CN113629747A - 一种电动汽车并网无功补偿控制方法 - Google Patents

一种电动汽车并网无功补偿控制方法 Download PDF

Info

Publication number
CN113629747A
CN113629747A CN202111084619.1A CN202111084619A CN113629747A CN 113629747 A CN113629747 A CN 113629747A CN 202111084619 A CN202111084619 A CN 202111084619A CN 113629747 A CN113629747 A CN 113629747A
Authority
CN
China
Prior art keywords
load
charging station
grid
power
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111084619.1A
Other languages
English (en)
Other versions
CN113629747B (zh
Inventor
王舒琴
高波
沈鹏飞
张忠
黄永伟
赵东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MaAnshan Power Supply Co of State Grid Anhui Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
MaAnshan Power Supply Co of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, MaAnshan Power Supply Co of State Grid Anhui Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202111084619.1A priority Critical patent/CN113629747B/zh
Publication of CN113629747A publication Critical patent/CN113629747A/zh
Application granted granted Critical
Publication of CN113629747B publication Critical patent/CN113629747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电动汽车并网无功补偿控制方法,涉及无功补偿控制技术领域。该电动汽车并网无功补偿控制方法包括获取电动汽车充电站的负荷水平及充电站所在区域电网的负荷水平;对充电站所在区域电网进行潮流计算,计算充电站无功功率;计算充电站负载率以及区域电网的负荷波动率;建立含电动汽车充电站的无功补偿控制模型。该电动汽车并网无功补偿控制方法在传统无功优化问题的基础上加上对电动汽车充电站功率因数的控制进行无功补偿,在状态变量以及控制变量的约束下,以有功损耗最小、负荷波动最小以及电压波动最小为目标函数,建立多目标无功优化模型,解决了电动汽车接入的谐波污染和无功不足的问题。

Description

一种电动汽车并网无功补偿控制方法
技术领域
本发明涉及无功补偿控制技术领域,具体为一种电动汽车并网无功补偿控制方法。
背景技术
近年来,我国政府出台相关政策大力支持电动汽车的发展,使得越来越多电动汽车大规模接入电网。然而电动汽车作为负荷,具有时间以及空间上的不确定性,大规模电动汽车不确定性的充电行为会对配电网的经济安全运行产生很大影响。
像充电站这样的大型用电场所需要配备无功补偿装置,比如静止无功发生器(SVG),通过调节电压源变流器交流侧输出电压的幅值和相位就可以使变流器输出连续变化的容性或者感性无功电流,实现无功补偿的目的。因此电动汽车充不仅是一种可调度的柔性负荷资源,也是具有无功补偿作用的资源。由于大规模电动汽车并网会对电网电能质量带来问题,比如峰上加峰问题、加剧负荷峰谷差、电压水平超出允许限值等。为了解决上述问题,必须对含电动汽车充电的配电网无功优化问题进行研究。
传统无功优化问题是通过对电力系统中的发电机机端电压、变压器分接头以及无功补偿器投切这些变量的控制,达到降低网损的目的。考虑到电动汽车充电站自身配备的无功补偿装置,本文含电动汽车充电的无功优化在传统无功优化问题的基础上加上对电动汽车充电站功率因数的控制进行无功补偿。首先对充电站负荷建模得到负荷曲线,接入配电网计算潮流得到每个节点的有功无功,以及网络损耗等。在状态变量以及控制变量的约束下,以有功损耗最小、负荷波动最小以及电压波动最小为目标函数,建立多目标无功优化模型。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种电动汽车并网无功补偿控制方法,解决了大规模电动汽车并网会对电网电能质量带来问题,比如峰上加峰问题、加剧负荷峰谷差、电压水平超出允许限值等问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种电动汽车并网无功补偿控制方法,包括如下步骤:
步骤一:获取当前电动汽车充电站的负荷功率水平以及充电站所在区域电网的负荷值,对充电站所在区域电网进行潮流计算;
步骤二:结合充电站的负荷功率以及所在区域电网的潮流状况,计算充电站无功功率;
步骤三:计算当前电动汽车充电站负载率和区域电网的负荷率;
步骤四:基于充电站负载率和区域电网的负荷率,计算充电站无功补偿量,建立电动汽车充电站主动无功补偿模型;
步骤五:以配电网有功损耗最小、负荷波动最小以及各节点电压偏差最小为目标,建立多目标无功优化模型。
优选的,所述步骤一具体为:首先要对电动汽车充电站建立数学模型,获取待优化时段充电站的充电负荷值Pc;获取待优化时段充电站所在区域电网各节点的负荷值S1,S2,S3,……Sj,……;对充电站所在区域电网进行潮流计算。
优选的,在已知充电负荷值Pc以及所在区域电网负荷值S1,S2,S3,……Sj,……;的基础上,计算区域电网的潮流分布,具体为:
Figure BDA0003265040400000021
其中Pi是电动汽车充电站所在节点i的有功负荷,Pload是节点i的基础负荷。
1、根据基尔霍夫电流定律,从第一层节点开始遍历,支路上各节点电流如式:
Figure BDA0003265040400000031
2、结合上述公式,除末节点外,一层一层逐步计算其他节点的注入电流:
Figure BDA0003265040400000032
3、计算出整个配电网的支路电流后,结合已知的根节点电压,依次计算各节点的电压:
Uj=Ui-IijZij=Ui-Iij(Rij+jXij)
其中Zij=Rij+jXij为始端节点i与各子节点j之间的阻抗。
4、计算各节点的电压修正量
ΔUj=|Uj-Uj(0)|
5、判别收敛条件
maxΔUj(k)<ω
其中最大修正量小于阈值ω的时候跳出迭代,k为迭代次数。
优选的,结合电动汽车充电站的有功负荷值Pc,计算充电站负载率α,具体为:
α=Pc_∑/Pc_max
其中,Pc_∑为待优化时段充电站总的有功负荷;Pc_max为充电站额定有功功率。
结合充电站所在区域电网负荷值,计算区域电网负荷率β:
β=Pload_∑/Pload_max
其中,Pload_∑为待优化时段区域电网的有功负荷值;Pload_max为区域电网一年内的最大有功负荷。
优选的,结合电动汽车充电站负载率α以及充电站所在区域电网负荷率β,建立充电站主动参与电网无功补偿模型,得到充电站并网点功率因数控制目标
Figure BDA0003265040400000041
范围:
Figure BDA0003265040400000042
其中,αmax、αmin分别为电动汽车充电站高峰和低谷时段的负载率阈值;βmax、βmin分别为负荷高峰和低谷时段区域电网的负荷率阈值;a、b为相应的权重系数,且a+b=0.1。
优选的,基于充电站并网点功率因数控制目标
Figure BDA0003265040400000043
计算充电站无功补偿量Qc
补偿前:
有功功率:
Figure BDA0003265040400000044
无功功率:
Figure BDA0003265040400000045
补偿后:有功功率不变,功率因数提升至
Figure BDA0003265040400000046
视在功率:
Figure BDA0003265040400000047
无功功率:
Figure BDA0003265040400000048
则需求的补偿容量为:
Figure BDA0003265040400000051
优选的,在建立电动汽车充电站主动参与电网无功补偿模型后,以配电网有功损耗最小、负荷波动最小以及各节点电压偏差最小为目标,建立多目标无功优化模型,目标函数为:
min[f1,f2,f3]
Figure BDA0003265040400000052
Figure BDA0003265040400000053
Figure BDA0003265040400000054
根据电网实际运行情况设置约束条件,分为等式约束和不等式约束。
功率平衡方程:
Figure BDA0003265040400000055
不等式约束包括状态变量的不等式约束,发电机无功出力上下限:QGimin≤QGi≤QGimax;节点电压上下限:Uimin≤Ui≤Uimax;控制变量的不等式约束,无功补偿容量的上下限:QCimin≤QCi≤QCimax;发电机机端电压的上下限:UGimin≤UGi≤UGimax;变压器变比的上下限:Ttimin≤Tti≤Ttimax;电动汽车充电站功率因数控制目标上下限:
Figure BDA0003265040400000056
(三)有益效果
本发明提供了一种电动汽车并网无功补偿控制方法。具备以下有益效果:
该电动汽车并网无功补偿控制方法在传统无功优化问题的基础上加上对电动汽车充电站功率因数的控制进行无功补偿。首先对充电站负荷建模得到负荷曲线,接入配电网计算潮流得到每个节点的有功无功,以及网络损耗等。在状态变量以及控制变量的约束下,以有功损耗最小、负荷波动最小以及电压波动最小为目标函数,建立多目标无功优化模型,解决了电动汽车接入的谐波污染和无功不足的问题。
附图说明
图1为电动汽车充电站并网接入示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种技术方案:一种电动汽车并网无功补偿控制方法,包括如下步骤:
步骤一:获取当前电动汽车充电站的负荷功率水平以及充电站所在区域电网的负荷值,首先要对电动汽车充电站建立数学模型,获取待优化时段充电站的充电负荷值Pc;获取待优化时段充电站所在区域电网各节点的负荷值S1,S2,S3,……Sj,……;对充电站所在区域电网进行潮流计算;
在已知充电负荷值Pc以及所在区域电网负荷值S1,S2,S3,……Sj,……;的基础上,计算区域电网的潮流分布,具体为:
Figure BDA0003265040400000061
其中Pi是电动汽车充电站所在节点i的有功负荷,Pload是节点i的基础负荷。
1、根据基尔霍夫电流定律,从第一层节点开始遍历,支路上各节点电流如式:
Figure BDA0003265040400000071
2、结合上述公式,除末节点外,一层一层逐步计算其他节点的注入电流:
Figure BDA0003265040400000072
3、计算出整个配电网的支路电流后,结合已知的根节点电压,依次计算各节点的电压:
Uj=Ui-IijZij=Ui-Iij(Rij+jXij)
其中Zij=Rij+jXij为始端节点i与各子节点j之间的阻抗。
4、计算各节点的电压修正量
ΔUj=|Uj-Uj(0)|
5、判别收敛条件
maxΔUj(k)<ω
其中最大修正量小于阈值ω的时候跳出迭代,k为迭代次数。
结合电动汽车充电站的有功负荷值Pc,计算充电站负载率α,具体为:
α=Pc_∑/Pc_max
其中,Pc_∑为待优化时段充电站总的有功负荷;Pc_max为充电站额定有功功率。
步骤二:结合充电站的负荷功率以及所在区域电网的潮流状况,计算充电站无功功率;
步骤三:计算当前电动汽车充电站负载率和区域电网的负荷率;
结合充电站所在区域电网负荷值,计算区域电网负荷率β:
β=Pload_∑/Pload_max
其中,Pload_∑为待优化时段区域电网的有功负荷值;Pload_max为区域电网一年内的最大有功负荷。
结合电动汽车充电站负载率α以及充电站所在区域电网负荷率β,建立充电站主动参与电网无功补偿模型,得到充电站并网点功率因数控制目标
Figure BDA0003265040400000081
范围:
Figure BDA0003265040400000082
其中,αmax、αmin分别为电动汽车充电站高峰和低谷时段的负载率阈值;βmax、βmin分别为负荷高峰和低谷时段区域电网的负荷率阈值;a、b为相应的权重系数,且a+b=0.1。
步骤四:基于充电站负载率和区域电网的负荷率,计算充电站无功补偿量,建立电动汽车充电站主动无功补偿模型;
基于充电站并网点功率因数控制目标
Figure BDA0003265040400000083
计算充电站无功补偿量Qc
补偿前:
有功功率:
Figure BDA0003265040400000084
无功功率:
Figure BDA0003265040400000085
补偿后:有功功率不变,功率因数提升至
Figure BDA0003265040400000086
视在功率:
Figure BDA0003265040400000087
无功功率:
Figure BDA0003265040400000088
则需求的补偿容量为:
Figure BDA0003265040400000091
步骤五:以配电网有功损耗最小、负荷波动最小以及各节点电压偏差最小为目标,建立多目标无功优化模型。
建立电动汽车充电站主动参与电网无功补偿模型后,以配电网有功损耗最小、负荷波动最小以及各节点电压偏差最小为目标,建立多目标无功优化模型,目标函数为:
min[f1,f2,f3]
Figure BDA0003265040400000092
Figure BDA0003265040400000093
Figure BDA0003265040400000094
根据电网实际运行情况设置约束条件,分为等式约束和不等式约束。
功率平衡方程:
Figure BDA0003265040400000095
不等式约束包括状态变量的不等式约束,发电机无功出力上下限:QGimin≤QGi≤QGimax;节点电压上下限:Uimin≤Ui≤Uimax;控制变量的不等式约束,无功补偿容量的上下限:QCimin≤QCi≤QCimax;发电机机端电压的上下限:UGimin≤UGi≤UGimax;变压器变比的上下限:Ttimin≤Tti≤Ttimax;电动汽车充电站功率因数控制目标上下限:
Figure BDA0003265040400000101
综上所述,该电动汽车并网无功补偿控制方法在传统无功优化问题的基础上加上对电动汽车充电站功率因数的控制进行无功补偿。首先对充电站负荷建模得到负荷曲线,接入配电网计算潮流得到每个节点的有功无功,以及网络损耗等。在状态变量以及控制变量的约束下,以有功损耗最小、负荷波动最小以及电压波动最小为目标函数,建立多目标无功优化模型,解决了电动汽车接入的谐波污染和无功不足的问题。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种电动汽车并网无功补偿控制方法,其特征在于:包括如下步骤:
步骤一:获取当前电动汽车充电站的负荷功率水平以及充电站所在区域电网的负荷值,对充电站所在区域电网进行潮流计算;
步骤二:结合充电站的负荷功率以及所在区域电网的潮流状况,计算充电站无功功率;
步骤三:计算当前电动汽车充电站负载率和区域电网的负荷率;
步骤四:基于充电站负载率和区域电网的负荷率,计算充电站无功补偿量,建立电动汽车充电站主动无功补偿模型;
步骤五:以配电网有功损耗最小、负荷波动最小以及各节点电压偏差最小为目标,建立多目标无功优化模型。
2.根据权利要求1所述的一种电动汽车并网无功补偿控制方法,其特征在于:所述步骤一具体为:首先要对电动汽车充电站建立数学模型,获取待优化时段充电站的充电负荷值Pc;获取待优化时段充电站所在区域电网各节点的负荷值S1,S2,S3,……Sj,……;对充电站所在区域电网进行潮流计算。
3.根据权利要求2所述的一种电动汽车并网无功补偿控制方法,其特征在于:在已知充电负荷值Pc以及所在区域电网负荷值S1,S2,S3,……Sj,……;的基础上,计算区域电网的潮流分布,具体为:
Figure FDA0003265040390000011
其中Pi是电动汽车充电站所在节点i的有功负荷,Pload是节点i的基础负荷。
1、根据基尔霍夫电流定律,从第一层节点开始遍历,支路上各节点电流如式:
Figure FDA0003265040390000021
2、结合上述公式,除末节点外,一层一层逐步计算其他节点的注入电流:
Figure FDA0003265040390000022
3、计算出整个配电网的支路电流后,结合已知的根节点电压,依次计算各节点的电压:
Uj=Ui-IijZij=Ui-Iij(Rij+jXij)
其中Zij=Rij+jXij为始端节点i与各子节点j之间的阻抗。
4、计算各节点的电压修正量
ΔUj=|Uj-Uj(0)|
5、判别收敛条件
maxΔUj(k)<ω
其中最大修正量小于阈值ω的时候跳出迭代,k为迭代次数。
4.根据权利要求2或3所述的一种电动汽车并网无功补偿控制方法,其特征在于:结合电动汽车充电站的有功负荷值Pc,计算充电站负载率α,具体为:
α=Pc_∑/Pc_max
其中,Pc_∑为待优化时段充电站总的有功负荷;Pc_max为充电站额定有功功率。
结合充电站所在区域电网负荷值,计算区域电网负荷率β:
β=Pload_∑/Pload_max
其中,Pload_∑为待优化时段区域电网的有功负荷值;Pload_max为区域电网一年内的最大有功负荷。
5.根据权利要求4所述的一种电动汽车并网无功补偿控制方法,其特征在于:结合电动汽车充电站负载率α以及充电站所在区域电网负荷率β,建立充电站主动参与电网无功补偿模型,得到充电站并网点功率因数控制目标
Figure FDA0003265040390000031
范围:
Figure FDA0003265040390000032
其中,αmax、αmin分别为电动汽车充电站高峰和低谷时段的负载率阈值;βmax、βmin分别为负荷高峰和低谷时段区域电网的负荷率阈值;a、b为相应的权重系数,且a+b=0.1。
6.根据权利要求5所述的一种电动汽车并网无功补偿控制方法,其特征在于:基于充电站并网点功率因数控制目标
Figure FDA0003265040390000033
计算充电站无功补偿量Qc
补偿前:
有功功率:
Figure FDA0003265040390000034
无功功率:
Figure FDA0003265040390000035
补偿后:有功功率不变,功率因数提升至
Figure FDA0003265040390000036
视在功率:
Figure FDA0003265040390000037
无功功率:
Figure FDA0003265040390000038
则需求的补偿容量为:
Figure FDA0003265040390000039
7.根据权利要求6所述的一种电动汽车并网无功补偿控制方法,其特征在于:在建立电动汽车充电站主动参与电网无功补偿模型后,以配电网有功损耗最小、负荷波动最小以及各节点电压偏差最小为目标,建立多目标无功优化模型,目标函数为:
min[f1,f2,f3]
Figure FDA0003265040390000041
Figure FDA0003265040390000042
Figure FDA0003265040390000043
根据电网实际运行情况设置约束条件,分为等式约束和不等式约束。
功率平衡方程:
Figure FDA0003265040390000044
不等式约束包括状态变量的不等式约束,发电机无功出力上下限:QGimin≤QGi≤QGimax;节点电压上下限:Uimin≤Ui≤Uimax;控制变量的不等式约束,无功补偿容量的上下限:QCimin≤QCi≤QCimax;发电机机端电压的上下限:UGimin≤UGi≤UGimax;变压器变比的上下限:Ttimin≤Tti≤Ttimax;电动汽车充电站功率因数控制目标上下限:
Figure FDA0003265040390000045
CN202111084619.1A 2021-09-16 2021-09-16 一种电动汽车并网无功补偿控制方法 Active CN113629747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111084619.1A CN113629747B (zh) 2021-09-16 2021-09-16 一种电动汽车并网无功补偿控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111084619.1A CN113629747B (zh) 2021-09-16 2021-09-16 一种电动汽车并网无功补偿控制方法

Publications (2)

Publication Number Publication Date
CN113629747A true CN113629747A (zh) 2021-11-09
CN113629747B CN113629747B (zh) 2022-08-12

Family

ID=78390263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111084619.1A Active CN113629747B (zh) 2021-09-16 2021-09-16 一种电动汽车并网无功补偿控制方法

Country Status (1)

Country Link
CN (1) CN113629747B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629127A (zh) * 2022-04-08 2022-06-14 国家电网公司东北分部 电动汽车充电站参与电网调压的建模与控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014262212A1 (en) * 2014-10-08 2016-04-28 State Grid Corporation Of China A multi-objective stochastic programming method of electric vehicle charging load based on non-dominated sorting genetic algorithm
CN109389236A (zh) * 2017-08-07 2019-02-26 贵州电网有限责任公司电力科学研究院 电动汽车有序充电与无功优化协调控制策略
CN109390953A (zh) * 2018-11-20 2019-02-26 国电南瑞科技股份有限公司 含分布式电源和电动汽车的低压配电网无功电压协调控制方法和系统
CN109583706A (zh) * 2018-11-08 2019-04-05 国网浙江省电力有限公司经济技术研究院 配电系统接纳电动汽车能力的多元优化评估方法及系统
CN112131733A (zh) * 2020-09-15 2020-12-25 燕山大学 计及电动汽车充电负荷影响的分布式电源规划方法
CN112928760A (zh) * 2021-02-04 2021-06-08 中国电建集团青海省电力设计院有限公司 计及电网负荷波动的风电场主动无功补偿控制方法
CN112993979A (zh) * 2021-02-22 2021-06-18 广东电网有限责任公司韶关供电局 配电网无功优化方法、装置、电子设备和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014262212A1 (en) * 2014-10-08 2016-04-28 State Grid Corporation Of China A multi-objective stochastic programming method of electric vehicle charging load based on non-dominated sorting genetic algorithm
CN109389236A (zh) * 2017-08-07 2019-02-26 贵州电网有限责任公司电力科学研究院 电动汽车有序充电与无功优化协调控制策略
CN109583706A (zh) * 2018-11-08 2019-04-05 国网浙江省电力有限公司经济技术研究院 配电系统接纳电动汽车能力的多元优化评估方法及系统
CN109390953A (zh) * 2018-11-20 2019-02-26 国电南瑞科技股份有限公司 含分布式电源和电动汽车的低压配电网无功电压协调控制方法和系统
CN112131733A (zh) * 2020-09-15 2020-12-25 燕山大学 计及电动汽车充电负荷影响的分布式电源规划方法
CN112928760A (zh) * 2021-02-04 2021-06-08 中国电建集团青海省电力设计院有限公司 计及电网负荷波动的风电场主动无功补偿控制方法
CN112993979A (zh) * 2021-02-22 2021-06-18 广东电网有限责任公司韶关供电局 配电网无功优化方法、装置、电子设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵彦锦等: "考虑电动汽车的配电网无功优化", 《电气工程学报》 *
邢志斌等: "含电动汽车充电站和风电的配电网无功优化", 《电气应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629127A (zh) * 2022-04-08 2022-06-14 国家电网公司东北分部 电动汽车充电站参与电网调压的建模与控制方法
CN114629127B (zh) * 2022-04-08 2024-04-26 国家电网公司东北分部 电动汽车充电站参与电网调压的建模与控制方法

Also Published As

Publication number Publication date
CN113629747B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN106549392B (zh) 一种配电网协调控制方法
CN107392418B (zh) 一种城市配电网网络重构方法及系统
CN106099964B (zh) 一种储能系统参与主动配电网运行调节计算方法
CN104578121B (zh) 一种混合储能系统功率分配的方法及系统
CN110601198B (zh) 计及谐波和电压不平衡约束的混合微电网优化运行方法
CN110896231B (zh) 一种扶贫区配电网接纳分布式光伏能力计算方法及系统
CN109347351A (zh) 一种模块化多电平换流器的模型预测控制方法
CN109274135B (zh) 基于光伏电站有功出力的无功优化控制方法
CN114362267B (zh) 考虑多目标优化的交直流混合配电网分散式协调优化方法
CN111130121A (zh) 一种dg和ev环境下配电网无功补偿系统的模糊协调控制计算方法
Astero et al. Improvement of RES hosting capacity using a central energy storage system
CN113629747B (zh) 一种电动汽车并网无功补偿控制方法
CN113962159A (zh) 一种基于合理弃光的配电网光伏最大接入容量的评估方法
Gao et al. An active and reactive power controller for battery energy storage system in microgrids
Syed Nasir et al. Minimizing harmonic distortion impact at distribution system with considering large-scale ev load behaviour using modified lightning search algorithm and pareto-fuzzy approach
CN109962485A (zh) 一种面向源网荷友好互动的复合储能装置选址定容方法
CN107134783B (zh) 一种基于灵敏度快速筛选的母线电压优化调整方法
CN110112723A (zh) 一种直流微电网离网状态下的下垂控制方法
Zhang et al. Distributed predefined-time control for hybrid AC/DC microgrid
CN115689187A (zh) 一种配电网分布式光伏可开放容量计算方法及系统
CN110957767B (zh) 微电网电能质量的治理方法及装置
Zhang et al. Calculation Method for Maximum Accommodation Capacity of Distributed Photovoltaic in Distribution Network Considering Various Electrical Constraints
CN110829440A (zh) 一种三相中低压一体化配电网电压控制方法及系统
Elgammal et al. Minimum Harmonic Distortion Losses and Power Quality Improvement of Grid Integration Photovoltaic-Wind Based Smart Grid Utilizing MOPSO
Zou et al. Optimal Reactive Power Adjustment Based on Jacobi Matrix Decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220531

Address after: 243000 No.7 Huayu Road, Ma'anshan City, Anhui Province

Applicant after: STATE GRID ANHUI ELECTRIC POWER CO.,LTD. MAANSHAN POWER SUPPLY CO.

Address before: 243000 No.7 Huayu Road, Ma'anshan City, Anhui Province

Applicant before: STATE GRID ANHUI ELECTRIC POWER CO.,LTD. MAANSHAN POWER SUPPLY CO.

Applicant before: STATE GRID CORPORATION OF CHINA

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant