CN113640388A - A method and device for calculating sound absorption coefficient of periodic non-flat interface porous materials - Google Patents
A method and device for calculating sound absorption coefficient of periodic non-flat interface porous materials Download PDFInfo
- Publication number
- CN113640388A CN113640388A CN202110837185.1A CN202110837185A CN113640388A CN 113640388 A CN113640388 A CN 113640388A CN 202110837185 A CN202110837185 A CN 202110837185A CN 113640388 A CN113640388 A CN 113640388A
- Authority
- CN
- China
- Prior art keywords
- coefficient
- sound pressure
- periodic
- porous material
- equivalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 158
- 230000000737 periodic effect Effects 0.000 title claims abstract description 133
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000010410 layer Substances 0.000 claims abstract description 96
- 239000013598 vector Substances 0.000 claims abstract description 72
- 239000000463 material Substances 0.000 claims abstract description 56
- 230000014509 gene expression Effects 0.000 claims abstract description 53
- 230000005540 biological transmission Effects 0.000 claims abstract description 39
- 239000012814 acoustic material Substances 0.000 claims abstract description 32
- 238000004364 calculation method Methods 0.000 claims abstract description 31
- 238000005457 optimization Methods 0.000 claims abstract description 13
- 239000011229 interlayer Substances 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 57
- 239000002245 particle Substances 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 241000446313 Lamella Species 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 7
- 239000011358 absorbing material Substances 0.000 abstract description 3
- 229920000742 Cotton Polymers 0.000 description 9
- 241000219146 Gossypium Species 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/015—Attenuation, scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
Landscapes
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
技术领域technical field
本发明属于多孔吸声材料的声学测量技术领域,具体地说,涉及一种周期非平整界面多孔材料吸声系数的计算方法及测量装置。The invention belongs to the technical field of acoustic measurement of porous sound-absorbing materials, and in particular relates to a method and a measuring device for calculating the sound-absorbing coefficient of periodic non-flat interface porous materials.
背景技术Background technique
多孔材料由于能将声能转化为热能,而被广泛运用于噪声控制领域。将许多带有楔形或者半椭圆表面的周期波纹结构的多孔材料安装在墙体上,以达到吸声目的。与平面多孔材料相比,具有周期波纹结构的多孔材料在较宽的频率范围内,具有更好的吸声性能。Porous materials are widely used in the field of noise control due to their ability to convert acoustic energy into thermal energy. A number of porous materials with periodic corrugated structures with wedge-shaped or semi-elliptical surfaces are installed on the wall to achieve sound absorption. Compared with planar porous materials, porous materials with periodic corrugated structures have better sound absorption performance in a wider frequency range.
目前,对于周期非平整界面多孔材料吸声性能的研究,主要以实验测试为主。通过实验测试研究和优化多孔材料的吸声性能,通常需要制备大量不同材料参数、不同几何外形和不同结构参数的样件,进行大量重复的测量工作,然后对所有测试数据进行归纳统计并总结规律。这样的实验测试流程操作繁琐、耗时耗力,不利于工程应用中的快速优化设计。At present, the research on the sound absorption performance of periodic non-flat interface porous materials is mainly based on experimental tests. To study and optimize the sound absorption performance of porous materials through experimental tests, it is usually necessary to prepare a large number of samples with different material parameters, different geometric shapes and different structural parameters, carry out a large number of repeated measurements, and then summarize all the test data and summarize the rules. . Such an experimental test process is cumbersome, time-consuming and labor-intensive, which is not conducive to rapid optimization design in engineering applications.
针对周期非平整界面多孔材料吸声系数的计算,现有的计算方法主要包括有限元、边界元以及时域有限差分等理论计算方法,现有的方法主要需要几何建模和网格划分,其计算的复杂度和难度均非常大,大大降低了测量效率和测量精度。For the calculation of the sound absorption coefficient of porous materials with periodic non-flat interfaces, the existing calculation methods mainly include theoretical calculation methods such as finite element, boundary element and time domain finite difference. The existing methods mainly require geometric modeling and mesh division. The computational complexity and difficulty are very large, which greatly reduces the measurement efficiency and measurement accuracy.
发明内容SUMMARY OF THE INVENTION
为解决现有技术存在的上述缺陷,本发明提出了一种周期非平整界面多孔材料吸声系数的计算方法,该方法包括:In order to solve the above-mentioned defects in the prior art, the present invention proposes a method for calculating the sound absorption coefficient of periodic non-flat interface porous materials, the method comprising:
获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;Obtaining equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;
将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;
根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;According to the obtained equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the periodic rectangular modulated acoustic material equivalent to each thin-layer material are obtained and expanded into a series expression, and brought into the acoustic wave equation to calculate each thin-layer The eigenstate form of the sound pressure in the material;
通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;Through the interlayer boundary continuity condition, the iterative optimization algorithm is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure;
根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。According to the above calculation results, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated.
作为上述技术方案的改进之一,所述周期非平整界面多孔材料包括:周期排列的、非平整的、非完全填充的多孔材料尖端和完全填充的多孔材料基底。As one of the improvements of the above technical solutions, the periodic non-planar interface porous material includes: periodically arranged, non-planar, incompletely filled porous material tips and completely filled porous material bases.
作为上述技术方案的改进之一,所述获取周期非平整界面多孔材料的等效声学参数;其具体过程为:As one of the improvements of the above technical solutions, the acquisition of the equivalent acoustic parameters of the periodic non-flat interface porous material; the specific process is:
根据测量得到的第一厚度为t1多孔材料的平面结构的反射系数R1和第二厚度为t2多孔材料的平面结构的反射系数R2,分别计算第一厚度为t1多孔材料的平面结构的表面阻抗ζ1和第二厚度为t2多孔材料的平面结构的表面阻抗ζ2;According to the measured reflection coefficient R 1 of the planar structure of the porous material with the first thickness t 1 and the reflection coefficient R 2 of the planar structure of the second porous material with thickness t 2 , the plane of the porous material with the first thickness t 1 is calculated respectively. the surface impedance ζ 1 of the structure and the surface impedance ζ 2 of the second thickness t 2 planar structure of the porous material;
ζ1=(1+R1)/(1-R1)ζ 1 =(1+R 1 )/(1-R 1 )
ζ2=(1+R2)/(1-R2)ζ 2 =(1+R 2 )/(1-R 2 )
其中,ζ1=Zpcoth(γt1);ζ2=Zpcoth(γt2);Wherein, ζ 1 =Z p coth(γt 1 ); ζ 2 =Z p coth(γt 2 );
根据ζ1tanh(γt1)-ζ2tanh(γt2)=0;According to ζ 1 tanh(γt 1 )-ζ 2 tanh(γt 2 )=0;
联合上式,计算得到复数传播常数γ和归一化的特性阻抗Zp;Combined with the above formula, the complex propagation constant γ and the normalized characteristic impedance Z p are obtained by calculation;
根据下述公式,计算等效折射率np和等效密度ρp:The equivalent refractive index n p and the equivalent density ρ p are calculated according to the following formulas:
np=ω/(-jγc0);n p =ω/(-jγc 0 );
ρp=(-jγρ0c0Zp)/ω;ρ p =(-jγρ 0 c 0 Z p )/ω;
其中,c0是空气的声速;ρ0是空气的密度;ω为角频率;j为虚数单位;。Among them, c 0 is the sound speed of air; ρ 0 is the density of air; ω is the angular frequency; j is the imaginary unit; .
将计算得到的等效折射率和等效密度作为等效声学参数。Take the calculated equivalent refractive index and equivalent density as equivalent acoustic parameters.
作为上述技术方案的改进之一,所述将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;其具体过程为:As one of the improvements of the above technical solutions, the periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material; the specific process is as follows:
周期非平整界面多孔材料的尖端为非平整的、非完全填充的、具有多个薄层的多孔材料;对周期非平整界面多孔材料进行分层处理,得到多个薄层材料,每个薄层材料等效为周期矩形调制的声学材料;The tip of the periodic non-planar interface porous material is a non-planar, non-completely filled porous material with multiple thin layers; the periodic non-planar interface porous material is layered to obtain a plurality of thin layer materials, each thin layer The material is equivalent to an acoustic material with periodic rectangular modulation;
周期非平整界面多孔材料的基底为完全填充的多孔材料,该多孔材料为充填率为1的、完全填充的、周期矩形调制的声学材料。The base of the periodic non-planar interface porous material is a completely filled porous material, and the porous material is a completely filled, periodic rectangularly modulated acoustic material with a filling rate of 1.
作为上述技术方案的改进之一,所述根据多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;其具体过程为:As one of the improvements of the above technical solutions, according to the equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the acoustic material equivalent to the periodic rectangular modulation of each thin-layer material are obtained and expanded into a series expression, and Bring in the acoustic wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material; the specific process is as follows:
各个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式为:The expression of the sound pressure level in the equivalent periodic rectangular modulated acoustic material of each thin layer material is:
其中,PI是入射、反射区域的声压级数表达形式;PII是透射区域的声压级数表达形式,Pl是多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式;其中,l=1,2,…,L-1,L;Among them, P I is the expression form of the sound pressure level in the incident and reflection areas; P II is the expression form of the sound pressure level in the transmission area, and P l is the periodic rectangular modulation of the acoustic material equivalent to the lth thin layer of the porous material. The expression form of sound pressure level in ; where, l=1,2,...,L-1,L;
kx0=k0sinθ,kz0=k0cosθ,kxi=k0sinθ+iK,角标i是大于0的正整数,表示第i阶级数展开;K=2π/T,K是倒空间基矢;k x0 = k 0 sinθ, k z0 = k 0 cosθ, k xi = k 0 sinθ+iK, the index i is a positive integer greater than 0, indicating the i-th order number expansion; K=2π/T, K is the inverse space base vector;
当kxi<k0时,有 When k xi <k 0 , we have
当kxi>k0时,有 When k xi >k 0 , we have
其中,j是虚数单位;k0是空气中的波数;kxi表示x方向的波矢;kzi表示z方向的波矢;θ是入射角;T表示多孔材料的周期;D表示多孔材料的总厚度;Ri和Ti分别表示归一化的第i阶声压的反射系数和透射系数;Sli(z)是第l层周期多孔材料的第i阶声压系数;exp( )表示以自然常数e为底的指数函数;where j is the imaginary unit; k 0 is the wave number in air; k xi is the wave vector in the x direction; k zi is the wave vector in the z direction; θ is the incident angle; T is the period of the porous material; D is the total thickness; Ri and T i represent the reflection coefficient and transmission coefficient of the normalized i -th order sound pressure, respectively; S li (z) is the i-th order sound pressure coefficient of the l-th layer periodic porous material; exp( ) represents The exponential function with the natural constant e as the base;
相关声学参数的级数表达形式为:The series expression form of the relevant acoustic parameters is:
其中,ρl(x)为第l层周期多孔材料的等效密度;nl(x)为第l层周期多孔材料的等效折射率;where ρ l (x) is the equivalent density of the lth layer of periodic porous material; n l (x) is the equivalent refractive index of the lth layer of periodic porous material;
其中,fl是第l层周期多孔材料中多孔材料的占空比;np,ρp分别是多孔材料的等效折射率和等效密度;n0,ρ0分别是空气的折射率和密度;j为虚数单位;m为展开阶数;K为倒空间基矢;Among them, f l is the duty ratio of the porous material in the lth layer of periodic porous material; n p , ρ p are the equivalent refractive index and equivalent density of the porous material, respectively; n 0 , ρ 0 are the refractive index of air and Density; j is the imaginary unit; m is the expansion order; K is the inverse space basis vector;
将获取的各个薄层材料的声压和相关声学参数的级数表达形式,带入声波方程;其中,一维周期声学结构中,密度非均匀介质中的声波方程为:The obtained series expressions of the sound pressure and related acoustic parameters of each thin-layer material are brought into the acoustic wave equation; among them, in the one-dimensional periodic acoustic structure, the acoustic wave equation in the density inhomogeneous medium is:
其中,为拉普拉斯算符;P为声压级数表达形式;P为入射、反射区域的声压级数表达形式PI,透射区域的声压级数表达形式PII,或多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式Pl;n(x)为周期多孔材料的多孔材料的等效折射率的级数表达形式;in, is the Laplace operator; P is the sound pressure level expression form; P is the sound pressure level expression form P I in the incident and reflection areas, the sound pressure level expression form P II in the transmission area, or the first The sound pressure series expression P l in the acoustic material equivalent to the periodic rectangular modulation of the thin layer material; n(x) is the series expression form of the equivalent refractive index of the porous material of the periodic porous material;
得到各阶系数的耦合方程:The coupling equations for the coefficients of each order are obtained:
将上述耦合方程写成矩阵形式:Write the above coupling equation in matrix form:
[Sl″]=[Al][Sl][S l ″]=[A l ][S l ]
其中,Sl是由Sli组成的列向量;Sl″是由d2Sli/dz2组成的列向量;矩阵 Among them, S l is a column vector composed of S li ; S l ″ is a column vector composed of d 2 S li /dz 2 ; a matrix
其中,矩阵Xl和Yl的元素表达式分别是和 其中,m1为行数;n1为列数;和均为系数;对角矩阵Kx的元素Ki,i=kxi;Among them, the element expressions of matrices X l and Y l are respectively and Among them, m1 is the number of rows; n1 is the number of columns; and are all coefficients; the elements of the diagonal matrix K x are K i,i =k xi ;
计算矩阵Al特征值和特征向量,得到第m个特征值的平方根和对应的特征向量 Calculate the eigenvalues and eigenvectors of matrix A l , and get the square root of the mth eigenvalue and the corresponding eigenvectors
那么声压系数Sli(z)的表达式:Then the expression of the sound pressure coefficient S li (z):
其中,l=1;为第l薄层材料内声压的正向本征态形式;为第l薄层材料内声压的反向本征态形式;为正向传播本征态形式的强度系数;为反向传播本征态形式的强度系数;d1为第一薄层的厚度;z为z方向的位置;Among them, l=1; is the forward eigenstate form of the sound pressure in the first thin layer of material; is the inverse eigenstate form of the sound pressure in the first thin layer of material; is the strength coefficient of the forward propagation eigenstate form; is the intensity coefficient in the form of back-propagating eigenstates; d 1 is the thickness of the first thin layer; z is the position in the z direction;
其中,l=2,3,…,L;dp为第p薄层的厚度;Among them, l=2,3,...,L; dp is the thickness of the pth thin layer;
根据声压系数Sli(z),确定第l薄层材料内声压的正向本征态形式和第l薄层材料内声压的反向本征态形式 According to the sound pressure coefficient S li (z), determine the forward eigenstate form of the sound pressure in the material of the first thin layer and the inverse eigenstate form of the sound pressure in the first thin layer of material
作为上述技术方案的改进之一,所述通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量和透射声压的各阶本征态的强度系数向量;其具体过程为:As one of the improvements of the above technical solutions, the iterative optimization algorithm is used to calculate the intensity coefficient vectors of the eigenstates of each order of the reflected sound pressure and the intensity of the eigenstates of each order of the transmitted sound pressure through the interlayer boundary continuity condition. Coefficient vector; its specific process is:
边界连续性条件包括声压和法向质点振速连续;Boundary continuity conditions include sound pressure and normal particle vibration velocity continuity;
法向质点振速vz表达式是The normal particle vibration velocity v z expression is
其中,j为虚数单位;ω为角频率;为归一化密度的倒数;Among them, j is the imaginary unit; ω is the angular frequency; is the inverse of the normalized density;
将归一化密度的倒数展开成相应的级数形式 Expand the reciprocal of the normalized density into the corresponding series form
其中,ρ0为空气密度;ρl(x)为l薄层的等效密度;为展开系数;Among them, ρ 0 is the air density; ρ l (x) is the equivalent density of the l thin layer; is the expansion coefficient;
第i阶质点振速是:Vibration velocity of i-th order particle Yes:
其中,l=1;Among them, l=1;
其中,l=2,3,…,L;为归一化密度的倒数的展开系数;Among them, l=2,3,...,L; is the expansion coefficient of the reciprocal of the normalized density;
对于入射、反射区域和周期多孔材料第一层的界面连续性条件为:The interfacial continuity conditions for the incident, reflective regions and the first layer of periodic porous materials are:
对于中间各界面的连续性条件为:The continuity conditions for the intermediate interfaces are:
对于周期多孔材料最后一层和透射区域的界面连续性条件为:The interfacial continuity conditions for the last layer and the transmission region of periodic porous materials are:
其中,R是由反射强度系数Ri组成的列向量;T是由透射强度系数Ti组成的列向量;是正向传播本征态形式的强度系数组成的列向量;和是反向传播本征态形式的强度系数组成的列向量;Wl是特征向量构成的矩阵,I是单位矩阵;Δi0是0阶对应系数为1,其他项为0的列向量;第l薄层矩阵Vl=ZlWlQl,且矩阵Zl的元素为第l薄层对角矩阵Ql,El和Kz分别是元素元素和元素kzi组成的矩阵;WL为特征向量构成的矩阵;EL为特征向量构成的矩阵;第L薄层VL=ZLWLQL;where R is a column vector composed of reflection intensity coefficients R i ; T is a column vector composed of transmission intensity coefficients T i ; is the strength coefficient of the forward-propagating eigenstate form a column vector consisting of; and is the strength coefficient of the backpropagating eigenstate form composed of column vectors; W l is the eigenvector The matrix formed, I is the unit matrix; Δ i0 is the column vector with the 0-order corresponding coefficient of 1 and other terms of 0; the lth thin layer matrix V l =Z l W l Q l , and the elements of the matrix Z l are The lth lamella diagonal matrices Q l , E l and K z are elements of element A matrix composed of elements k zi ; W L is the eigenvector The matrix formed; E L is the eigenvector The matrix formed; the Lth thin layer VL =Z L W L QL ;
通过矩阵计算,得到关于声压反射系数和透射系数的矩阵方程:Through matrix calculation, the matrix equations of sound pressure reflection coefficient and transmission coefficient are obtained:
采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量R和透射声压的各阶本征态的强度系数向量T;具体如下:The iterative optimization algorithm is used to calculate the intensity coefficient vector R of each order eigenstate of reflected sound pressure and the intensity coefficient vector T of each order eigenstate of transmitted sound pressure; the details are as follows:
将以上矩阵方程的最后四项表示为:Express the last four terms of the above matrix equation as:
引入了迭代矩阵fL+1和gL+1,且有fL+1=I,gL+1=jKz;再引入如下迭代矩阵:The iterative matrices f L+1 and g L+1 are introduced, and f L+1 =I, g L+1 =jK z ; and the following iterative matrices are introduced:
其中,aL、bL分别为引入的第一列中间矩阵和第二列中间矩阵;Among them, a L and b L are the first column intermediate matrix and the second column intermediate matrix introduced respectively;
有通过整理得到如下关系:Have The following relationship is obtained by sorting:
那么迭代矩阵表达式为:通过迭代计算,获得矩阵方程:Then the iterative matrix expression is: Through iterative calculation, the matrix equation is obtained:
求解该矩阵方程得到R和T1;Solve the matrix equation to get R and T 1 ;
透射系数向量T1=(g1+jKzf1)-1(jKzΔi0+jk0cosθΔi0);Transmission coefficient vector T 1 =(g 1 +jK z f 1 ) -1 (jK z Δ i0 +jk 0 cosθΔ i0 );
反射声压的各阶本征态的强度系数向量R=f1T1-Δi0;The intensity coefficient vector R=f 1 T 1 -Δ i0 of each order eigenstate of the reflected sound pressure;
透射声压的各阶本征态的强度系数向量 Intensity coefficient vector of each order eigenstate of transmitted sound pressure
作为上述技术方案的改进之一,所述确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数;其具体过程为:As one of the improvements of the above technical solutions, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated; the specific process is:
计算总反射系数R:Calculate the total reflection coefficient R:
其中,为反射声压的各阶本征态的强度系数向量R中的反射强度系数Ri取共轭;in, Take the conjugate for the reflection intensity coefficient R i in the intensity coefficient vector R of each order eigenstate of the reflected sound pressure;
计算总透射系数T:Calculate the total transmission coefficient T:
T=∑iTiTi*Re(kzi/kz0);T=∑ i T i T i *Re(k zi /k z0 );
其中,Ti *为透射声压的各阶本征态的强度系数向量T中的透射强度系数Ti取共轭;Re()为取实部;Among them, T i * is the conjugate of the transmission intensity coefficient T i in the intensity coefficient vector T of the eigenstates of each order of the transmitted sound pressure; Re() is the real part;
根据计算的总反射系数R和总透射系数T,计算周期非平整界面多孔材料的吸声系数α;According to the calculated total reflection coefficient R and total transmission coefficient T, calculate the sound absorption coefficient α of the periodic non-flat interface porous material;
α=1-R-T。a=1-R-T.
本发明还提供了一种周期非平整界面多孔材料吸声系数的测量装置,该装置包括:The present invention also provides a device for measuring the sound absorption coefficient of a periodic non-flat interface porous material, the device comprising:
声学参数获取模块,用于获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;an acoustic parameter acquisition module, used for acquiring equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;
分层模块,用于将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The layering module is used to layer the periodic non-flat interface porous material, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;
本征态计算模块,用于根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;The eigenstate calculation module is used to obtain the equivalent acoustic pressure and related acoustic parameters of each thin-layer material in the periodic rectangular-modulated acoustic material according to the obtained equivalent acoustic parameters of the porous material. Enter the sound wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material;
强度系数计算模块,用于通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;和The intensity coefficient calculation module is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure by using the iterative optimization algorithm through the continuity condition of the interlayer boundary ;and
吸声系数获取模块,用于根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。The sound absorption coefficient acquisition module is used to determine the total reflection coefficient and the total transmission coefficient according to the above calculation results, and calculate the sound absorption coefficient of the periodic non-flat interface porous material.
本发明与现有技术相比的有益效果是:The beneficial effects of the present invention compared with the prior art are:
1、本发明的方法,通过获取待测试的多孔材料的等效声学参数,即只需测量两个不同厚度的平面多孔材料的样品即可,不需要制备不同几何外形和结构尺寸的样件,也不需要进行大量重复的实验测试,大大提高了测量效率,从而能够更快速测量出周期非平整界面的多孔材料吸声系数;1. The method of the present invention obtains the equivalent acoustic parameters of the porous material to be tested, that is, only two samples of planar porous materials with different thicknesses are required to be measured, and there is no need to prepare samples of different geometric shapes and structural dimensions, There is no need to carry out a large number of repeated experimental tests, which greatly improves the measurement efficiency, so that the sound absorption coefficient of porous materials with periodic non-flat interfaces can be measured more quickly;
2、本发明的方法考虑了周期调制对吸声性能的影响,其中包含了倏逝波在内的高阶模态,提高了测得的吸声系数的准确性;2. The method of the present invention considers the influence of periodic modulation on the sound absorption performance, and includes high-order modes including evanescent waves, which improves the accuracy of the measured sound absorption coefficient;
3、本发明的方法在确定结构几何参数后,只需要带入各频率的等效声学参数,即可准确预测周期非平整界面多孔材料的宽频吸声系数,简化了计算复杂度,并节约了时间成本,大大提高了测量效率,对噪声控制领域的应用有重要意义。3. After determining the structural geometric parameters, the method of the present invention only needs to bring in the equivalent acoustic parameters of each frequency to accurately predict the broadband sound absorption coefficient of the periodic non-flat interface porous material, which simplifies the calculation complexity and saves money. The time cost greatly improves the measurement efficiency, which is of great significance to the application in the field of noise control.
附图说明Description of drawings
图1是本发明的一种周期非平整界面多孔材料吸声系数的计算方法的流程图;1 is a flow chart of a method for calculating the sound absorption coefficient of a periodic non-flat interface porous material of the present invention;
图2是在二传声器阻抗管中,测量该多孔材料的反射系数R的结构示意图;Fig. 2 is a structural schematic diagram of measuring the reflection coefficient R of the porous material in a microphone impedance tube;
图3是图1的方法中的周期非平整界面多孔材料的尖端和基底的结构示意图;3 is a schematic structural diagram of the tip and the base of the periodic non-planar interface porous material in the method of FIG. 1;
图4是图1的方法中的周期非平整界面多孔材料进行分层后,单层周期调制的多孔材料的结构示意图;4 is a schematic structural diagram of a single-layer periodically modulated porous material after the periodic non-planar interface porous material in the method of FIG. 1 is layered;
图5a是图1的方法中的多孔材料在宽频范围内的等效折射率的曲线示意图;5a is a schematic diagram of the equivalent refractive index of the porous material in the method of FIG. 1 in a wide frequency range;
图5b是图1的方法中的多孔材料在宽频范围内的等效密度的曲线示意图;FIG. 5b is a schematic diagram of the equivalent density of the porous material in the broad frequency range in the method of FIG. 1;
图6a是待测样本为三角形周期调制的吸声棉的几何形状的结构示意图;6a is a schematic structural diagram of the geometry of the sound-absorbing cotton whose sample to be tested is a triangular periodic modulation;
图6b是待测样本为矩形周期调制的吸声棉的几何形状的结构示意图;Fig. 6b is the structural schematic diagram of the geometric shape of the sound-absorbing cotton whose sample to be tested is a rectangular periodic modulation;
图7是图1的方法中的待测样本的吸声系数的计算结果和实验测试结果。FIG. 7 is a calculation result and an experimental test result of the sound absorption coefficient of the sample to be tested in the method of FIG. 1 .
具体实施方式Detailed ways
现结合附图和实例对本发明作进一步的描述。The present invention will now be further described with reference to the accompanying drawings and examples.
如图1所示,本发明提供了一种周期非平整界面多孔材料吸声系数的计算方法,本发明的方法,在确定结构几何参数后,只需要带入各频率的等效声学参数,即可准确预测周期非平整界面多孔材料的宽频吸声系数,简化了计算复杂度并节约了时间成本,对噪声控制领域的应用有重要意义。As shown in FIG. 1, the present invention provides a method for calculating the sound absorption coefficient of periodic non-flat interface porous materials. The method of the present invention only needs to bring in the equivalent acoustic parameters of each frequency after determining the structural geometric parameters, namely The broadband sound absorption coefficient of periodic non-flat interface porous materials can be accurately predicted, which simplifies the computational complexity and saves time and cost, which is of great significance for the application in the field of noise control.
该方法包括:The method includes:
获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;Obtaining equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;
具体地,如图2、3和4所示,在二传声器阻抗管中,将厚度为t的多孔材料的平面结构安装在刚性背衬上,并测量该多孔材料的反射系数R;Specifically, as shown in Figures 2, 3 and 4, in a microphone impedance tube, a planar structure of a porous material with a thickness t is mounted on a rigid backing, and the reflection coefficient R of the porous material is measured;
ζ=(1+R)/(1-R)ζ=(1+R)/(1-R)
其中,ζ为该多孔材料的表面阻抗,为已知值;其中,ζ=Zpcoth(γt);where ζ is the surface impedance of the porous material, which is a known value; where ζ=Z p coth(γt);
其中,γ为周期非平整界面多孔材料所具有的复数传播常数;Zp为周期非平整界面多孔材料所具有的归一化的特性阻抗;Among them, γ is the complex propagation constant of the periodic non-planar interface porous material; Z p is the normalized characteristic impedance of the periodic non-planar interface porous material;
基于上式,由测量得到的第一厚度为t1多孔材料的平面结构的反射系数R1和第二厚度为t2多孔材料的平面结构的反射系数R2,分别计算第一厚度为t1多孔材料的平面结构的表面阻抗ζ1和第二厚度为t2多孔材料的平面结构的表面阻抗ζ2;Based on the above formula, from the measured reflection coefficient R 1 of the planar structure of the porous material with the first thickness t 1 and the reflection coefficient R 2 of the planar structure of the second porous material with thickness t 2 , the first thickness is calculated as t 1 , respectively. the surface impedance ζ 1 of the planar structure of the porous material and the surface impedance ζ 2 of the planar structure of the porous material with a second thickness t 2 ;
ζ1=(1+R1)/(1-R1)ζ 1 =(1+R 1 )/(1-R 1 )
ζ2=(1+R2)/(1-R2)ζ 2 =(1+R 2 )/(1-R 2 )
其中,ζ1=Zpcoth(γt1);ζ2=Zpcoth(γt2);Wherein, ζ 1 =Z p coth(γt 1 ); ζ 2 =Z p coth(γt 2 );
根据ζ1tanh(γt1)-ζ2tanh(γt2)=0;According to ζ 1 tanh(γt 1 )-ζ 2 tanh(γt 2 )=0;
联合上式,计算得到复数传播常数γ和归一化的特性阻抗Zp;Combined with the above formula, the complex propagation constant γ and the normalized characteristic impedance Z p are obtained by calculation;
根据下述公式,计算等效折射率np和等效密度ρp:The equivalent refractive index n p and the equivalent density ρ p are calculated according to the following formulas:
np=ω/(-jγc0);n p =ω/(-jγc 0 );
ρp=(-jγρ0c0Zp)/ω;ρ p =(-jγρ 0 c 0 Z p )/ω;
其中,c0是空气的声速;ρ0是空气的密度;ω为角频率;j为虚数单位;。Among them, c 0 is the sound speed of air; ρ 0 is the density of air; ω is the angular frequency; j is the imaginary unit; .
将计算得到的等效折射率和等效密度作为等效声学参数。Take the calculated equivalent refractive index and equivalent density as equivalent acoustic parameters.
将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The periodic non-flat interface porous material is layered, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;
具体地,周期非平整界面多孔材料的尖端为非平整的、非完全填充的、具有多个薄层的多孔材料;对周期非平整界面多孔材料进行分层处理,得到多个薄层材料,每个薄层材料等效为周期矩形调制的声学材料;Specifically, the tip of the periodic non-planar interface porous material is a non-planar, incompletely filled porous material with multiple thin layers; the periodic non-planar interface porous material is layered to obtain a plurality of thin-layer materials, each of which is Each thin-layer material is equivalent to a periodic rectangular modulated acoustic material;
周期非平整界面多孔材料的基底为完全填充的多孔材料,该多孔材料为充填率为1的、完全填充的、周期矩形调制的声学材料。The base of the periodic non-planar interface porous material is a completely filled porous material, and the porous material is a completely filled, periodic rectangularly modulated acoustic material with a filling rate of 1.
其中,所述周期非平整界面多孔材料包括:周期排列的、非平整的、非完全填充的多孔材料尖端和完全填充的多孔材料基底。Wherein, the periodic non-planar interface porous material includes: periodically arranged, non-planar, non-completely filled porous material tips and completely filled porous material bases.
根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;According to the obtained equivalent acoustic parameters of the porous material, the sound pressure and related acoustic parameters in the periodic rectangular modulated acoustic material equivalent to each thin-layer material are obtained and expanded into a series expression, and brought into the acoustic wave equation to calculate each thin-layer The eigenstate form of the sound pressure in the material;
具体地,各个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式为:Specifically, the expression form of the sound pressure level in the periodic rectangular modulated acoustic material equivalent to each thin layer material is:
其中,PI是入射、反射区域的声压级数表达形式;PII是透射区域的声压级数表达形式,Pl是多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式;其中,l=1,2,…,L-1,L;Among them, P I is the expression form of the sound pressure level in the incident and reflection areas; P II is the expression form of the sound pressure level in the transmission area, and P l is the periodic rectangular modulation of the acoustic material equivalent to the lth thin layer of the porous material. The expression form of sound pressure level in ; where, l=1,2,...,L-1,L;
kx0=k0sinθ,kz0=k0cosθ,kxi=k0sinθ+iK,角标i是大于0的正整数,表示第i阶级数展开;K=2π/T,K是倒空间基矢;k x0 = k 0 sinθ, k z0 = k 0 cosθ, k xi = k 0 sinθ+iK, the index i is a positive integer greater than 0, indicating the i-th order number expansion; K=2π/T, K is the inverse space base vector;
当kxi<k0时,有 When k xi <k 0 , we have
当kxi>k0时,有 When k xi >k 0 , we have
其中,j是虚数单位;k0是空气中的波数;kxi表示x方向的波矢;kzi表示z方向的波矢;θ是入射角;T表示多孔材料的周期;D表示多孔材料的总厚度;Ri和Ti分别表示归一化的第i阶声压的反射系数和透射系数;Sli(z)是第l层周期多孔材料的第i阶声压系数;exp()表示以自然常数e为底的指数函数;where j is the imaginary unit; k 0 is the wave number in air; k xi is the wave vector in the x direction; k zi is the wave vector in the z direction; θ is the incident angle; T is the period of the porous material; D is the total thickness; Ri and T i represent the reflection coefficient and transmission coefficient of the normalized i -th order sound pressure, respectively; S li (z) is the i-th order sound pressure coefficient of the l-th layer periodic porous material; exp() represents The exponential function with the natural constant e as the base;
相关声学参数的级数表达形式为:The series expression form of the relevant acoustic parameters is:
其中,ρl(x)为第l层周期多孔材料的等效密度;nl(x)为第l层周期多孔材料的等效折射率;where ρ l (x) is the equivalent density of the lth layer of periodic porous material; n l (x) is the equivalent refractive index of the lth layer of periodic porous material;
其中,fl是第l层周期多孔材料中多孔材料的占空比;np,ρp分别是多孔材料的等效折射率和等效密度;n0,ρ0分别是空气的折射率和密度;j为虚数单位;m为展开阶数;K为倒空间基矢;Among them, f l is the duty ratio of the porous material in the lth layer of periodic porous material; n p , ρ p are the equivalent refractive index and equivalent density of the porous material, respectively; n 0 , ρ 0 are the refractive index of air and Density; j is the imaginary unit; m is the expansion order; K is the inverse space basis vector;
将获取的各个薄层材料的声压和相关声学参数的级数表达形式,带入声波方程;其中,一维周期声学结构中,密度非均匀介质中的声波方程为:The obtained series expressions of the sound pressure and related acoustic parameters of each thin-layer material are brought into the acoustic wave equation; among them, in the one-dimensional periodic acoustic structure, the acoustic wave equation in the density inhomogeneous medium is:
其中,为拉普拉斯算符;P为声压级数表达形式;P为入射、反射区域的声压级数表达形式PI,透射区域的声压级数表达形式PII,或多孔材料第l个薄层材料等效的周期矩形调制的声学材料中的声压级数表达形式Pl;n(x)为周期多孔材料的多孔材料的等效折射率的级数表达形式;in, is the Laplace operator; P is the sound pressure level expression form; P is the sound pressure level expression form P I in the incident and reflection areas, the sound pressure level expression form P II in the transmission area, or the first The sound pressure series expression P l in the acoustic material equivalent to the periodic rectangular modulation of the thin layer material; n(x) is the series expression form of the equivalent refractive index of the porous material of the periodic porous material;
得到各阶系数的耦合方程:The coupling equations for the coefficients of each order are obtained:
将上述耦合方程写成矩阵形式:Write the above coupling equation in matrix form:
[Sl″]=[Al][Sl][S l ″]=[A l ][S l ]
其中,Sl是由Sli组成的列向量;Sl″是由d2Sli/dz2组成的列向量;矩阵 Among them, S l is a column vector composed of S li ; S l ″ is a column vector composed of d 2 S li /dz 2 ; a matrix
其中,矩阵Xl和Yl的元素表达式分别是和 其中,m1为行数;n1为列数;和均为系数;对角矩阵Kx的元素Ki,i=kxi;Among them, the element expressions of matrices X l and Y l are respectively and Among them, m1 is the number of rows; n1 is the number of columns; and are coefficients; the elements K i of the diagonal matrix K x , i =k xi ;
计算矩阵Al特征值和特征向量,得到第m个特征值的平方根和对应的特征向量 Calculate the eigenvalues and eigenvectors of matrix A l , and get the square root of the mth eigenvalue and the corresponding eigenvectors
那么声压系数Sli(z)的表达式:Then the expression of the sound pressure coefficient S li (z):
其中,l=1;为第l薄层材料内声压的正向本征态形式;为第l薄层材料内声压的反向本征态形式;为正向传播本征态形式的强度系数;为反向传播本征态形式的强度系数;d1为第一薄层的厚度;z为z方向的位置;Among them, l=1; is the forward eigenstate form of the sound pressure in the first thin layer of material; is the inverse eigenstate form of the sound pressure in the first thin layer of material; is the strength coefficient of the forward propagation eigenstate form; is the intensity coefficient in the form of back-propagating eigenstates; d 1 is the thickness of the first thin layer; z is the position in the z direction;
其中,l=2,3,…,L;dp为第p薄层的厚度;Among them, l=2,3,...,L; dp is the thickness of the pth thin layer;
根据声压系数Sli(z),确定第l薄层材料内声压的正向本征态形式和第l薄层材料内声压的反向本征态形式 According to the sound pressure coefficient S li (z), determine the forward eigenstate form of the sound pressure in the material of the first thin layer and the inverse eigenstate form of the sound pressure in the first thin layer of material
通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;Through the interlayer boundary continuity condition, the iterative optimization algorithm is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure;
具体地,边界连续性条件包括声压和法向质点振速连续;Specifically, the boundary continuity conditions include sound pressure and normal particle vibration velocity continuity;
法向质点振速vz表达式是The normal particle vibration velocity v z expression is
其中,j为虚数单位;ω为角频率;为归一化密度的倒数;Among them, j is the imaginary unit; ω is the angular frequency; is the inverse of the normalized density;
将归一化密度的倒数展开成相应的级数形式 Expand the reciprocal of the normalized density into the corresponding series form
其中,ρ0为空气密度;ρl(x)为l薄层的等效密度;为展开系数;Among them, ρ 0 is the air density; ρ l (x) is the equivalent density of the l thin layer; is the expansion coefficient;
第i阶质点振速是:Vibration velocity of i-th order particle Yes:
其中,l=1;Among them, l=1;
其中,l=2,3,…,L;为归一化密度的倒数的展开系数;Among them, l=2,3,...,L; is the expansion coefficient of the reciprocal of the normalized density;
对于入射、反射区域和周期多孔材料第一层的界面连续性条件为:The interfacial continuity conditions for the incident, reflective regions and the first layer of periodic porous materials are:
对于中间各界面的连续性条件为:The continuity conditions for the intermediate interfaces are:
对于周期多孔材料最后一层和透射区域的界面连续性条件为:The interfacial continuity conditions for the last layer and the transmission region of periodic porous materials are:
其中,R是由反射强度系数Ri组成的列向量;T是由透射强度系数Ti组成的列向量;是正向传播本征态形式的强度系数组成的列向量;和是反向传播本征态形式的强度系数组成的列向量;Wl是特征向量构成的矩阵,I是单位矩阵;Δi0是0阶对应系数为1,其他项为0的列向量;第l薄层矩阵Vl=ZlWlQl,且矩阵Zl的元素为第l薄层对角矩阵Ql,El和Kz分别是元素元素和元素kzi组成的矩阵;WL为特征向量构成的矩阵;EL为特征向量构成的矩阵;第L薄层VL=ZLWLQL;where R is a column vector composed of reflection intensity coefficients R i ; T is a column vector composed of transmission intensity coefficients T i ; is the strength coefficient of the forward-propagating eigenstate form a column vector consisting of; and is the strength coefficient of the backpropagating eigenstate form composed of column vectors; W l is the eigenvector The matrix formed, I is the unit matrix; Δ i0 is the column vector with the 0-order corresponding coefficient of 1 and other terms of 0; the lth thin layer matrix V l =Z l W l Q l , and the elements of the matrix Z l are The lth lamella diagonal matrices Q l , E l and K z are elements of element A matrix composed of elements k zi ; W L is the eigenvector The matrix formed; E L is the eigenvector The matrix formed; the Lth thin layer VL =Z L W L QL ;
通过矩阵计算,得到关于声压反射系数和透射系数的矩阵方程:Through matrix calculation, the matrix equations of sound pressure reflection coefficient and transmission coefficient are obtained:
采用迭代优化算法,计算反射声压的各阶本征态的强度系数向量R和透射声压的各阶本征态的强度系数向量T;具体如下:The iterative optimization algorithm is used to calculate the intensity coefficient vector R of each order eigenstate of reflected sound pressure and the intensity coefficient vector T of each order eigenstate of transmitted sound pressure; the details are as follows:
将以上矩阵方程的最后四项表示为:Express the last four terms of the above matrix equation as:
引入了迭代矩阵fL+1和gL+1,且有fL+1=I,gL+1=jKz;再引入如下迭代矩阵:The iterative matrices f L+1 and g L+1 are introduced, and f L+1 =I, g L+1 =jK z ; and the following iterative matrices are introduced:
其中,aL、bL分别为引入的第一列中间矩阵和第二列中间矩阵;Among them, a L and b L are the first column intermediate matrix and the second column intermediate matrix introduced respectively;
有通过整理得到如下关系:Have The following relationship is obtained by sorting:
那么迭代矩阵表达式为:通过迭代计算,获得矩阵方程:Then the iterative matrix expression is: Through iterative calculation, the matrix equation is obtained:
求解该矩阵方程得到R和T1;Solve the matrix equation to get R and T 1 ;
透射系数向量T1=(g1+jKzf1)-1(jKzΔi0+jk0cosθΔi0);Transmission coefficient vector T 1 =(g 1 +jK z f 1 ) -1 (jK z Δ i0 +jk 0 cosθΔ i0 );
反射声压的各阶本征态的强度系数向量R=f1T1-Δi0;The intensity coefficient vector R=f 1 T 1 -Δ i0 of each order eigenstate of the reflected sound pressure;
透射声压的各阶本征态的强度系数向量 Intensity coefficient vector of each order eigenstate of transmitted sound pressure
根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。According to the above calculation results, the total reflection coefficient and the total transmission coefficient are determined, and the sound absorption coefficient of the periodic non-flat interface porous material is calculated.
具体地,计算总反射系数R:Specifically, the total reflection coefficient R is calculated:
其中,为反射声压的各阶本征态的强度系数向量R中的反射强度系数Ri取共轭;in, Take the conjugate for the reflection intensity coefficient R i in the intensity coefficient vector R of each order eigenstate of the reflected sound pressure;
计算总透射系数T:Calculate the total transmission coefficient T:
T=∑iTiT* iRe(kzi/kz0);T=∑ i T i T * i Re(k zi /k z0 );
其中,Ti *为透射声压的各阶本征态的强度系数向量T中的透射强度系数Ti取共轭;Re()为取实部;Among them, T i * is the conjugate of the transmission intensity coefficient T i in the intensity coefficient vector T of the eigenstates of each order of the transmitted sound pressure; Re() is the real part;
根据计算的总反射系数R和总透射系数T,计算周期非平整界面多孔材料的吸声系数α;According to the calculated total reflection coefficient R and total transmission coefficient T, calculate the sound absorption coefficient α of the periodic non-flat interface porous material;
α=1-R-T。a=1-R-T.
本发明还提供了一种周期非平整界面多孔材料吸声系数的测量装置,该装置包括:The present invention also provides a device for measuring the sound absorption coefficient of a periodic non-flat interface porous material, the device comprising:
声学参数获取模块,用于获取周期非平整界面多孔材料的等效声学参数;其中,所述等效声学参数包括:等效折射率和等效密度;an acoustic parameter acquisition module, used for acquiring equivalent acoustic parameters of the periodic non-flat interface porous material; wherein, the equivalent acoustic parameters include: equivalent refractive index and equivalent density;
分层模块,用于将周期非平整界面多孔材料进行分层处理,每一个薄层材料等效为周期矩形调制的声学材料;The layering module is used to layer the periodic non-flat interface porous material, and each thin layer material is equivalent to a periodic rectangular modulated acoustic material;
本征态计算模块,用于根据获取的多孔材料的等效声学参数,获取各个薄层材料等效的周期矩形调制的声学材料中的声压和相关声学参数展开成级数表达形式,并带入声波方程,计算各个薄层材料内声压的本征态形式;The eigenstate calculation module is used to obtain the equivalent acoustic pressure and related acoustic parameters of each thin-layer material in the periodic rectangular-modulated acoustic material according to the obtained equivalent acoustic parameters of the porous material. Enter the sound wave equation to calculate the eigenstate form of the sound pressure in each thin-layer material;
强度系数计算模块,用于通过层间边界连续性条件,采用迭代优化算法,计算反射声压的各阶本征态形式的强度系数向量和透射声压的各阶本征态形式的强度系数向量;和The intensity coefficient calculation module is used to calculate the intensity coefficient vector of each order eigenstate form of reflected sound pressure and the intensity coefficient vector of each order eigenstate form of transmitted sound pressure by using the iterative optimization algorithm through the continuity condition of the interlayer boundary ;and
吸声系数获取模块,用于根据上述计算结果,确定总反射系数和总透射系数,计算周期非平整界面多孔材料的吸声系数。The sound absorption coefficient acquisition module is used to determine the total reflection coefficient and the total transmission coefficient according to the above calculation results, and calculate the sound absorption coefficient of the periodic non-flat interface porous material.
如图5a和5b所示,购买了常用的一种多孔吸声材料——高密度吸声棉,首先通过二传声器阻抗管系统测试该多孔材料的等效声学参数,实验测试了厚度分别为2cm和4.8cm的平面吸声棉的反射系数,再通过数值计算得到了该多孔材料的等效折射率和等效密度,结果如图5a和5b所示。As shown in Figures 5a and 5b, a commonly used porous sound-absorbing material, high-density sound-absorbing cotton, was purchased. First, the equivalent acoustic parameters of the porous material were tested through the microphone impedance tube system, and the thickness was 2 cm. and the reflection coefficient of the 4.8cm plane sound-absorbing cotton, and then the equivalent refractive index and equivalent density of the porous material were obtained by numerical calculation, and the results are shown in Figures 5a and 5b.
采用本发明的周期非平整界面多孔材料吸声系数的方法,测得的两种周期非平整界面的高密度吸声棉的吸声系数,并在二传声器阻抗管系统中对这两种吸声棉进行了实验测试,把实验测试的吸声系数和计算结果进行了对比。两种周期非平整界面的多孔材料分别是三角形和矩形周期调制的吸声棉,具体参数如图6a和6b所示,由此可以确定本发明的计算方法具有更高的准确性。Using the method for sound absorption coefficient of porous material with periodic non-flat interface of the present invention, the sound absorption coefficients of two kinds of high-density sound-absorbing cotton with periodic non-flat interface are measured, and the two kinds of sound absorption are measured in the two-microphone impedance tube system. Cotton was tested experimentally, and the experimentally tested sound absorption coefficient was compared with the calculated results. The porous materials of the two periodic non-flat interfaces are triangular and rectangular periodically modulated sound-absorbing cottons, respectively, and the specific parameters are shown in Figures 6a and 6b, from which it can be determined that the calculation method of the present invention has higher accuracy.
如图6a所示,三角形周期调制的吸声棉的几何参数包括周期Tt=5cm,基底厚度dt=1cm,三角形尖端厚度ht=3.7cm:As shown in Fig. 6a, the geometric parameters of the triangular periodically modulated sound-absorbing cotton include period T t = 5 cm, base thickness d t = 1 cm, and triangular tip thickness h t = 3.7 cm:
如图6b所示,矩形周期调制的吸声棉的几何参数包括周期Tr=3.3cm,基底厚度dr=1.9cm,矩形尖端厚度hr=2.8cm和矩形尖端宽度wr=1.5cm:As shown in Fig. 6b, the geometric parameters of the rectangular period modulated sound-absorbing cotton include period Tr = 3.3 cm, base thickness dr = 1.9 cm, rectangular tip thickness hr = 2.8 cm and rectangular tip width wr = 1.5 cm:
提供本发明的方法测量得到的多孔材料的吸声系数和实验测试结果如图7所示,两个计算结果十分接近,表明了本发明提出的周期非平整界面多孔材料吸声系数的计算方法十分有效。The sound absorption coefficient of the porous material measured by the method of the present invention and the experimental test results are shown in Figure 7. The two calculation results are very close, indicating that the calculation method of the sound absorption coefficient of the periodic non-flat interface porous material proposed by the present invention is very good. efficient.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the embodiments, those of ordinary skill in the art should understand that any modification or equivalent replacement of the technical solutions of the present invention will not depart from the spirit and scope of the technical solutions of the present invention, and should be included in the present invention. within the scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110837185.1A CN113640388B (en) | 2021-07-23 | 2021-07-23 | Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110837185.1A CN113640388B (en) | 2021-07-23 | 2021-07-23 | Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113640388A true CN113640388A (en) | 2021-11-12 |
CN113640388B CN113640388B (en) | 2022-10-04 |
Family
ID=78418243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110837185.1A Active CN113640388B (en) | 2021-07-23 | 2021-07-23 | Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113640388B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114371224A (en) * | 2021-12-03 | 2022-04-19 | 华南理工大学 | A Test Method for Random Incidence Sound Absorption Coefficient of ABA Structures |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111060596A (en) * | 2020-01-02 | 2020-04-24 | 合肥工业大学 | A kind of measurement method of sound absorption coefficient of sound absorbing material |
CN111651874A (en) * | 2020-05-25 | 2020-09-11 | 国网江西省电力有限公司电力科学研究院 | A kind of calculation method of sound absorption performance of fiber material |
-
2021
- 2021-07-23 CN CN202110837185.1A patent/CN113640388B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111060596A (en) * | 2020-01-02 | 2020-04-24 | 合肥工业大学 | A kind of measurement method of sound absorption coefficient of sound absorbing material |
CN111651874A (en) * | 2020-05-25 | 2020-09-11 | 国网江西省电力有限公司电力科学研究院 | A kind of calculation method of sound absorption performance of fiber material |
Non-Patent Citations (3)
Title |
---|
YUZHEN YANG ET AL.: "Study on asymmetric diffraction of acoustic parity-time-symmetric gratings using rigorous coupled-wave analysis", 《J. ACOUST. SOC. AM.》 * |
沈岳等: "活性炭纤维材料吸声性能预测模型", 《纺织学报》 * |
马晓文等: "梯度穿缝型双孔隙率多孔材料的吸声性能", 《声学学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114371224A (en) * | 2021-12-03 | 2022-04-19 | 华南理工大学 | A Test Method for Random Incidence Sound Absorption Coefficient of ABA Structures |
CN114371224B (en) * | 2021-12-03 | 2023-08-22 | 华南理工大学 | A Test Method for Random Incident Sound Absorption Coefficient of ABA Structure |
Also Published As
Publication number | Publication date |
---|---|
CN113640388B (en) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Pamel et al. | Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions | |
Magnani et al. | Acoustic absorption modeling of single and multiple coiled-up resonators | |
Huthwaite | Evaluation of inversion approaches for guided wave thickness mapping | |
CN100442030C (en) | A sound field separation method | |
Ciochon et al. | The impact of surface roughness on an additively manufactured acoustic material: An experimental and numerical investigation | |
Geyer et al. | Experimental assessment of the noise generated at the leading edge of porous airfoils using microphone array techniques | |
CN109300464A (en) | A design method of low frequency sound absorber with gradient cross section | |
Kino et al. | Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibres of various cross-sectional shapes | |
Laly et al. | Characterization and development of periodic acoustic metamaterials using a transfer matrix approach | |
Henneberg et al. | Reducing mechanical cross-coupling in phased array transducers using stop band material as backing | |
Hosseini et al. | Damage localization in plates using mode conversion characteristics of ultrasonic guided waves | |
CN113593659B (en) | A Method of Reversing the Parameters of Open Cell Foaming Materials Based on Genetic Algorithm | |
CN113640388B (en) | Method and device for calculating sound absorption coefficient of porous material with periodic non-flat interface | |
Pind et al. | A phenomenological extended-reaction boundary model for time-domain wave-based acoustic simulations under sparse reflection conditions using a wave splitting method | |
CN109783946A (en) | A Nodal Integral Algorithm for Band Gap Simulation of Phononic Crystals | |
Zhao et al. | Probabilistic diagnostic algorithm-based damage detection for plates with non-uniform sections using the improved weight function | |
Hameed et al. | Transverse damage localization and quantitative size estimation for composite laminates based on Lamb waves | |
Jeon et al. | Convolutional neural networks for estimating transport parameters of fibrous materials based on micro-computerized tomography images | |
Rizzi et al. | Analytical model of the acoustic response of nanogranular films adhering to a substrate | |
CN113376256B (en) | Thickness traversal inversion method based on wavelet packet component waveform of variable-step-size grid model | |
Yang et al. | Absorption performance of nonplanar periodic structures solved by layered rigorous coupled-wave analysis | |
CN113569505A (en) | Intelligent optimization design method of ultrasonic transducer based on equivalent circuit model | |
Wang et al. | Novel applications of local optimization semi-Cartesian grid for the complex band structure analysis of phononic crystals | |
Roncen et al. | Influence of source propagation direction and shear flow profile in impedance eduction of acoustic liners | |
CN112395703B (en) | A Design Method for Noise Reduction Capability of Elastic Metamaterial Composite Rectangular Plate Unit Cell Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |