CN113637829A - 淬火速冷室 - Google Patents

淬火速冷室 Download PDF

Info

Publication number
CN113637829A
CN113637829A CN202111062705.2A CN202111062705A CN113637829A CN 113637829 A CN113637829 A CN 113637829A CN 202111062705 A CN202111062705 A CN 202111062705A CN 113637829 A CN113637829 A CN 113637829A
Authority
CN
China
Prior art keywords
air
cooling
water
heat exchange
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111062705.2A
Other languages
English (en)
Inventor
王磊
高尚君
王琛
付涛
郭江海
任伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Baoji Bridge Group Co Ltd
Original Assignee
China Railway Baoji Bridge Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Baoji Bridge Group Co Ltd filed Critical China Railway Baoji Bridge Group Co Ltd
Publication of CN113637829A publication Critical patent/CN113637829A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

提供一种淬火速冷室,具有炉壳,炉壳内设有支架,支架均匀放置多根工件;支架上方和下方均设有风冷装置和喷雾冷却装置,炉壳内设有非接触式水冷换热装置,风冷装置、喷雾冷却装置、非接触式水冷换热装置任意组合冷却工件。本发明采用风冷、喷雾、非接触式水冷换热任意组合的冷却方式,实现了诸如铁路辙叉心轨等大尺寸长轴类零件的工业化、大批量淬火冷却生产,具有防变形,高效,更加经济实用,淬火质量稳定可靠的优势。

Description

淬火速冷室
技术领域
本发明属于冶金金属材料淬火热处理设备技术领域,具体涉及一种淬火速冷室。
背景技术
贝氏体合金钢因其优异的强韧性配合,在机车轴承、辙叉心轨等需要高强度、高硬度和高韧性的使用场合得到了广泛应用。贝氏体钢的最佳热处理工艺为在盐浴炉中进行等温热处理,可以稳定的获得最佳的使用性能。但较大尺寸的心轨会大幅增加盐浴处理所需工艺时长,造成劳动效率低下且生产成本升高。因此,盐浴炉等温处理的方式只适用于一些小零件,不适用于铁路辙叉心轨等大尺寸长轴类零件的工业化批量生产。
目前,贝氏体钢辙叉心轨热处理技术中,没有专用的淬火速冷设备。常规的做法是在心轨加热至奥氏体化后,出炉吊挂或平放在支架、料垫等室内开放环境中,采用轴流风机吹强风进行持续冷却。冷速可调节范围小,且受环境温度影响大,产品质量一致性差。
而将风冷、水冷、喷雾三种淬火冷却方式相结合的淬火冷却设备设计中,喷淋式水冷方式由于水的比热容大,淬火过程中工件直接与水接触,会导致工件表面急速降温,使工件因过大的芯表温差,不可避免地产生扭曲、侧弯等热处理变形问题,需要矫直处理,无形增加了工序,且变形量不可控,产品质量稳定性差。对此,现提出如下改进技术方案。
发明内容
本发明解决的技术问题:提供一种淬火速冷室,采用风冷、喷雾、非接触式水冷换热任意组合的冷却方式,解决诸如铁路辙叉心轨等大尺寸长轴类零件的工业化、大批量、防变形、高效、质量稳定淬火冷却生产技术问题。
本发明采用的技术方案:淬火速冷室,具有炉壳和炉门,炉壳内设有支架,支架均匀放置多根工件;支架上方和下方均设有风冷装置和喷雾冷却装置,炉壳内设有非接触式水冷换热装置,风冷装置、喷雾冷却装置、非接触式水冷换热装置任意组合冷却支架上的工件。
上述技术方案中,进一步地:风冷装置具有离心风机,离心风机为变频式离心风机;离心风机进气端连接冷风进气管,冷风进气管32连接上风箱、下风箱;上风箱风口正对支架上方设置,且上风箱风口送风尺寸大于等于支架尺寸;下风箱风口正对支架下方设置,且下风箱风口送风尺寸大于等于支架尺寸;离心风机出气端连接排气管。
上述技术方案中,进一步地:风冷装置具有四通阀,四通阀一端连接冷风进气管,四通阀另一端连接离心风机进气端;四通阀另外两端分别与上风箱、下风箱连接;四通阀内设有换向阀板,换向阀板换向前:上风箱和下风箱自上而下吹风冷却;换向阀板换向后,上风箱和下风箱自下而上吹风冷却。
上述技术方案中,进一步地:换向阀板为在四通阀阀腔内定轴转动的阀板结构;换向阀板通过PLC控制器设定换向间隔时间。
上述技术方案中,进一步地:上风箱和下风箱分别设有数量相等的多个分区风口,每个分区风口分别设有独立的风阀开关Ⅰ、风阀阀门Ⅰ;风阀开关Ⅰ通过PLC控制器控制启闭时刻;风阀阀门Ⅰ通过PLC控制器控制风量大小。
上述技术方案中,进一步地:风冷装置具有热风引入管;热风引入管一端连通冷风进气管;热风引入管另一端连通排气管;热风引入管内设有热风引入管的风阀开关Ⅱ、风阀阀门Ⅱ。
上述技术方案中,进一步地:非接触式水冷换热装置具有水冷换热板;水冷换热板为内部通循环水的空心薄板型腔结构;水冷换热板具有多个,多个水冷换热板沿水平方向等间距设置,水冷换热板的数量为N+1个,N为被处理工件的数量;每个工件两侧均设有水冷换热板。
上述技术方案中,进一步地:水冷换热装置具有升降机构,升降机构升降末端固连水冷换热板带动水冷换热板升降;水冷换热板非工作状态下悬吊于上方的喷雾冷却装置下部;升降机构通过PLC控制器控制水冷换热板的升降时刻以及水冷换热板抬升到位或降落到位的保持时长。
上述技术方案中,进一步地:炉壳安装升降式炉门;炉门通过炉门升降链条提拉升降,链条啮合链轮传动机构;链轮传动机构通过驱动电机驱动运转;炉门两侧设有滚轮;炉壳两侧设有导轨;滚轮与导轨滚动摩擦适配实现炉门的竖直直线升降;升降的炉门配备炉门升降配重块。
上述技术方案中,进一步地:喷雾冷却装置具有数量相等的若干上喷雾喷头和若干下喷雾喷头;上喷雾喷头在上方的风冷装置风口下部设置,下喷雾喷头在下方的风冷装置和支架之间设置;上喷雾喷头、下喷雾喷头上下相对并沿横向等间距均匀分布;每个喷雾喷头分别设有电磁阀,且每个喷雾喷头均为脉冲喷雾喷头,脉冲喷雾喷头通过连接雾嘴气冷管道为喷头供应冷气,将冷气以与喷雾喷头的喷雾供水管道水气混合从而实现脉冲喷雾,雾嘴气冷管道设有雾嘴气冷阀;PLC控制器控制上喷雾喷头和下喷雾喷头交替脉冲喷雾或同时脉冲喷雾;PLC控制器控制上喷雾喷头、下喷雾喷头脉冲喷雾的开启时刻与开启时长。
本发明与现有技术相比的优点:
1、本发明非接触式水冷换热技术,利用循环水的快速换热能力,采用非接触式水冷换热装置吸收工件的辐射热,满足工件淬火冷速要求的同时,较接触式水冷技术而言,能够有效避免工件因过大的芯表温差而产生热处理变形问题的出现,具有工艺稳定、操作简便、变形量小、质量好等特点。
2、本发明风冷装置采用上、下换向冷却的方式,较不换向的风冷方式而言,能够保证工件上下表面能够按照相对均匀的冷速进行降温,避免因上下表面冷速差异过大而造成的工件变形问题的出现。
3、本发明采用接气源的脉冲式喷雾冷却装置,能够有效降低工件芯表温差,在降低热处理变形的同时,使工件热处理后的断面性能指标更均匀。
4、本发明采用热交换、风冷、喷雾三种冷却方式任意组合的方式应对贝氏体辙叉钢在淬火过程高温、中温、低温不同阶段所需的冷速要求进行组合冷却,实现冷速调节方式的多元化,可以通过工艺手段控制得到不同形态的贝氏体组织(板条状/粒状),最终可以获得不同的机械性能指标;实现贝氏体合金钢辙叉心轨、翼轨镶块等工件淬火冷却过程中不同冷却速度的宽幅调节;例如,通过风冷+非接触式冷却水吸收辙叉心轨辐射热相结合,提高贝氏体钢辙叉心轨在高温阶段的冷却速度,避免辙叉心轨在组织转变过程中先共析铁素体的产生;风冷+喷雾组合使用,提高了贝氏体辙叉心轨在淬火冷却中温阶段的冷速调节范围,可以通过工艺手段控制得到不同形态的贝氏体组织(板条状/粒状),使得最终可以获得不同的机械性能指标。
5、本发明沿辙叉心轨长度方向,按不同厚度截面,左中右分区设置不同的风速,实现了贝氏体钢辙叉心轨不同截面处的均匀降温;进而保证了辙叉心轨全长范围内组织形态与机械性能指标更加均衡;解决风冷速冷过程中不同截面温差大的问题,避免不同位置热处理出现性能差异,实现心轨处在不同分区的部位能均能以相对均匀的冷速完成淬火冷却过程,得到不同部位性能一致性优良的产品。
附图说明
图1为本发明风冷、喷雾、热交换冷却工作原理主视透视图;
图2为本发明从上至下送风风冷和热交换冷却组合使用时的工作原理侧视透视图;
图3为本发明风冷装置中四通阀换向供风的原理俯视透视图;
图4为本发明炉门升降原理的结构示意图;
图5为图2中非接触式水冷换热装置水冷换热板下降到位时的放大细节结构示意图;
图6为本发明气动系统工作原理图;
图7为本发明脉冲式喷雾冷却的工作原理图;
图8为本发明三种冷却方式的一种实施例的控制电路图;
图9为本发明风冷装置离心风机的变频控制电路图;
图10为本发明风冷装置四通阀的控制电路图;
图11为本发明风冷装置中一种实施例的分区风口风阀开关Ⅰ、风阀阀门Ⅰ控制电路图;
图12为工件为辙叉心轨时风冷装置的分区风口实施例。
图中:1-炉壳,2-支架,3-风冷装置,4-喷雾冷却装置,5-非接触式水冷换热装置;31-离心风机,32-冷风进气管,33-上风箱,34-下风箱,35-排气管,36-四通阀,361-换向阀板;331-分区风口,37-热风引入管;51-水冷换热板;61-链条,62-链轮传动机构,63-驱动电机,64-炉门升降配重块,65-滚轮,66-导轨;41-上喷雾喷头,42-下喷雾喷头,43-水箱,431-水位透视窗,44-自来水管道阀,45-溢流阀,46-排污阀,47-雾嘴气冷管道,48-喷雾供水管道;7-汇流板,8-四通阀气缸,9-水冷板气缸,10-脉冲喷雾雾嘴气冷阀。
具体实施方式
下面将结合本发明实施例中的附图1-11,对本发明实施例中技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
(如图1图4所示)淬火速冷室,具有炉壳1和炉门6,炉壳1内设有支架2,支架2均匀放置多根工件。
支架2采用多根均匀间隔且平行的工字钢制成,多根工字钢长度方向与待淬火工件长度方向垂直,多根工字钢支架2分担承载放置多根均匀间隔且平行的待淬火工件。
支架2上方和下方均设有风冷装置3和喷雾冷却装置4,炉壳1内设有非接触式水冷换热装置5(如图2所示)。风冷装置3、喷雾冷却装置4、非接触式水冷换热装置5任意组合冷却支架2上的工件。
本发明采用热交换、风冷、喷雾三种冷却方式任意组合的方式应对贝氏体辙叉钢在淬火过程高温、中温、低温不同阶段所需的冷速要求进行组合冷却,实现冷速调节方式的多元化。
可以通过工艺手段控制得到不同形态的贝氏体组织(板条状/粒状),最终可以获得不同的机械性能指标,实现贝氏体合金钢辙叉心轨、翼轨镶块等工件淬火冷却过程中不同冷却速度的宽幅调节。
上述实施例中,进一步地:风冷装置3具有离心风机31,离心风机31为变频式离心风机;采用变频式离心风机具有节能降耗的功效。
离心风机31进气端连接冷风进气管32,冷风进气管32连接上风箱33、下风箱34。上下供风冷却,均匀风冷。
上风箱33风口正对支架2上方设置,且上风箱33风口送风尺寸大于等于支架2尺寸;下风箱34风口正对支架2下方设置,且下风箱34风口送风尺寸大于等于支架2尺寸,以实现覆盖所有工件的供风冷却。
离心风机31出气端连接排气管35,建立冷风循环。
(如图3所示)上述实施例中,进一步地:风冷装置3具有四通阀36,四通阀36一端连接冷风进气管32,四通阀36另一端连接离心风机31进气端;四通阀36另外两端分别与上风箱33、下风箱34连接。四通阀36内设有换向阀板361,换向阀板361换向前:上风箱33和下风箱34自上而下吹风冷却;换向阀板361换向后,上风箱33和下风箱34自下而上吹风冷却。
本发明风冷装置通过四通阀36和换向阀板361实现上、下换向冷却的方式,较不换向的风冷方式而言,能够保证工件上下表面能够按照相对均匀的冷速进行降温,避免因上下表面冷速差异过大而造成的工件表面硬度差异过大问题的出现。同时,上、下换向风冷、实现了贝氏体钢辙叉心轨淬火冷却全过程中心轨上下表面的均匀降温并能有效减小心轨上下的变形量。
上述实施例中,进一步地:换向阀板361为在四通阀36阀腔内定轴转动的阀板结构;换向阀板361通过PLC控制器设定换向间隔时间。
具体地,所述换向阀板361通过如图6所示的四通阀气缸8推送换向阀板361在四通阀36腔体内转动从而实现换向送风。
上述实施例中,进一步地:上风箱33和下风箱34分别设有数量相等的多个分区风口331,每个分区风口331分别设有独立的风阀开关Ⅰ、风阀阀门Ⅰ;风阀开关Ⅰ通过PLC控制器控制启闭时刻;风阀阀门Ⅰ通过PLC控制器控制风量大小。
具体地:在淬火冷却的整个工艺过程中,沿辙叉心轨的长度方向,按不同厚度截面,分三区设置不同的风速,在整个冷却过程中根据不同截面的温差进行分区设置冷速,解决速冷过程中不同截面温差大的问题。在辙叉心轨高度方向,采用上、下换向吹风冷却的方式,实现辙叉心轨上下表面的均匀降温。
分区冷却目的在于:沿长度方向不同截面处的宽度不同,若没有分区,整体统一吹风降温,必然导致不同截面处因尺寸差异,导致本身热量不同、冷却速率不同,也就导致最终热处理后的性能存在差异。本发明是在速冷室内,沿心轨的长度方向,分为多个分区,速冷开始时,多个分区风阀开关Ⅰ全部打开供风,当不同分区心轨表面的冷速差值达到工艺设定值时,通过短时关闭冷速较大分区的风阀开关Ⅰ后再开启的方式,进行脉冲式吹风,从而实现心轨处在不同分区的部位能以相对均匀的冷速完成淬火冷却过程。
因此,本发明沿辙叉心轨长度方向,按不同厚度截面,分区设置不同的风速,解决风冷速冷过程中不同截面温差大的问题,避免不同位置热处理出现性能差异,实现心轨处在不同分区的部位能均能以相对均匀的冷速完成淬火冷却过程,得到不同部位性能一致性优良的产品。
上述实施例中,进一步地:风冷装置3具有热风引入管37;热风引入管37一端连通冷风进气管32;热风引入管37另一端连通排气管35;热风引入管37内设有热风引入管37的风阀开关Ⅱ、风阀阀门Ⅱ。
工作状态下,热风引入管37的风阀开关Ⅱ关闭时,没有气流进入热风引入管37,当风阀开关Ⅱ打开时,由于冷风进气管32为负压,使热风由排气管35通过热风引入管37引入冷风进气管32,从而将热风引入速冷室内部,以在必要时能够达到升高风温的目的。
该技术方案通过热风引入管37连接排气管35将排气管内的热风为风冷降温提供温升,具有省去专门加热装置,经济、节能的优势。
(如图2、图5所示)上述实施例中,进一步地:非接触式水冷换热装置5具有水冷换热板51;水冷换热板51为内部通循环水的空心薄板型腔结构;具体地,型腔可以为倒置U型结构。
水冷换热板51具有多个,多个水冷换热板51沿水平方向等间距设置,水冷换热板51的数量为N+1个,N为被处理工件的数量;每个工件两侧均设有水冷换热板51,这样,每个工件的左右两侧均具有水冷换热板51,保证工件两侧降温速度基本一致,可以减小工件的左右变形量。
上述实施例中,进一步地:水冷换热装置5具有升降机构,升降机构升降末端固连水冷换热板51带动水冷换热板51升降;水冷换热板51非工作状态下悬吊于上方的喷雾冷却装置4下部。
除此之外:(参见图7)水冷换热装置5还具有水箱43,水箱的供水管连接市政自来水管道以供水,自来水管道设置自来水管道阀44。
水箱43中部设有水位透视窗431,水位透视窗431用于实时监测水位是否合适。
水箱43连接溢流管道,溢流管道上安装溢流阀45。水箱43底部设有排污管道,排污管道设有排污阀46,排污阀用于沉淀物的排放。
水箱43出水端设有喷雾供水管道48,与喷雾供水管道连通设有雾嘴气冷管道47;雾嘴气冷管道47上设有如图6所示的脉冲喷雾雾嘴气冷阀10,脉冲喷雾雾嘴气冷阀10打开后,朝喷雾冷却装置供给脉冲气流。
需要说明的是:雾嘴气冷管道47的供气原理参见图6:雾嘴气冷管道47连接压缩空气气源,压缩空气气源通过汇流板7配气,汇流板7通过其配流孔连接的管道连接四通阀气缸8,驱动四通阀气缸8动作以切换阀板方向,更换送风风向。
汇流板7的另一个配流孔通过管道连接水冷板气缸9,水冷板气缸9动作带动水冷板升降非接触水冷降温。
水冷换热装置5工作状态下,如在贝氏体合金钢工件速冷的高温阶段(920℃-650℃温区)自上而下落下,通过内部流通的冷却水来吸收相邻两根工件的辐射热。
水冷换热板51的升降机构通过PLC控制器控制水冷换热板51的升降时刻以及水冷换热板51抬升到位或降落到位的保持时长。
水冷换热板51的升降动作可以通过气缸或油缸动作来实现。
具体地,(如图6所示)水冷换热板51采用水冷板气缸9动作带动升降。
本发明非接触式水冷换热技术,利用循环水的快速换热能力,采用非接触式水冷换热装置吸收工件的辐射热,满足工件淬火冷速要求的同时,较接触式水冷技术而言,能够有效避免工件因过大的芯表温差而产生热处理变形问题的出现。具有工艺稳定、操作简便、变形量小、质量好等特点。
(如图4所示)上述实施例中,进一步地:炉壳1安装升降式炉门6;炉门6通过炉门升降链条61提拉升降。
采用链传动升降,提升高度满足要求,传动稳定,停靠方便。
链条61啮合链轮传动机构62;链轮传动机构62通过驱动电机63驱动运转;驱动电机63为减速电机,减速电机动力输出轴带动主动链轮转动,主动链轮啮合链条,链轮传动机构还包括从动链轮和导向链轮。从动链轮导向链轮啮合链条通过链条同步水平等高提拉门体顶端两侧竖直升降。
不仅如此,炉门6两侧设有滚轮65;炉壳1两侧设有导轨66;滚轮65与导轨66滚动摩擦适配实现炉门6的竖直直线升降。
升降的炉门6配备炉门升降配重块64。炉门升降配重块64用于炉门的平衡提拉升降,避免速降问题的出现。
上述实施例中,进一步地:喷雾冷却装置4具有数量相等的若干上喷雾喷头41和若干下喷雾喷头42;上下喷雾上下均温冷却。
上喷雾喷头41在上方的风冷装置3风口下部设置,不被遮挡。下喷雾喷头42在下方的风冷装置3和支架2之间设置,不被遮挡。
上喷雾喷头41、下喷雾喷头42上下相对并沿横向等间距均匀分布,均匀降温。
每个喷雾喷头分别设有电磁阀,控制喷雾区间,如三个区间还是五个、四个等多个区间。
且每个喷雾喷头均为脉冲喷雾喷头,降温高效快速。
脉冲喷雾喷头通过连接雾嘴气冷管道47为喷头供应冷气,将冷气以与喷雾喷头的喷雾供水管道48水气混合从而实现脉冲喷雾,脉冲结构自制,经济实用。
雾嘴气冷管道47设有雾嘴气冷阀10,雾嘴气冷阀10可调控是否脉冲喷雾,按需使用。
PLC控制器控制上喷雾喷头41和下喷雾喷头42交替脉冲喷雾或同时脉冲喷雾;PLC控制器控制上喷雾喷头41、下喷雾喷头42脉冲喷雾的开启时刻与开启时长。
本发明采用接气源的脉冲式喷雾冷却装置,能够有效降低工件芯表温差,在降低热处理变形的同时,使工件热处理后的断面性能指标更均匀。
本发明工作原理:速冷室炉门打开——取料机将之前按固定间距摆放需要速冷的工件放在支架上——关闭炉门——人工点击开始执行速冷程序——速冷结束后自动停机。
速冷程序可设定的参数包括离心风机的转速及其持续时长;上喷雾喷头和下喷雾喷头的开启时刻与时长;四通阀中阀板的换向时间间隔;上风箱和下风箱中五个分区关闭或开启的时刻与时长。水冷换热板落下的时刻与时长。
速冷室内的风冷、水冷换热、喷雾三套系统,在工控机中按照时间闭环控制,在淬火冷却的不同阶段,可单独或任意组合工作,实现了贝氏体合金钢心轨淬火冷却过程中不同冷却速度的宽幅调节
速冷程序,以如图12所示的六根辙叉心轨淬火冷却为例:
高温阶段(920-650℃):六根辙叉心轨在淬火冷却的高温阶段采用风冷+非接触式水冷换热吸收辙叉心轨辐射热。
通过风冷+非接触式冷却水吸收辙叉心轨辐射热相结合的方法,提高了贝氏体钢辙叉心轨在高温阶段的冷却速度,避免了辙叉心轨在组织转变过程中先共析铁素体的产生。
中温阶段(650—450℃):六根辙叉心轨在淬火冷却的中温阶段,采用风冷+喷雾两种冷却方式组合。对心轨的上、下表面,进行脉冲式均匀喷雾,实现该温区下冷却速度的宽幅调节。
风冷+喷雾组合使用的方法,提高了贝氏体辙叉心轨在淬火冷却中温阶段的冷速调节范围,可以通过工艺手段控制得到不同形态的贝氏体组织(板条状/粒状),使得最终可以获得不同的机械性能指标。
以60-12号辙叉心轨热处理过程为例,在该温区下,当采用单一风冷方式时,通过调节离心风机的转速,可将心轨表面降温速度控制在每分钟4-7℃之间,当采用单一喷雾方式时,通过调节喷雾时长,可将心轨表面冷速控制在8-15℃每分钟之间,若采用风冷+喷雾组合方式,可将冷速控制在8-18℃之间。综上,通过三种方式的不同组合与调节,可将该温区下心轨表面的冷速控制在4-18℃/分钟范围内。
低温阶段(450-200℃):六根辙叉心轨在淬火冷却的低温阶段,采用上、下换向单独风冷的方式进行冷却,通过调节风量大小,可以使相同成分的辙叉心轨获得不同的机械性能指标。例如:当以1100转的离心风机转速持续供风至心轨表面温度降为200℃时,最终获得的产品表面硬度可达到HRC45以上,当离心风机吹至心轨表面温度300℃后停风,则获得的产品表面硬度为HRC40-42.5。
风冷、非接触水冷辐射换热、喷雾三种方式,在PLC控制器工控机中按照时间闭环控制,在淬火冷却的不同阶段,单独或任意组合工作,实现贝氏体合金钢辙叉心轨、翼轨镶块等工件淬火冷却过程中不同冷却速度的宽幅调节。
通过以上描述可以发现:本发明采用风冷、喷雾、非接触式水冷换热任意组合的冷却方式,实现了诸如铁路辙叉心轨等大尺寸长轴类零件的工业化、大批量、防变形、高效、质量稳定、经济实用的淬火冷却生产。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

1.淬火速冷室,具有炉壳(1)和炉门(6),其特征在于:所述炉壳(1)内设有支架(2),所述支架(2)均匀放置多根工件;所述支架(2)上方和下方均设有风冷装置(3)和喷雾冷却装置(4),所述炉壳(1)内设有非接触式水冷换热装置(5);风冷装置(3)、喷雾冷却装置(4)、非接触式水冷换热装置(5)任意组合冷却支架(2)上的工件。
2.根据权利要求1所述淬火速冷室,其特征在于:所述风冷装置(3)具有离心风机(31),所述离心风机(31)为变频式离心风机;所述离心风机(31)进气端连接冷风进气管(32),冷风进气管(32)连接上风箱(33)、下风箱(34);上风箱(33)风口正对支架(2)上方设置,且上风箱(33)风口送风尺寸大于等于支架(2)尺寸;下风箱(34)风口正对支架(2)下方设置,且下风箱(34)风口送风尺寸大于等于支架(2)尺寸;离心风机(31)出气端连接排气管(35)。
3.根据权利要求1或2所述淬火速冷室,其特征在于:所述风冷装置(3)具有四通阀(36),所述四通阀(36)一端连接冷风进气管(32),四通阀(36)另一端连接离心风机(31)进气端;四通阀(36)另外两端分别与上风箱(33)、下风箱(34)连接;四通阀(36)内设有换向阀板(361),换向阀板(361)换向前:上风箱(33)和下风箱(34)自上而下吹风冷却;换向阀板(361)换向后,上风箱(33)和下风箱(34)自下而上吹风冷却。
4.根据权利要求3所述淬火速冷室,其特征在于:所述换向阀板(361)为在四通阀(36)阀腔内定轴转动的阀板结构;所述换向阀板(361)通过PLC控制器设定换向间隔时间。
5.根据权利要求2或3所述淬火速冷室,其特征在于:所述上风箱(33)和下风箱(34)分别设有数量相等的多个分区风口(331),每个分区风口(331)分别设有独立的风阀开关Ⅰ、风阀阀门Ⅰ;所述风阀开关Ⅰ通过PLC控制器控制启闭时刻;所述风阀阀门Ⅰ通过PLC控制器控制风量大小。
6.根据权利要求2或3所述淬火速冷室,其特征在于:所述风冷装置(3)具有热风引入管(37);所述热风引入管(37)一端连通冷风进气管(32);所述热风引入管(37)另一端连通排气管(35);所述热风引入管(37)内设有热风引入管(37)的风阀开关Ⅱ、风阀阀门Ⅱ。
7.根据权利要求1所述淬火速冷室,其特征在于:所述非接触式水冷换热装置(5)具有水冷换热板(51);所述水冷换热板(51)为内部通循环水的空心薄板型腔结构;所述水冷换热板(51)具有多个,多个水冷换热板(51)沿水平方向等间距设置,水冷换热板(51)的数量为N+1个,N为被处理工件的数量;每个工件两侧均设有水冷换热板(51)。
8.根据权利要求1或7所述淬火速冷室,其特征在于:所述水冷换热装置(5)具有升降机构,所述升降机构升降末端固连水冷换热板(51)带动水冷换热板(51)升降;所述水冷换热板(51)非工作状态下悬吊于上方的喷雾冷却装置(4)下部;所述升降机构通过PLC控制器控制水冷换热板(51)的升降时刻以及水冷换热板(51)抬升到位或降落到位的保持时长。
9.根据权利要求1所述淬火速冷室,其特征在于:所述炉壳(1)安装升降式炉门(6);所述炉门(6)通过炉门升降链条(61)提拉升降,所述链条(61)啮合链轮传动机构(62);所述链轮传动机构(62)通过驱动电机(63)驱动运转;所述炉门(6)两侧设有滚轮(65);所述炉壳(1)两侧设有导轨(66);所述滚轮(65)与导轨(66)滚动摩擦适配实现炉门(6)的竖直直线升降;升降的炉门(6)配备炉门升降配重块(64)。
10.根据权利要求1所述淬火速冷室,其特征在于:所述喷雾冷却装置(4)具有数量相等的若干上喷雾喷头(41)和若干下喷雾喷头(42);上喷雾喷头(41)在上方的风冷装置(3)风口下部设置,下喷雾喷头(42)在下方的风冷装置(3)和支架(2)之间设置;上喷雾喷头(41)、下喷雾喷头(42)上下相对并沿横向等间距均匀分布;每个喷雾喷头分别设有电磁阀,且每个喷雾喷头均为脉冲喷雾喷头,脉冲喷雾喷头通过连接雾嘴气冷管道(47)为喷头供应冷气,将冷气以与喷雾喷头的喷雾供水管道(48)水气混合从而实现脉冲喷雾,其中雾嘴气冷管道(47)设有雾嘴气冷阀(10);PLC控制器控制上喷雾喷头(41)和下喷雾喷头(42)交替脉冲喷雾或同时脉冲喷雾;PLC控制器控制上喷雾喷头(41)、下喷雾喷头(42)脉冲喷雾的开启时刻与开启时长。
CN202111062705.2A 2021-08-24 2021-09-10 淬火速冷室 Pending CN113637829A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110976203 2021-08-24
CN2021109762034 2021-08-24

Publications (1)

Publication Number Publication Date
CN113637829A true CN113637829A (zh) 2021-11-12

Family

ID=78425540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111062705.2A Pending CN113637829A (zh) 2021-08-24 2021-09-10 淬火速冷室

Country Status (1)

Country Link
CN (1) CN113637829A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587217A (zh) * 2024-01-18 2024-02-23 安百拓(张家口)建筑矿山设备有限公司 一种钎杆热处理风冷装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587217A (zh) * 2024-01-18 2024-02-23 安百拓(张家口)建筑矿山设备有限公司 一种钎杆热处理风冷装置及方法
CN117587217B (zh) * 2024-01-18 2024-05-07 安百拓(张家口)建筑矿山设备有限公司 一种钎杆热处理风冷装置及方法

Similar Documents

Publication Publication Date Title
CN101250678B (zh) 低炉压强对流连续辊底式退火炉及退火工艺
CN101928818B (zh) 一种中空管状热处理件的快速空气冷却装置
CN113755670B (zh) 贝氏体钢辙叉心轨淬火冷却方法
CN113637829A (zh) 淬火速冷室
CN102399953B (zh) 悬挂式等温正火生产线
CN102061363A (zh) 一种中厚钢板直接淬火的装置及其工艺
CN201834950U (zh) 多功能同炉多带双金属带锯条热处理全自动生产线
CN215593132U (zh) 淬火速冷室
CN114015842B (zh) 一种薄壁方管连续约束淬火装置
CN107502724A (zh) 螺栓热处理系统和方法
CN112195334A (zh) 一种带钢调质处理系统
CN112195323A (zh) 一种淬火装置
CN107058698A (zh) 一种用于淬火设备的喷淋系统
CN101560595B (zh) 卡车纵梁感应热处理方法及设备
CN102586565A (zh) 中厚板热处理炉炉后快冷方法及快冷装置
CN206599591U (zh) 一种可调节式锻钢支承辊差温淬火设备
CN106244784B (zh) 一种用于挖掘机支重轮轴头轴颈部的淬火设备
CN212713645U (zh) 一种淬火装置
CN211999830U (zh) 一种用于箱式工件的淬火冷却系统
CN214383785U (zh) 带钢回火装置及带钢热处理系统
CN204799691U (zh) 一种中厚板轧后冷却喷水系统
CN210683859U (zh) 一种水冷、风冷两用淬火装置
CN112522479B (zh) 一种钢管或圆棒的冷却方法
CN213951271U (zh) 带钢淬火冷却装置及带钢淬火机组
CN205803550U (zh) 轧球生产线控温、输送、连续热处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination