CN113621515B - Glomerular chip - Google Patents
Glomerular chip Download PDFInfo
- Publication number
- CN113621515B CN113621515B CN202110919100.4A CN202110919100A CN113621515B CN 113621515 B CN113621515 B CN 113621515B CN 202110919100 A CN202110919100 A CN 202110919100A CN 113621515 B CN113621515 B CN 113621515B
- Authority
- CN
- China
- Prior art keywords
- chip
- bowman
- channel
- arteriole
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001434 glomerular Effects 0.000 title abstract description 20
- 239000000706 filtrate Substances 0.000 claims abstract description 55
- 239000012510 hollow fiber Substances 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims description 106
- 210000002565 arteriole Anatomy 0.000 claims description 69
- 210000000512 proximal kidney tubule Anatomy 0.000 claims description 27
- 239000001963 growth medium Substances 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 6
- 210000005086 glomerual capillary Anatomy 0.000 abstract description 12
- 238000000338 in vitro Methods 0.000 abstract description 8
- 239000000835 fiber Substances 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 5
- 239000008280 blood Substances 0.000 abstract description 4
- 210000004369 blood Anatomy 0.000 abstract description 4
- 210000002889 endothelial cell Anatomy 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 abstract description 3
- 239000011664 nicotinic acid Substances 0.000 abstract description 3
- 210000001736 capillary Anatomy 0.000 abstract description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 7
- 239000002609 medium Substances 0.000 description 6
- 210000005239 tubule Anatomy 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 210000000557 podocyte Anatomy 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 229920005372 Plexiglas® Polymers 0.000 description 3
- 230000024924 glomerular filtration Effects 0.000 description 3
- 210000002220 organoid Anatomy 0.000 description 3
- 210000001367 artery Anatomy 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000000885 nephron Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 108010025899 gelatin film Proteins 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/08—Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/10—Hollow fibers or tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
- Y02P60/21—Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明涉及器官芯片技术领域,特别涉及一种肾小球芯片。The invention relates to the technical field of organ chips, in particular to a glomerulus chip.
背景技术Background technique
肾脏是人体重要的器官,具有极其复杂的结构和微环境。肾脏由数百万个肾单位组成,肾小球是肾单位的重要组成部分。肾小球负责执行血液过滤功能,其过滤膜为中间含有基膜的三层结构。肾小球过滤是尿液形成的初始过程,当血液流经肾小球时,大部分物质被肾小球毛细血管过滤,进入鲍氏腔,形成原尿。研究表明,大多数肾脏疾病(如慢性肾脏疾病、糖尿病肾病和肾病综合征)都是肾小球功能障碍所致。因此,研究人员致力于建立体外肾小球模型来揭示肾小球功能的机制。The kidney is an important organ of the human body with an extremely complex structure and microenvironment. The kidney is composed of millions of nephrons, and the glomerulus is an important part of the nephron. The glomerulus is responsible for blood filtration, and its filtration membrane is a three-layer structure with a basement membrane in the middle. Glomerular filtration is the initial process of urine formation. When blood flows through the glomerulus, most substances are filtered by glomerular capillaries and enter Bowman's cavity to form primary urine. Research has shown that glomerular dysfunction is the cause of most kidney diseases such as chronic kidney disease, diabetic nephropathy, and nephrotic syndrome. Therefore, researchers are committed to establishing in vitro glomerular models to reveal the mechanism of glomerular function.
当前,体外肾小球模型主要有两种:肾类器官和肾小球芯片。肾类器官构建的肾小球能够表达足细胞相关蛋白,同时具有肾小球过滤功能。然而,现有的肾类器官尚未实现具有鲍氏腔的球形肾小球结构,也缺乏可灌注的血管网络,故其应用受限。肾小球芯片是基于新兴的微工程技术(如微加工、微流控及3D打印技术)所建立的体外肾小球模型。近年来,基于聚二甲基硅氧烷(PDMS)、有机玻璃(PMMA)等材料,结合水凝胶和脱细胞组织等细胞外基质的肾小球芯片被广泛报道。然而,现有的肾小球芯片构建的基膜是扁平状而非球形扭曲状结构,导致肾小球过滤功能受限。总之,当前的体外肾小球模型仿生程度依然较低。Currently, there are two main types of glomerular models in vitro: kidney organoids and glomerular chips. The glomeruli constructed from kidney organoids can express podocyte-associated proteins and have glomerular filtration function. However, the existing kidney organoids have not realized the spherical glomerular structure with Bowman's cavity and lack of perfusable vascular network, so its application is limited. The glomerulus chip is an in vitro glomerular model based on emerging micro-engineering technologies (such as micro-fabrication, microfluidics, and 3D printing technologies). In recent years, glomerular chips based on materials such as polydimethylsiloxane (PDMS) and organic glass (PMMA) combined with extracellular matrix such as hydrogel and decellularized tissue have been widely reported. However, the basement membrane of the existing glomerular chips is flat rather than spherical and twisted, resulting in limited glomerular filtration function. In conclusion, current in vitro glomerular models are still relatively low in biomimeticity.
因此,如何提高肾小球芯片的仿生性,是本领域技术人员亟待解决的技术问题。Therefore, how to improve the bionicity of the glomerulus chip is a technical problem to be solved urgently by those skilled in the art.
发明内容Contents of the invention
本发明的目的是提供一种肾小球芯片,该肾小球芯片的仿生性提高。The purpose of the present invention is to provide a glomerulus chip, and the bionicity of the glomerulus chip is improved.
为实现上述目的,本发明提供一种肾小球芯片,包括由上至下依次叠置的第一芯片、第二芯片、第三芯片和第四芯片;To achieve the above object, the present invention provides a glomerulus chip, comprising a first chip, a second chip, a third chip and a fourth chip stacked sequentially from top to bottom;
所述第一芯片上设有第一过滤液出口通道、第一小动脉出口通道、小动脉入口通道及与所述小动脉入口通道连通的第一液体容置通道,所述第一液体容置通道的开口向下,所述第一过滤液出口通道、所述第一小动脉出口通道和所述小动脉入口通道互不相通;The first chip is provided with a first filtrate outlet channel, a first arteriole outlet channel, an arteriole inlet channel, and a first liquid accommodating channel communicated with the arteriole inlet channel, the first liquid accommodating channel The opening of the channel is downward, and the first filtrate outlet channel, the first arteriole outlet channel and the arteriole inlet channel are not connected to each other;
所述第二芯片上设有液体通道、鲍氏腔、过滤液第一通孔、第一出口通孔、第一液体容置槽、与所述鲍氏腔连通的液体输送通孔,所述第一液体容置槽与所述第一液体容置通道连通,所述液体通道包括进口与所述第一液体容置槽出口连接的小动脉传入微通道及连通所述小动脉传入微通道和所述鲍氏腔的鲍氏腔入口通道,所述鲍氏腔用于容纳中空纤维,且中空纤维的两端分别嵌入所述鲍氏腔入口通道里,以使培养基仅能通过中空纤维的内部管腔;The second chip is provided with a liquid channel, a Bowman cavity, a first through hole for filtrate, a first outlet through hole, a first liquid storage tank, and a liquid delivery through hole communicating with the Bowman cavity. The first liquid storage tank is in communication with the first liquid storage channel, and the liquid channel includes an arteriolar afferent microchannel whose inlet is connected to the outlet of the first liquid storage tank and communicates with the arteriolar afferent microchannel. channel and the Bowman cavity inlet channel of the Bowman cavity, the Bowman cavity is used to accommodate the hollow fiber, and the two ends of the hollow fiber are respectively embedded in the Bowman cavity inlet channel, so that the culture medium can only pass through the hollow the inner lumen of the fiber;
所述第三芯片上设有第二液体容置槽、小动脉传出微通道第二小动脉出口通道、鲍氏通孔及连通所述过滤液第一通孔的过滤液第二通孔,所述小动脉传出微通道和所述第二小动脉出口通道均与所述第二液体容置槽连通,所述鲍氏通孔与所述液体输送通孔连通,所述小动脉传出微通道与所述鲍氏腔入口通道连通,所述小动脉传出微通道的入口连接着所述鲍氏腔入口通道的出口端通孔,所述鲍氏通孔和所述过滤液第二通孔互不相通;The third chip is provided with a second liquid holding tank, an arteriole efferent microchannel, a second arteriole outlet channel, a Bowman through hole, and a second through hole of the filtrate connected to the first through hole of the filtrate, The arteriole efferent microchannel and the second arteriole outlet channel are both in communication with the second liquid holding tank, the Bowman through hole is in communication with the liquid delivery through hole, and the arteriole efferent The microchannel is in communication with the entrance channel of the Bowman's cavity, and the entrance of the microchannel efferent from the arteriole is connected with the through hole at the outlet end of the entrance channel of the Bowman's cavity, and the through hole of the Bowman's cavity is connected with the filtrate second The through holes are not connected to each other;
所述第四芯片上设有近端小管微通道第三液体容置槽及与所述第三液体容置槽连通的第二过滤液出口通道,所述第三液体容置槽和所述鲍氏通孔均与所述近端小管微通道连通,所述第二过滤液出口通道与所述过滤液第二通孔连通。The fourth chip is provided with a third liquid holding tank of the proximal tubule microchannel and a second filtrate outlet passage communicated with the third liquid holding tank, the third liquid holding tank and the abalone The through holes are all communicated with the proximal tubule microchannel, and the second filtrate outlet channel is communicated with the second through hole of the filtrate.
优选地,所述液体输送通孔、所述鲍氏腔和所述液体通道均为多个,所述鲍氏腔和所述液体通道一一对应,所述液体输送通孔和所述鲍氏腔一一对应。Preferably, the liquid delivery through hole, the Bowman cavity and the liquid channel are multiple, the Bowman cavity corresponds to the liquid channel one by one, and the liquid delivery through hole and the Bowman cavity Cavity one to one correspondence.
优选地,所述鲍氏通孔和所述小动脉传出微通道均为多个,且所述鲍氏通孔与所述鲍氏腔一一对应,所述小动脉传出微通道与所述鲍氏腔入口通道一一对应。Preferably, both the Bowman's through holes and the arteriolar efferent microchannels are multiple, and the Bowman's through holes correspond to the Bowman's lumens one by one, and the arteriolar efferent microchannels correspond to the Bowman's lumens one by one. There is a one-to-one correspondence between the inlet channels of Bowman's cavity.
优选地,所述近端小管微通道为多个,所述近端小管微通道与所述鲍氏通孔一一对应。Preferably, there are multiple proximal tubule microchannels, and the proximal tubule microchannels are in one-to-one correspondence with the Bowman through holes.
优选地,所述第一芯片、所述第二芯片、所述第三芯片和所述第四芯片通过螺纹紧固件紧固。Preferably, the first chip, the second chip, the third chip and the fourth chip are fastened by threaded fasteners.
优选地,所述鲍氏腔为多个,且结构相同,其中,所述鲍氏腔分别由前一个所述鲍氏腔以第一液体容置槽为预设角度所得。Preferably, there are multiple Bowman cavities with the same structure, wherein each of the Bowman cavities is obtained from the previous Bowman cavity with the first liquid storage tank as a preset angle.
优选地,所述小动脉传出微通道的宽度为0.5mm~1.5mm,深度为0.3mm~1.0mm;Preferably, the width of the arteriolar efferent microchannel is 0.5 mm to 1.5 mm, and the depth is 0.3 mm to 1.0 mm;
和/或第二小动脉出口通道的宽度为0.5mm~1.5mm,深度为0.3mm~1.0mm;And/or the width of the outlet channel of the second arteriole is 0.5mm-1.5mm, and the depth is 0.3mm-1.0mm;
和/或近端小管微通道的宽度0.5mm~1.5mm,深度为0.3mm~1.0mm;And/or the microchannel of the proximal tubule has a width of 0.5 mm to 1.5 mm and a depth of 0.3 mm to 1.0 mm;
和/或第二过滤液出口通道的宽度为0.5mm~1.5mm,深度为0.3mm~1.0mm。And/or the second filtrate outlet channel has a width of 0.5mm-1.5mm and a depth of 0.3mm-1.0mm.
优选地,所述小动脉传出微通道的进口端设有直径大于所述小动脉传出微通道宽度的凹槽。Preferably, the inlet end of the arteriole efferent microchannel is provided with a groove with a diameter larger than the width of the arteriole efferent microchannel.
优选地,近端小管微通道的出口端设有直径大于所述近端小管微通道宽度的凹槽。Preferably, the outlet end of the proximal tubule microchannel is provided with a groove with a diameter larger than the width of the proximal tubule microchannel.
优选地,由上至下投影:Preferably, from top to bottom projection:
所述第一液体容置通道、所述第一液体容置槽、第二液体容置槽和第三液体容置槽重合;The first liquid storage channel, the first liquid storage tank, the second liquid storage tank and the third liquid storage tank overlap;
和/或所述鲍氏腔入口通道出口端通孔分别与所述小动脉传出微通道进口端的圆形凹槽重合;And/or the through hole at the outlet end of the Bowman's cavity inlet channel coincides with the circular groove at the inlet end of the efferent microchannel of the arteriole respectively;
和/或液体输送通孔分别与所述鲍氏通孔重合。And/or the liquid conveying through holes coincide with the Bowman through holes respectively.
在上述技术方案中,本发明提供的肾小球芯片包括由上至下第一叠置的第一芯片、第二芯片、第三芯片和第四芯片;第一芯片上设有过滤液出口通道、小动脉出口通道、小动脉入口通道及与小动脉入口通道连通的第一液体容置通道;第二芯片上设有液体通道、鲍氏腔、过滤液第一通孔、第一出口通孔、第一液体容置槽、与鲍氏腔连通的液体输送通孔,液体容置槽与第一液体容置通道连通,液体通道包括进口与液体容置槽出口连接的小动脉传入微通道及连通小动脉传入微通道和鲍氏腔的鲍氏腔入口通道;第三芯片上设有第二液体容置槽、小动脉传出微通道、小动脉出口通道、鲍氏通孔及连通过滤液第一通孔的过滤液第二通孔,小动脉传出微通道和小动脉出口通道均与第二液体容置槽连通,鲍氏通孔与液体输送通孔连通,小动脉传出微通道与鲍氏腔入口通道连通;第四芯片上设有近端小管微通道、第三液体容置槽及与第三液体容置槽连通的过滤液出口通道,第三液体容置槽和鲍氏通孔均与近端小管微通道连通,过滤液出口通道与过滤液第二通孔连通。In the above technical solution, the glomerulus chip provided by the present invention includes a first chip, a second chip, a third chip and a fourth chip stacked from top to bottom; the first chip is provided with a filtrate outlet channel , an arteriole outlet channel, an arteriole inlet channel, and a first liquid accommodating channel communicated with the arteriole inlet channel; the second chip is provided with a liquid channel, a Bowman cavity, a filtrate first through hole, and a first outlet through hole , a first liquid storage tank, a liquid delivery through hole communicating with Bowman's cavity, the liquid storage tank communicates with the first liquid storage channel, and the liquid channel includes an arteriolar afferent microchannel whose inlet is connected with the outlet of the liquid storage tank and the Bowman's cavity inlet channel connecting the arteriole afferent microchannel and Bowman's cavity; the third chip is provided with a second liquid holding tank, an arteriole efferent microchannel, an arteriole outlet channel, a Bowman through hole and a connecting hole. The second through hole of the filtrate passing through the first through hole of the filtrate, the arteriole efferent microchannel and the arteriole outlet channel are all connected with the second liquid holding tank, the Bowman through hole is connected with the liquid delivery through hole, and the arteriole efferent The microchannel communicates with the inlet channel of the Bowman cavity; the fourth chip is provided with a proximal tubule microchannel, a third liquid storage tank and a filtrate outlet channel connected with the third liquid storage tank, the third liquid storage tank and The Bowman through holes are all connected with the microchannel of the proximal tubule, and the outlet channel of the filtrate is connected with the second through hole of the filtrate.
通过上述描述可知,在本申请提供的肾小球芯片中,通过设置鲍氏腔,为肾小球毛细血管加载到芯片上的鲍氏腔中提供了功能区,从而形成仿生的肾小球毛细血管状结构,进而提高了肾小球芯片的仿生性。From the above description, it can be seen that in the glomerular chip provided by the present application, by setting the Bowman cavity, a functional area is provided for the loading of glomerular capillaries into the Bowman cavity on the chip, thereby forming a bionic glomerular capillary Vascular-like structure, which in turn improves the biomimeticity of the glomerulus-on-a-chip.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.
图1为本发明实施例所提供的肾小球芯片的分解图;FIG. 1 is an exploded view of a glomerulus chip provided by an embodiment of the present invention;
图2为本发明实施例所提供的第一芯片的结构示意图;FIG. 2 is a schematic structural diagram of a first chip provided by an embodiment of the present invention;
图3为本发明实施例所提供的第二芯片的结构示意图;FIG. 3 is a schematic structural diagram of a second chip provided by an embodiment of the present invention;
图4为本发明实施例所提供的第三芯片的结构示意图;FIG. 4 is a schematic structural diagram of a third chip provided by an embodiment of the present invention;
图5为本发明实施例所提供的第四芯片的结构示意图。FIG. 5 is a schematic structural diagram of a fourth chip provided by an embodiment of the present invention.
其中图1-5中:1-第一芯片、2-第二芯片、3-第三芯片、4-第四芯片、5-小动脉入口通道、6-第一过滤液出口通道、7-第一小动脉出口通道、8-第一液体容置通道、9-螺丝孔、10-螺丝孔、11-螺丝孔、12-第一液体容置槽、13-小动脉传入微通道、14-鲍氏腔入口通道、15-鲍氏腔、16-鲍氏腔、17-鲍氏腔、18-鲍氏腔、19-鲍氏腔、20-鲍氏腔、21-过滤液第一通孔、22-第一出口通孔、23-液体输送通孔、24-小动脉传出微通道、25-小动脉传出微通道、26-小动脉传出微通道、27-小动脉传出微通道、28-小动脉传出微通道、29-小动脉传出微通道、30-第二小动脉出口通道、31-鲍氏通孔、32-鲍氏通孔、33-鲍氏通孔、34-鲍氏通孔、35-鲍氏通孔、36-鲍氏通孔、37-第二液体容置槽、38-过滤液第二通孔、39-近端小管微通道、40-近端小管微通道、41-近端小管微通道、42-近端小管微通道、43-近端小管微通道、44-近端小管微通道、45-第二过滤液出口通道、46-第三液体容置槽。Among them, in Fig. 1-5: 1-first chip, 2-second chip, 3-third chip, 4-fourth chip, 5-arteriole inlet channel, 6-first filtrate outlet channel, 7-the first Small artery outlet channel, 8-first liquid holding channel, 9-screw hole, 10-screw hole, 11-screw hole, 12-first liquid holding tank, 13-arteriole afferent microchannel, 14- Bowman's cavity inlet channel, 15-Bowman's cavity, 16-Bowman's cavity, 17-Bowman's cavity, 18-Bowman's cavity, 19-Bowman's cavity, 20-Bowman's cavity, 21-the first through hole of filtrate , 22-first outlet through hole, 23-liquid delivery through hole, 24-arteriole efferent microchannel, 25-arteriole efferent microchannel, 26-arteriole efferent microchannel, 27-arteriole efferent microchannel Channel, 28-arteriole efferent microchannel, 29-arteriole efferent microchannel, 30-second arteriole outlet channel, 31-Bowman's through hole, 32-Bowman's through hole, 33-Bowman's through hole, 34-Bowman through hole, 35-Bowman through hole, 36-Bowman through hole, 37-second liquid holding tank, 38-filter liquid second through hole, 39-proximal tubule microchannel, 40-near Terminal tubule microchannel, 41-proximal tubule microchannel, 42-proximal tubule microchannel, 43-proximal tubule microchannel, 44-proximal tubule microchannel, 45-second filtrate outlet channel, 46-third Liquid holding tank.
具体实施方式Detailed ways
本发明的核心是提供一种肾小球芯片,该肾小球芯片的仿生性提高。The core of the present invention is to provide a glomerulus chip, and the bionicity of the glomerulus chip is improved.
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和实施方式对本发明作进一步的详细说明。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
请参考图1至图5。Please refer to Figure 1 to Figure 5.
在一种具体实施方式中,本发明具体实施例提供的肾小球芯片,包括由上至下第一叠置的第一芯片1、第二芯片2、第三芯片3和第四芯片4。第一芯片1、第二芯片2、第三芯片3和第四芯片4的形状可以为圆形、圆角矩形或矩形,第一芯片1、第二芯片2、第三芯片3和第四芯片4上表面和下表面的面积相等,具体面积可以为长宽分别为110mm和90mm。第一芯片1的厚度不宜太薄一般大于8mm,具体可以为10mm,便于在芯片的侧边钻螺丝孔,第一芯片1太薄易使芯片运行过程中发生培养基的泄露。第二芯片2和第三芯片3的厚度为2mm~4mm,不宜过厚或者过薄。如果中层两层芯片过厚,不利于整个肾小球芯片的组装;如果所述中间两层芯片过薄,在芯片的组装过程中会容易弯曲变形。第四芯片4的厚度一般大于3mm,具体可以为4mm,过薄会容易弯曲变形并易使芯片运行过程中发生培养基的泄露。In a specific embodiment, the glomerulus chip provided by the specific embodiment of the present invention includes a
在该实施例中,第一芯片1、第二芯片2、第三芯片3和第四芯片4的材质可以为有机玻璃(PMMA)或聚二甲基硅氧烷(PDMS);本实施例中对所述有机玻璃和PDMS的种类和来源没有特殊的限制,采用本领域技术人员熟知的有机玻璃和PDMS即可,可由市场购买获得;如在本发明的实施例中,可以采用苏州安和达塑胶制品有限公司提供的有机玻璃或美国密歇根米德兰康宁提供的PDMS聚合物。In this embodiment, the material of the
第一芯片1、第二芯片2、第三芯片3和第四芯片4通过螺纹紧固件紧固。第一芯片1、第二芯片2、第三芯片3和第四芯片4也可以通过卡扣紧固。具体的,第一芯片1上设有螺丝孔9、10、11,螺丝孔9、10、11绕第一芯片1周向设置,具体可以为十个,第二芯片2、第三芯片3和第四芯片4均分别设有与螺丝孔9、10、11对应设置的安装孔,以便于整体固定。The
第一芯片上设有第一过滤液出口通道6、第一小动脉出口通道7、小动脉入口通道5及与小动脉入口通道5连通的第一液体容置通道8,第一液体容置通道8的开口向下,具体的,小动脉入口5与第一层芯片1底端的第一液体容置通道8连通。小动脉入口通道5,第一过滤液出口通道6和第一小动脉出口通道7这三个通道独立设置即互不相交,两者不连通。具体的,小动脉入口通道5负责输送培养基和灌注细胞悬浮液,第一过滤液出口通道6负责收集未被肾小球过滤的培养基,而第一小动脉出口通道7负责收集肾小球滤过后的滤液。The first chip is provided with a first
第二芯片上设有液体通道、鲍氏腔15、16、17、18、19、20、过滤液第一通孔21、第一出口通孔22、第一液体容置槽12、与鲍氏腔15、16、17、18、19、20连通的液体输送通孔23,第一液体容置槽12与第一液体容置通道8连通,液体通道包括进口与第一液体容置槽12出口连接的小动脉传入微通道13及连通小动脉传入微通道13和鲍氏腔15、16、17、18、19、20的鲍氏腔入口通道14。具体的,鲍氏腔15、16、17、18、19、20可以为一个或者至少两个,如图所示,鲍氏腔为六个,分别为鲍氏腔15、鲍氏腔16、鲍氏腔17、鲍氏腔18、鲍氏腔19和鲍氏腔20。The second chip is provided with liquid channels,
当液体输送通孔23、鲍氏腔15、16、17、18、19、20和液体通道均为多个,鲍氏腔15、16、17、18、19、20和液体通道一一对应,液体输送通孔23和鲍氏腔15、16、17、18、19、20一一对应,具体的,液体输送通孔23、小动脉传入微通道13和鲍氏腔入口通道14均与鲍氏腔15、16、17、18、19、20个数相等。When the liquid delivery through
具体的,第一液体容置槽12与第一液体容置通道8底端开口相连通,接收来自第一芯片1中小动脉入口通道5流入的培养基;第一液体容置槽12与小动脉传入微通道13和鲍氏腔入口通道14相连通,将培养基输送至鲍氏腔15、16、17、18、19、20;鲍氏腔15、16、17、18、19和20是整个芯片的主功能区,用于肾小球毛细血管簇的装载。Specifically, the first
鲍氏腔15、16、17、18、19、20为多个,且结构相同,其中,鲍氏腔15、16、17、18、19、20分别由前一个鲍氏腔15、16、17、18、19、20以第一液体容置槽12为预设角度所得。具体的,鲍氏腔15、16、17、18、19和20的直径为10mm,深度为1mm,鲍氏腔16、17、18、19和20分别由前一个鲍氏腔以第一液体容置槽12为圆心旋转36°所得。与鲍氏腔15、16、17、18、19、20相切的鲍氏腔入口通道14宽3mm,鲍氏腔入口通道14的流体通道深度均为1mm。There are multiple Bowman cavities 15, 16, 17, 18, 19, and 20 with the same structure, wherein the Bowman cavities 15, 16, 17, 18, 19, and 20 are formed by the
第三芯片上设有第二液体容置槽37、小动脉传出微通道24、25、26、27、28、29、第二小动脉出口通道30、鲍氏通孔31、32、33、34、35、36及连通过滤液第一通孔21的过滤液第二通孔38,小动脉传出微通道24、25、26、27、28、29和第二小动脉出口通道30均与第二液体容置槽37连通,鲍氏通孔31、32、33、34、35、36与液体输送通孔23连通,小动脉传出微通道24、25、26、27、28、29与鲍氏腔入口通道14连通。优选,鲍氏通孔31、32、33、34、35、36和小动脉传出微通道24、25、26、27、28、29均为多个,且鲍氏通孔31、32、33、34、35、36与鲍氏腔15、16、17、18、19、20一一对应,小动脉传出微通道24、25、26、27、28、29与鲍氏腔入口通道14一一对应。The third chip is provided with a second
具体的,第三芯片3上的小动脉传出微通道24、25、26、27、28、29以及第二小动脉出口通道30均与第二液体容置槽37相连通;鲍氏通孔31、32、33、34、35、36和过滤液第二通孔38独立设置,互不相通,即互不相交。小动脉传出微通道24、25、26、27、28和29的入口连接着鲍氏腔入口通道14的出口端通孔。具体的,小动脉传出微通道24、25、26、27、28和29收集来自第二芯片2上未经过肾小球过滤的培养基,汇聚到第二小动脉出口通道30上并通过第二芯片2上的第一出口通孔流出。Specifically, the arteriole efferent microchannels 24, 25, 26, 27, 28, 29 on the
小动脉传出微通道24、25、26、27、28、29的宽度为0.5mm~1.5mm,具体可以为1mm,长度为28.5mm。深度为0.3mm~1.0mm,具体可以为0.5mm。The arteriolar
第二小动脉出口通道30长30mm,宽度为0.5mm~1.5mm,具体可以为1mm,深度为0.3mm~1.0mm,具体可以为0.5mm。The second
第四芯片上设有近端小管微通道39、40、41、42、43、44、第三液体容置槽46及与第三液体容置槽46连通的第二过滤液出口通道45,第三液体容置槽46和鲍氏通孔31、32、33、34、35、36均与近端小管微通道39、40、41、42、43、44连通,第二过滤液出口通道45与过滤液第二通孔38连通。The fourth chip is provided with proximal tubule microchannels 39, 40, 41, 42, 43, 44, a third
近端小管微通道39、40、41、42、43、44以及第二过滤液出口通道45均与第三液体容置槽46相连通。具体的,近端小管微通道39、40、41、42、43、44长41.5mm,近端小管微通道39、40、41、42、43、44的宽度0.5mm~1.5mm,具体可以为1mm,深度为0.3mm~1.0mm,具体可以为0.5mm,第二过滤液出口通道45长30mm,宽0.5mm~1.5mm,具体可以为1mm,深度为0.3mm~1.0mm,具体可以为0.5mm。被肾小球过滤的培养基通过近端小管微通道39、40、41、42、43、44汇集到第二过滤液出口通道45上并最终通过第三芯片3上的过滤液第二通孔38和第二芯片2上的过滤液第一通孔21回到第一芯片1上。The proximal tubule microchannels 39 , 40 , 41 , 42 , 43 , 44 and the second
如图所示,近端小管微通道39、40、41、42、43、44为多个,近端小管微通道39、40、41、42、43、44与鲍氏通孔31、32、33、34、35、36一一对应。As shown in the figure, there are multiple proximal tubule microchannels 39, 40, 41, 42, 43, 44. 33, 34, 35, 36 correspond to each other.
小动脉传出微通道24、25、26、27、28、29的进口端设有直径大于小动脉传出微通道24、25、26、27、28、29宽度的凹槽。The inlet ends of the arteriolar
近端小管微通道39、40、41、42、43、44的出口端设有直径大于近端小管微通道39、40、41、42、43、44宽度的凹槽。The outlet ends of the proximal tubule microchannels 39 , 40 , 41 , 42 , 43 , 44 are provided with grooves whose diameters are larger than the width of the proximal tubule microchannels 39 , 40 , 41 , 42 , 43 , and 44 .
在上述各方案的基础上,由上至下投影:On the basis of the above schemes, project from top to bottom:
第一液体容置通道8、第一液体容置槽12、第二液体容置槽37和第三液体容置槽46重合。The first liquid
鲍氏腔入口通道14出口端通孔分别与小动脉传出微通道24、25、26、27、28、29进口端的圆形凹槽重合。The through hole at the outlet end of the Bowman's
液体输送通孔23分别与鲍氏通孔31、32、33、34、35、36重合。The liquid delivery through
肾小球芯片设计的组装方法可以为:将第一芯片1、第二芯片2、第三芯片3、第四芯片4从上到下依次排列。使第一芯片1底部的第一液体容置通道8与第二芯片2顶部的第一液体容置槽重合;使第一芯片1上小动脉出口通道一端的小孔与第二芯片2上的第一出口通孔22重合;使第一芯片1底部第一过滤液出口通道6的孔与第二芯片2上的过滤液第一通孔21重合;通过这些结构的对齐可确定第一芯片1和第二芯片2的相对位置。接着,使第二芯片2上鲍氏腔入口通道14的末端通孔分别与第三芯片3上小动脉传出微通道24、25、26、27、28、29的前端圆形凹槽重合;使第二芯片2上的过滤液第一通孔21与第三芯片3上的过滤液第二通孔38重合;使第二芯片2上的第一出口通孔22与第三芯片3上的第二小动脉出口通道30的末端圆孔重合;通过这些结构的对齐可确定第二芯片2和第三芯片3的相对位置。然后,将第三芯片3上的第二液体容置槽37与第四芯片4上的第三液体容置槽46对齐,将第三芯片3上的鲍氏通孔31、32、33、34、35、36分别与第四芯片4上近端小管微通道44、43、42、41、40、39的入口圆形凹槽对齐;将第三芯片3上的过滤液第二通孔38与第四芯片4上第二过滤液出口通道45出口端的圆形凹槽对齐;通过这些结构的对齐可确定第三芯片3和第四芯片4的相对位置,肾小球芯片设计的组装即可完成。具体的,第一芯片1、第二芯片2、第三芯片3和第四芯片4可以通过边缘10个螺丝钉紧固。具体的,第一芯片1和第二芯片2之间,第二芯片2和第三芯片3之间,第三芯片3和第四芯片4之间可以均分别通过夹一层硅胶膜,提高芯片的密封性。The assembly method of the glomerulus chip design can be: arrange the
本申请提供的肾小球芯片设计用于体外构建肾小球模型,具体过程为:The glomerulus chip provided by this application is designed to construct a glomerulus model in vitro, and the specific process is as follows:
将取自血浆分离器的中空纤维末端(~3cm)用等量的硅胶包裹起来,然后放入60℃的干燥箱中干燥20min至硅胶完全干燥;将所述干燥的中空纤维沿硅胶包裹部分的中间剪开以暴露出中空通道,并弯曲成“∝”形;将所述弯曲的中空纤维放在第二芯片2上的鲍氏腔15、16、17、18、19、20中,具体的,中空纤维弯曲的主要部分放置在鲍氏腔15、16、17、18、19和20中,两端分别嵌入第二芯片2上的鲍氏腔入口通道14里,并用硅胶固定,使培养基仅能通过中空纤维的内部管腔,从而模拟人肾小球毛细血管簇状结构;将中空纤维用人纤连蛋白(0.5mg/mL;用无菌的PBS直接配制)包被1小时(37℃,5%CO2)以支持足细胞的粘附和生长;将30μL足细胞悬液(1×107cells/mL)接种到鲍氏腔15、16、17、18、19和20中的中空纤维表面,并在培养箱中孵育两个小时,以促进细胞在中空纤维管表面粘附。将硅树脂膜(厚度:~0.5mm)夹在每两层芯片之间,并完成所述的芯片组装过程。用5mL注射器将1mL内皮细胞悬浮液(2×105cells/mL)通过第一芯片1上的小动脉入口5灌注到中空纤维中,静置2h以支持内皮细胞在中空纤维内表面粘附。将无菌蠕动管与装有60mL细胞培养基的培养基瓶连接,并放置在培养箱中。培养基被蠕动泵以0.2mL/h的速度驱动,通过第一芯片1上的小动脉入口5,然后分别进入六个鲍氏腔15、16、17、18、19和20中的纤维管中,流经第三芯片3上的小动脉传出微通道24、25、26、27、28和29,最后从第一芯片1上的小动脉出口7返回培养基瓶,另一部分培养基被鲍氏腔15、16、17、18、19和20中的纤维管(肾小球毛细血管结构)过滤后流经第四芯片4上的近端小管微通道39、40、41、42、43、44并返回第一芯片1上的过滤液出口6,模拟了人体内的血液过滤行为。Wrap the hollow fiber end (~3cm) taken from the plasma separator with an equal amount of silica gel, and then put it in a drying oven at 60°C for 20 minutes until the silica gel is completely dry; place the dried hollow fiber along the silica gel wrapped part Cut in the middle to expose the hollow channel, and bend it into a "∝"shape; place the bent hollow fiber in the Bowman cavity 15, 16, 17, 18, 19, 20 on the second chip 2, specifically , the main part of the hollow fiber bending is placed in the Bowman cavity 15, 16, 17, 18, 19 and 20, and the two ends are respectively embedded in the Bowman cavity inlet channel 14 on the second chip 2, and fixed with silica gel, so that the culture medium It can only pass through the inner lumen of the hollow fiber, thereby simulating the cluster structure of human glomerular capillaries; the hollow fiber is coated with human fibronectin (0.5mg/mL; directly prepared with sterile PBS) for 1 hour (37°C , 5% CO 2 ) to support the adhesion and growth of podocytes; inoculate 30 μL of podocyte suspension (1×10 7 cells/mL) into the hollows of Bowman chambers 15, 16, 17, 18, 19, and 20 fiber surface, and incubated in the incubator for two hours to promote cell adhesion on the surface of the hollow fiber tube. A silicone resin film (thickness: ~0.5 mm) was sandwiched between every two layers of chips, and the chip assembly process was completed as described. Using a 5 mL syringe, 1 mL of endothelial cell suspension (2×10 5 cells/mL) was perfused into the hollow fiber through the
本申请可以实现体外肾小球毛细血管结构的模拟,同时可以实现分离的毛细血管簇和鲍氏腔,为当前存在的肾小球模型仿生程度较低的问题提供解决思路,基于本申请涉及的肾小球芯片,将中空纤维束以“∝”形的方式封装于芯片的鲍氏腔中,在纤维管的两侧分别接种足细胞和内皮细胞,从而体外模拟肾小球毛细血管结构,实现了分离的肾小球毛细血管簇和鲍氏腔,提高了肾小球模型的生理相似性。芯片1上的过滤液出口6,模拟了人体内的血液过滤行为。This application can realize the simulation of glomerular capillary structure in vitro, and can realize separated capillary clusters and Bowman's cavity at the same time, and provide solutions for the problems of low bionic degree of glomerular models currently existing, based on the aspects involved in this application The glomerular chip encapsulates the hollow fiber bundle in the Bowman cavity of the chip in a "∝" shape, and inoculates podocytes and endothelial cells on both sides of the fiber tube, thereby simulating the glomerular capillary structure in vitro and realizing Isolated glomerular capillary tufts and Bowman's lumen improve the physiological similarity of the glomerular model. The
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110919100.4A CN113621515B (en) | 2021-08-11 | 2021-08-11 | Glomerular chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110919100.4A CN113621515B (en) | 2021-08-11 | 2021-08-11 | Glomerular chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113621515A CN113621515A (en) | 2021-11-09 |
CN113621515B true CN113621515B (en) | 2023-06-02 |
Family
ID=78384396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110919100.4A Active CN113621515B (en) | 2021-08-11 | 2021-08-11 | Glomerular chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113621515B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113174332A (en) * | 2021-05-06 | 2021-07-27 | 华东理工大学 | Bionic kidney organ chip structure and bionic liver and kidney chip structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209602553U (en) * | 2018-11-29 | 2019-11-08 | 大连医科大学附属第一医院 | Three-dimensional multi-layer bionic kidney micro-control flow chip |
US11840683B2 (en) * | 2019-05-10 | 2023-12-12 | Children's Hospital Los Angeles | Glomerulus on a chip to recapitulate glomerular filtration barrier |
KR102285598B1 (en) * | 2020-04-01 | 2021-08-05 | 가톨릭대학교 산학협력단 | Kidney Organoids Having a Nephron-like Structure and Methods of Preparing the Same |
-
2021
- 2021-08-11 CN CN202110919100.4A patent/CN113621515B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113174332A (en) * | 2021-05-06 | 2021-07-27 | 华东理工大学 | Bionic kidney organ chip structure and bionic liver and kidney chip structure |
Also Published As
Publication number | Publication date |
---|---|
CN113621515A (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8968543B2 (en) | Microfluidic system and method for assembling and for subsequently cultivating, and subsequent analysis of complex cell arrangements | |
Zhang et al. | Recent Advances in Microfluidic Platforms for Programming Cell‐Based Living Materials | |
CN103215185B (en) | Micro-fluid control device capable of simultaneously exerting mechanical stimulation and chemical stimulation | |
EP3119870B1 (en) | Dynamic multi organ plate | |
CN115192807B (en) | Oxygenator and external membrane pulmonary oxygenation device | |
CN113621515B (en) | Glomerular chip | |
CN108485975A (en) | Bionical chip kidney | |
CN218459549U (en) | Micro-fluidic chip | |
CN102600520B (en) | Hemodialyzer | |
CN111575187B (en) | A multi-organ chip and its use method | |
US10927335B2 (en) | Microfluidic body-on-a-chip device and methods of use thereof | |
CN117721019A (en) | Vascularized organ chip and application thereof | |
CN117384760A (en) | An organoid model with barrier structure and its construction method | |
CN212833765U (en) | Perfusion type bioreactor for bioartificial liver | |
CN202027968U (en) | Perfusion type biological artificial liver reactor based on dual-layer nitrocellulose membrane | |
CN101357084B (en) | Bioartificial renal tubule bioreactor and its application | |
US20240110136A1 (en) | Organ-on-a-chip and biological function reproduction method | |
CN111500445A (en) | High-flux multi-organ chip and using method thereof | |
CN114107047B (en) | Three-dimensional microscaffold chimeric flow channel for multi-cell co-culture based on two-photon lithography | |
CN222411621U (en) | Organoid culture device and dynamic fluid organoid culture system | |
CN221720837U (en) | Three-dimensional vascular chip device for in-vitro perfusion culture | |
CN215900526U (en) | Super high molecular artificial lung oxygenation module | |
CN118516234A (en) | Multi-flow-field controlled vascularized organ chip and method | |
CN214142391U (en) | Micro-fluidic device for cell culture | |
US20230076661A1 (en) | Microfluidic device for analyzing a membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |