CN113637420B - 一种柔性拉曼增强胶带及其制备方法 - Google Patents

一种柔性拉曼增强胶带及其制备方法 Download PDF

Info

Publication number
CN113637420B
CN113637420B CN202110804837.1A CN202110804837A CN113637420B CN 113637420 B CN113637420 B CN 113637420B CN 202110804837 A CN202110804837 A CN 202110804837A CN 113637420 B CN113637420 B CN 113637420B
Authority
CN
China
Prior art keywords
pet film
solution
raman
silver colloid
adhesive tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110804837.1A
Other languages
English (en)
Other versions
CN113637420A (zh
Inventor
黄霞
周升
毛贺毅
王蕾
张玲丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110804837.1A priority Critical patent/CN113637420B/zh
Publication of CN113637420A publication Critical patent/CN113637420A/zh
Application granted granted Critical
Publication of CN113637420B publication Critical patent/CN113637420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种柔性拉曼增强胶带的制备方法,其包括如下步骤:1)胺基化:将洁净的PET膜浸入温度80‑90℃的胺液中反应2‑6h,取出、洗涤、干燥,获得胺基化PET膜,备用;2)吸附银胶:将步骤1)所得胺基化PET膜浸入银胶溶液中,静置24‑48h,即得。本发明柔性拉曼增强胶带具有优异的拉曼增强效应,还具有成本低、制作简单、易运输保存、强度高韧性好等优点。

Description

一种柔性拉曼增强胶带及其制备方法
技术领域
本发明属于胶带制备技术领域,具体涉及一种柔性拉曼增强胶带及其制备方法。
背景技术
光谱技术作为一种快速、高效的检测手段被广泛应用于污染物的快速鉴定与筛查,其中表面增强拉曼光谱( SERS) 作为光谱检测技术之一,具有灵敏度高、水分干扰少、能提供近场增强及适合于研究界面效应等特点,在痕量无损快速检测方面具有显著优势。目前,表面增强拉曼光谱已被应用于催化、光谱电化学、传感、药残留、抗生素等有机污染物及重金属污染物的快速检测中。在表面增强拉曼光谱的研究中,低成本、高性能增强基底的制备一直是研究的热点。
表面增强拉曼基底是SERS的核心,硅片、玻璃片是最常用的用于制备SERS基底的衬底材料,然而他们的刚性特征限制了其应用范围。近年来有研究者一直在探索柔性衬底材料的滤纸表面增强拉曼检测基底,考虑到滤纸制备成本低、检测方式灵活,滤纸基衬底近年来备受关注。与硅或金属膜基底相比,滤纸材料来源广泛,成本低廉,且可以剪切、卷曲和折叠,其表面具有的多孔结构利于拉曼活性纳米颗粒均匀分布,形成较多的表面增强检测热点。可以获得常规拉曼光谱所不易得到的结构信息,被广泛用于表面研究、吸附界面表面状态研究、生物大小分子的界面取向及构型、构象研究、结构分析等,因此可以有效分析化合物在界面的吸附取向、吸附态的变化、界面信息等。因此,将基于柔性基底的表面增强拉曼检测技术用于更多特殊领域的痕量测试,为拉曼光谱在实际检测中的应用提供了新思路。
有研究者针对目前 SERS 基底存在的测试波长单一、制备困难和信号不强等问题,对具有超表面结构的 SERS 基底开展了较为深入的研究。结合不同材料之间的相互作用以及特殊的谐振模式,提出了多种基于超表面的新型 SERS 基底。
2013 年,Dongxing Wang 小组使用薄膜沉积技术,获得了具有超表面结构,实验表明具有该SIOM 结构的超表面比具有银颗粒的玻璃所表现出的增强因子大了一个数量级。Bilkent 大学的 Sencer Ayas 所在的研究小组采用电子束蒸镀的方法得到了同样类似的结构,并通过表面增强拉曼散射效应实现了对生物体结构的无标记纳米级分辨率成像。Zhiming Jin 等人将银颗粒沉积到银衬底的纳米间隙中来实现强烈的SERS 效应,KaiLiu 所在的课题组同样利用溅射沉积法制备出了吸收性能良好的超表面,不同在于他们将金属颗粒沉积在了柔性基板上,如此大大提升了器件的实际适用性。Nan Zhang 等人利用由随机分布的金属颗粒组成的金属-介质-金属Metal-dielectric-metal, MDM) 结构得到了较强的场增强现象,且其在可见到近红外光谱(435 nm-1100 nm)的范围内都具有强大的光捕获能力(>80%)。另外,相应的结果可以通过引入微小的金属纳米颗粒和进一步得到增强。Zhengqi Liu 等人通过将致密且随机的图案引入到不透明的金属薄膜上实现了宽带的光学吸收,其是基于多种光学和等离子体共振模式的激发。现有的基底多存在技术复杂,所需实验设备和原料昂贵;易损坏,不易进行保存携带等缺陷。
由于随机分布的颗粒膜在加工上具有一定的不可控性,因此不利于实现基底的商业化批量生产。同时考虑到拉曼信号增强的机理是基于局域表面等离基元共振的原理,主要为化学增强与电磁增强,因此柔性衬底材料的选择制备,实现多种增强强机理的组合,针对不同的研究领域设计出具有较高可重复性和增强因子的 SERS 基底,是目前的表面增强拉曼光谱分析的主要研究方向。
发明内容
本发明目的在于克服现有技术缺陷,提供一种柔性拉曼增强胶带,其具有优异的拉曼增强效应,还具有成本低、制作简单、易运输保存、强度高韧性好等特点。
本发明还提供了上述柔性拉曼增强胶带的制备方法。
为实现上述目的,本发明采用如下技术方案:
一种柔性拉曼增强胶带的制备方法,其包括如下步骤:
1)胺基化:将洁净的PET膜(聚对苯二甲酸乙二醇酯)浸入温度80-90℃的胺液中反应2-6h,取出、洗涤、干燥,获得胺基化PET膜,备用;
2)吸附银胶:将步骤1)所得胺基化PET膜浸入银胶溶液中,静置24-48h,即得。
具体的,步骤1)中,所述胺液为三乙烯四胺、或者由摩尔比1-2:1的乙二胺和二甲基亚砜(DMSO)混合组成。
进一步的,步骤2)中所述银胶溶液经下述步骤制备获得:在0.001-0.002mol/L的硝酸银溶液中,加入1.2-2.0ml质量浓度1%的二水合柠檬酸三钠溶液用作还原剂,然后加热并保持溶液沸30-50min,停止加热后,自然冷却,制得银胶溶液。
进一步的,步骤1)中,所述洁净的PET膜经下述预处理获得: PET膜用质量浓度0.1%的teepol洗涤剂或洗洁精的水溶液于50-70℃洗涤20-30min,然后用去离子水洗涤10-20min,再用乙酸乙酯于50-70℃洗涤20-30min,放入50-70℃烘箱中干燥至恒重,即得。
为了获得更好的拉曼增强效应,进一步优选的,可以取环氧CYC的饱和N-N二甲基甲酰胺(CMF)溶液25-35ml和二月桂酸二丁基锡10-20ml(用于催化反应,以及增加表面光洁度),混匀,放入步骤2)所得吸附银胶的胺基化PET膜并保证完全浸没,在40-60℃水浴下缓慢搅拌加热1-3h,即得;
或者,取环氧CYC的饱和N-N二甲基甲酰胺溶液25-35ml和二月桂酸二丁基锡10-20ml,混匀,放入步骤1)所得胺基化PET膜并保证完全浸没,在40-60℃水浴搅拌加热1-3h,取出,甲醇清洗、烘干(60℃干燥30min),然后浸入银胶溶液中,静置24-48h,即得。
环氧CYC是由CYC与环氧氯丙烷反应生成,具体步骤为:将1 mol CYC、1 mol 环氧氯丙烷、0.2mol K2CO3投入到反应容器中,搅拌混合,升温至110℃,持续反应3h。反应结束后过滤,滤液减压蒸馏,加入50ml甲苯继续减压蒸馏以去除残余的环氧氯丙烷,蒸馏底物浅黄色树脂状物即为产品环氧CYC。
CYC是文中cyclic dipeptide的缩写,具体可参见文献(Huang, Xia, Zheng, etal. Synthesis, characterization, and degradation of a novel L-tyrosine-derived polycarbonate for potential biomaterial applications[J]. Journal ofApplied Polymer Science, 2008.))进行合成。
本发明还提供了采用上述制备方法制备得到的柔性拉曼增强胶带。
拉曼光谱,作为一种常用的材料表征技术,可以有效反映待测分子的结构特征信息,而且具有非破坏性,无需特制样品的特点。但单纯的拉曼光谱信号强度极其微弱,并且灵敏度不高,这限制其在实际分析检测方面的应用。表面增强拉曼散射技术的出现,则大大增强了拉曼光谱的分子信号,使其在分析科学、表面科学、爆炸物检测和生物检测的领域成为了一种具有巨大潜力的检测技术,并在不断地发展。SERS活性基底的增强幅度强弱决定了目标分子拉曼光谱信号的强度,目前SERS活性基底主要分为传统的刚性基底和新型的柔性基底。柔性SERS基底相比于刚性基底,可以进行裁剪、弯曲等机械变形,从而能够更好地贴合不规则、复杂的材料表面,充分与目标分子相结合,保持一定数量的基底“热点”,维持优良的拉曼增强性能。本发明所述新型柔性拉曼增强胶带采用聚对苯二甲酸乙二酯(PET)为主要成分,通过表面胺基化改性手段以及银粒子吸附,使其具有优异的拉曼增强效应,还具有成本低、制作简单、易运输保存。强度高韧性好等特点。
和现有技术相比,本发明具有如下有益效果:
1)本发明可以通过裁剪、弯曲变形等物理手段更好地适应复杂的样品表面情况,目标分子结合紧密,增强效果稳定;
2)现有的拉曼增强胶带多为静电纺丝衬底层,导致热点排列有一定的取向,无法对复杂器物表面进行均相检测;由于环氧CYC具有一定的黏附性,在PET膜表面改性后,赋予PET膜表面一定的粘胶粘性,从而使其能够吸附更多的目标分子,如可以吸附在青铜器表面,有利于对青铜器表面锈蚀的衡量分析。本胶带有可能用于对矿化青铜表面残余氯离子进行衡量分析检测,可以根据不同的青铜器物,改变衬底层反应条件,实现检测的灵活定制;
3)本文制备方法中采用银溶胶,依靠表面改性的环氧CYC与吸附的纳米银粒子实现协同增强作用,对痕量吸附物有协同增强效应。本发明胶带具有良好的拉曼增强效果。
附图说明:
图1为实施例1的步骤1)预处理后所得的洁净PET膜;
图2为实施例1的步骤2)中胺基化的PET膜;
图3为实施例1的步骤3)中的银胶溶液;
图4为实施例1制备所得产物A1 CYC改性胺基化PET的图片;
图5为实施例2制备所得产物A2 CYC改性胺基化PET的图片;
图6为实施例3制备所得产物A3 CYC改性胺基化PET的图片;
图7为实施例4制备所得产物A4 CYC改性胺基化PET的图片;
图8为实施例1至4制备所得产物以碳纳米管作为探针分子的拉曼光谱。
具体实施方式
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。
实施例1
一种柔性拉曼增强胶带的制备方法,其包括如下步骤:
1)PET膜预处理:PET膜用质量浓度0.1%的teepol洗涤剂的水溶液于60℃洗涤30min,然后用去离子水洗涤10min,再用乙酸乙酯于60℃洗涤30min,放入60℃烘箱中干燥至恒重,即得洁净的PET膜(见图1);
2)胺基化:将洁净的PET膜浸入温度85℃的胺液中反应2h,取出、用甲醇洗涤90min、60℃干燥30min,获得胺基化的PET膜(见图2),备用;所述胺液由摩尔比1:1的乙二胺和二甲基亚砜混合组成;
3)吸附银胶:将步骤2)所得胺基化的PET膜浸入银胶溶液中(所述银胶溶液经下述步骤制备获得:将0.01mol/L的10ml硝酸银标准溶液用去离子水稀释至100ml,然后缓慢滴入1.6ml质量分数1%的二水合柠檬酸三钠溶液,加热并保持溶液沸40min,停止加热后,自然冷却,制得银胶溶液,见图3),静置24h,
4)取环氧CYC的饱和N-N二甲基甲酰胺溶液30ml和二月桂酸二丁基锡15ml,搅拌混匀,放入步骤3)所得吸附银胶的胺基化PET膜并保证完全浸没,在50℃水浴下缓慢搅拌加热2h,获得CYC改性胺基化PET。将制得产物记为A1(见图4)。
实施例2
与实施例1不同之处在于:所述胺液为三乙烯四胺。制得产物记为A2(见图5)。
实施例3
与实施例1不同之处在于,步骤3)选用0.02mol/L的硝酸银标准溶液。制得产物记为A3(见图6)。
实施例4
与实施例1不同之处在于:所述胺液为三乙烯四胺;步骤3)与步骤4)顺序调换。将制得产物记为A4(见图7)。
实施例5
与实施例1不同之处在于,步骤2)胺液中反应时间为4h。
实施例6
与实施例1不同之处在于,步骤2)胺液中反应时间为6h。
应用试验
为验证不同制备条件下样品的实际拉曼增强效果差异,将上述制备的样品,即A1、A2、A3、A4以及空白组(胺基化PET,即仅进行步骤1)和步骤2)),在样品表面平铺一层碳纳米管,用设定激光波长为532nm的拉曼光谱仪进行数据采集。
碳纳米管在拉曼图谱中具有四个明显的特征峰值,是作为拉曼分析的优势材料。以碳纳米管作为探针分子所观察到的拉曼图谱,如图8所示。图8中可以看出:观察到主要有四个特征峰值。位于1580 cm-1附近和1350 cm-1附近的峰,一般被称为G峰和D峰,其中G峰是碳纳米管中有序度的体现,而D峰则是碳纳米管中的无序度与缺陷的反映,2670 cm-1附近为2D峰,2910 cm-1附近为D+G峰。一般以D峰为代表,来考察其拉曼增强效果,结果见表1。
表1 不同实施例制备所得产物的D峰强度和倍数关系
Figure DEST_PATH_IMAGE001
表1中,以峰值强度最高的D峰为例,其样品的峰值强度由大到小按顺序排列为A2、A3、A4、A1。以胺基化PET空白组297的D峰强度为参照,A2的峰值强度是其5.45倍,A3的峰值强度是其3.76倍,A4的峰值强度是其3.62倍,A1的峰值强度是其3.59倍。这里的倍数关系比值可以为其SERS性能的差距提供依据。
综合分析可知:A2组别拥有最好的拉曼增强性能,而其他几种的拉曼增强性能相近,相较于空白组,均拥有较好的拉曼增强效果。说明本发明柔性拉曼增强胶带具有优异的拉曼增强效应,还具有成本低、制作简单、易运输保存、强度高韧性好等优点。

Claims (5)

1.一种柔性拉曼增强胶带的制备方法,其特征在于,包括如下步骤:
1)胺基化:将洁净的PET膜浸入温度80-90℃的胺液中反应2-6h,取出、洗涤、干燥,获得胺基化PET膜,备用;
2)吸附银胶:将步骤1)所得胺基化PET膜浸入银胶溶液中,静置24-48h;
取环氧CYC的饱和N-N二甲基甲酰胺溶液25-35ml和二月桂酸二丁基锡10-20ml,混匀,放入步骤2)所得吸附银胶的胺基化PET膜并保证完全浸没,在40-60℃水浴搅拌加热1-3h,即得;
或者,取环氧CYC的饱和N-N二甲基甲酰胺溶液25-35ml和二月桂酸二丁基锡10-20ml,混匀,放入步骤1)所得胺基化PET膜并保证完全浸没,在40-60℃水浴搅拌加热1-3h,取出,清洗、烘干,然后浸入银胶溶液中,静置24-48h,即得。
2.如权利要求1所述柔性拉曼增强胶带的制备方法,其特征在于,步骤1)中,所述胺液为三乙烯四胺、或者由摩尔比1-2:1的乙二胺和二甲基亚砜混合组成。
3.如权利要求1或2所述柔性拉曼增强胶带的制备方法,其特征在于,步骤2)中所述银胶溶液经下述步骤制备获得:在0.001-0.002mol/L的硝酸银溶液中,加入1.2-2.0ml质量浓度1%的二水合柠檬酸三钠溶液,然后加热并保持溶液沸30-50min,停止加热后,自然冷却,制得银胶溶液。
4.如权利要求3所述柔性拉曼增强胶带的制备方法,其特征在于,步骤1)中,所述洁净的PET膜经下述预处理获得:PET膜用teepol洗涤剂或洗洁精的水溶液于50-70℃洗涤20-30min,然后用去离子水洗涤10-20min,再用乙酸乙酯于50-70℃洗涤20-30min,放入50-70℃烘箱中干燥至恒重,即得。
5.采用权利要求1至4任一所述制备方法制备得到的柔性拉曼增强胶带。
CN202110804837.1A 2021-07-16 2021-07-16 一种柔性拉曼增强胶带及其制备方法 Active CN113637420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110804837.1A CN113637420B (zh) 2021-07-16 2021-07-16 一种柔性拉曼增强胶带及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110804837.1A CN113637420B (zh) 2021-07-16 2021-07-16 一种柔性拉曼增强胶带及其制备方法

Publications (2)

Publication Number Publication Date
CN113637420A CN113637420A (zh) 2021-11-12
CN113637420B true CN113637420B (zh) 2022-06-24

Family

ID=78417560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110804837.1A Active CN113637420B (zh) 2021-07-16 2021-07-16 一种柔性拉曼增强胶带及其制备方法

Country Status (1)

Country Link
CN (1) CN113637420B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492254A (zh) * 2009-02-27 2009-07-29 东南大学 制备高表面增强拉曼散射活性单层银纳米粒子膜的方法
CN103357885B (zh) * 2012-04-01 2016-06-22 深圳市宇驰检测技术有限公司 一种拉曼增强银胶的制备方法及其应用
WO2016074653A2 (en) * 2014-11-10 2016-05-19 Univerzita Palackeho V Olomouci Method for preparation of silver colloidal particle layers onto glass substrate for surface enhanced raman spectroscopy, substrate and use thereof
WO2021010906A2 (en) * 2019-05-31 2021-01-21 National Science And Technology Development Agency Adsorbable polymeric surface-enhanced raman spectroscopy substrates and the fabrication process

Also Published As

Publication number Publication date
CN113637420A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
Pérez-Jiménez et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments
Li et al. Facile in situ synthesis of core–shell MOF@ Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons
Chen et al. 2D materials: Excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing and biosensing
Mu et al. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS)
Wang et al. Detection of several quinolone antibiotic residues in water based on Ag-TiO2 SERS strategy
Meng et al. Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection
Zhang et al. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection
Godoy et al. Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper
US20220119610A1 (en) Preparation Method of Polyurethane-based Nano-silver SERS Substrate
CN108226137B (zh) 一种柔性、透明的二硫化钼@银颗粒/三维金字塔结构pmma sers基底的制备方法及应用
Yu et al. Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives
Martín et al. Flexible SERS active substrates from ordered vertical Au nanorod arrays
Li et al. A molecularly imprinted nanoprobe incorporating Cu 2 O@ Ag nanoparticles with different morphologies for selective SERS based detection of chlorophenols
Wang et al. Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas
Yang et al. Highly-dispersed TiO 2 nanoparticles with abundant active sites induced by surfactants as a prominent substrate for SERS: charge transfer contribution
CN102156118B (zh) 一种三聚氰胺的检测方法
Wang et al. High-performance SERS substrate based on perovskite quantum dot–graphene/nano-Au composites for ultrasensitive detection of rhodamine 6G and p-nitrophenol
Wang et al. Performance evaluation of novel Ag@ GO-biomaterial SERS substrates for the ultrasensitive detection of neomycin in foods
Zhao et al. Electrochemical synthesis of Co/Ni bimetal-organic frameworks: A high-performance SERS platform for detection of tetracycline
Vo et al. Nanosilver-embedded silicon nanowires as a SERS-active substrate for the ultrasensitive detection of monoamine neurotransmitters
CN113637420B (zh) 一种柔性拉曼增强胶带及其制备方法
Sun et al. Infrared spectroscopic ellipsometry (IRSE) and X‐ray photoelectron spectroscopy (XPS) monitoring the preparation of maleimide‐functionalized surfaces: from Au towards Si (111)
Lee et al. Galvanic engineering of interior hotspots in 3D Au/Ag bimetallic SERS nanocavities for ultrasensitive and rapid recognition of phthalate esters
Dong et al. Capillary-force-assisted self-assembly of gold nanoparticles into highly ordered plasmonic thin films for ultrasensitive SERS
Wang et al. Novel fluorescence sensor for the selective recognition of tetracycline based on molecularly imprinted polymer-capped N-doped carbon dots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant