images
Rizzi et al. Analytical model of the acoustic response of nanogranular films adhering to a substrate
CN113376256B (en) Thickness traversal inversion method based on wavelet packet component waveform of variable-step-size grid model
Yang et al. Absorption performance of nonplanar periodic structures solved by layered rigorous coupled-wave analysis
CN113569505A (en) Intelligent optimization design method of ultrasonic transducer based on equivalent circuit model
Wang et al. Novel applications of local optimization semi-Cartesian grid for the complex band structure analysis of phononic crystals
Roncen et al. Influence of source propagation direction and shear flow profile in impedance eduction of acoustic liners
CN112395703B (en) A Design Method for Noise Reduction Capability of Elastic Metamaterial Composite Rectangular Plate Unit Cell Structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant