CN113612544B - Optical chaotic secret communication system with four-dimensional secret key space - Google Patents
Optical chaotic secret communication system with four-dimensional secret key space Download PDFInfo
- Publication number
- CN113612544B CN113612544B CN202110789779.XA CN202110789779A CN113612544B CN 113612544 B CN113612544 B CN 113612544B CN 202110789779 A CN202110789779 A CN 202110789779A CN 113612544 B CN113612544 B CN 113612544B
- Authority
- CN
- China
- Prior art keywords
- optical
- coupler
- photodetector
- gires
- phase modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 69
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 40
- 238000004891 communication Methods 0.000 title claims abstract description 31
- 239000000835 fiber Substances 0.000 claims abstract description 47
- 239000006185 dispersion Substances 0.000 claims abstract description 9
- 238000002310 reflectometry Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/85—Protection from unauthorised access, e.g. eavesdrop protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5161—Combination of different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Security & Cryptography (AREA)
- Optical Communication System (AREA)
Abstract
具有四维密钥空间的光混沌保密通信系统,发射端的掺铒光纤放大器发出光信号依次通过第一相位调制器、第一光纤布拉格光栅、第二相位调制器、第一耦合器、第一Gires‑Tournois干涉仪级联群、第一可调延迟线、第一光电探测器和第一射频放大器后回到第二相位调制器;第一耦合器依次通过标准单模光纤、色散补偿光纤、光放大器后与接收端的第二耦合器相连,第二耦合器依次通过第二Gires‑Tournois干涉仪级联群、第二可调延迟线、第二光电探测器、第二射频放大器后与第三相位调制器第一端口相连,第三相位调制器第二端口接第二耦合器,第三相位调制器第三端口通过第二光纤布拉格光栅接第三光电探测器;发射端的激光器依次通过同相正交调制器、第四光电探测器接入第一相位调制器。
An optical chaotic secure communication system with a four-dimensional key space, the erbium-doped fiber amplifier at the transmitting end sends out an optical signal that passes through the first phase modulator, the first fiber Bragg grating, the second phase modulator, the first coupler, and the first Gires‑ The Tournois interferometer cascade group, the first adjustable delay line, the first photodetector and the first RF amplifier return to the second phase modulator; the first coupler sequentially passes through standard single-mode fiber, dispersion compensation fiber, and optical amplifier After that, it is connected to the second coupler at the receiving end. The second coupler passes through the second Gires‑Tournois interferometer cascade group, the second adjustable delay line, the second photodetector, and the second radio frequency amplifier in sequence, and then modulates the third phase with the third coupler. The first port of the third phase modulator is connected to the second coupler, the third port of the third phase modulator is connected to the third photodetector through the second fiber Bragg grating; the laser at the transmitting end is sequentially modulated by in-phase quadrature The device and the fourth photodetector are connected to the first phase modulator.
Description
技术领域technical field
本发明属于光信息技术领域,具体涉及一种具有四维密钥空间的光混沌保密通信系统。The invention belongs to the technical field of optical information, in particular to an optical chaotic secure communication system with a four-dimensional key space.
背景技术Background technique
混沌现象是指非线性系统中出现的确定性、类随机、有界但不收敛的过程。将混沌现象应用于通信技术领域可实现基于物理层的硬件加密,与基于应用层数字加解密的传统保密通信系统相比具有更强的安全性。光混沌系统本身容易搭建、易于复制,并且其产生的混沌信号却对初始条件极度敏感,在两个完全相同的光混沌系统中,输入一个微小的差异,都会使结果产生巨大的变化。因此,可利用光混沌系统的易复制性在发射端和接收端搭建相同的混沌动力学,对信息进行加解密操作。Chaos is a deterministic, quasi-random, bounded but non-convergent process that occurs in nonlinear systems. Applying the chaos phenomenon to the field of communication technology can realize the hardware encryption based on the physical layer, which has stronger security compared with the traditional secure communication system based on the digital encryption and decryption of the application layer. The optical chaotic system itself is easy to build and replicate, and the chaotic signal it generates is extremely sensitive to the initial conditions. In two identical optical chaotic systems, a small difference in input will cause a huge change in the results. Therefore, the same chaotic dynamics can be built at the transmitting end and the receiving end by using the easy duplication of the optical chaotic system to encrypt and decrypt information.
在整个光混沌保密通信系统中,保密的关键在于发射端参数的隐藏以及较大的密钥空间,较大的密钥空间使第三方无法采用精确推测出发射端参数,保证了加密信息的抗截获性,使未经授权者无法复制发射端的混沌动力学,有效提升了信息的保密性,保证了通信的安全性。In the entire optical chaotic secure communication system, the key to confidentiality lies in the concealment of parameters at the transmitting end and a larger key space. The larger key space prevents the third party from accurately inferring the parameters of the transmitting end, which ensures the resistance of encrypted information. Interceptability makes it impossible for unauthorized persons to copy the chaotic dynamics of the transmitting end, effectively improving the confidentiality of information and ensuring the security of communication.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决光混沌通信系统的信息保密性问题,提供了一种具有四维密钥空间的光混沌保密通信系统。The purpose of the present invention is to provide an optical chaotic secure communication system with a four-dimensional key space in order to solve the information confidentiality problem of the optical chaotic communication system.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
具有四维密钥空间的光混沌保密通信系统,包括发射端和接收端;发射端包括掺铒光纤放大器,掺铒光纤放大器发出第一光信号依次通过第一相位调制器、第一光纤布拉格光栅、第二相位调制器、第一耦合器、第一Gires-Tournois干涉仪级联群、第一可调延迟线、第一光电探测器和第一射频放大器后回到第二相位调制器;第一耦合器依次通过标准单模光纤、色散补偿光纤、光放大器后与接收端的第二耦合器相连,第二耦合器依次通过第二Gires-Tournois干涉仪级联群、第二可调延迟线、第二光电探测器、第二射频放大器后与第三相位调制器的第一端口相连,第三相位调制器的第二端口连接第二耦合器,第三相位调制器的第三端口通过第二光纤布拉格光栅连接第三光电探测器;发射端的激光器依次通过同相正交调制器、第四光电探测器接入第一相位调制器。An optical chaotic secure communication system with a four-dimensional key space includes a transmitting end and a receiving end; the transmitting end includes an erbium-doped fiber amplifier, and the erbium-doped fiber amplifier sends out a first optical signal through the first phase modulator, the first fiber Bragg grating, the first optical fiber The second phase modulator, the first coupler, the first cascade of Gires-Tournois interferometers, the first tunable delay line, the first photodetector and the first RF amplifier return to the second phase modulator; the first The coupler is connected to the second coupler at the receiving end through the standard single-mode fiber, the dispersion compensation fiber, and the optical amplifier in turn. The second coupler passes through the second Gires-Tournois interferometer cascade group, the second adjustable delay line, the second The second photodetector and the second RF amplifier are connected to the first port of the third phase modulator, the second port of the third phase modulator is connected to the second coupler, and the third port of the third phase modulator is connected to the second optical fiber The Bragg grating is connected to the third photodetector; the laser at the transmitting end is sequentially connected to the first phase modulator through the in-phase quadrature modulator and the fourth photodetector.
激光器产生的第二光信号经过同相正交调制器及第四光电探测器后与掺铒光纤放大器在第一相位调制器中发生调制,调制后的信号在第一光纤布拉格光栅中实现相位到强度的转化,转化后的信号通过第二相位调制器进行调制,调制后的信号通过第一耦合器分为光信号三和光信号四,光信号三馈入信道中传输,光信号四依次通过第一Gires-Tournois干涉仪级联群、第一可调延迟线、第一光电探测器和第一射频放大器后输入至第二相位调制器。光信号三依次通过标准单模光纤、色散补偿光纤、光放大器后经过第二耦合器,第二耦合器将光信号三分为光信号五和光信号六,光信号五通过第二Gires-Tournois干涉仪级联群、第二可调延迟线、第二光电探测器、第二射频放大器后,与光信号六在第三相位调制器中调制后输出,输出的光信号通过第二光纤布拉格光栅及第三光电探测器。The second optical signal generated by the laser is modulated with the erbium-doped fiber amplifier in the first phase modulator after passing through the in-phase quadrature modulator and the fourth photodetector, and the modulated signal realizes phase-to-intensity in the first fiber Bragg grating The converted signal is modulated by the second phase modulator, and the modulated signal is divided into optical signal three and optical signal four through the first coupler. Optical signal three is fed into the channel for transmission, and optical signal four passes through the first coupler in turn. The cascaded group of Gires-Tournois interferometers, the first adjustable delay line, the first photodetector and the first radio frequency amplifier are then input to the second phase modulator. The
作为优选方案,Gires-Tournois干涉仪级联群可以由不同腔长、反射率的Gires-Tournois干涉仪组成,Gires-Tournois干涉仪级联群会对不同频率的光信号产生不同程度的时间延迟。As a preferred solution, the cascade group of Gires-Tournois interferometers can be composed of Gires-Tournois interferometers with different cavity lengths and reflectivities, and the cascade groups of Gires-Tournois interferometers will produce different degrees of time delay for optical signals of different frequencies.
作为优选方案,所述发射端与接收端之间相对应器件的参数相同,即:第一相位调制器、第二相位调制器、第三相位调制器的参数相同。第一光栅布拉格光纤、第二光纤布拉格光栅的参数相同。第一光耦合器、第二光耦合器的参数相同第一Gires-Tournois干涉仪级联群、第二Gires-Tournois干涉仪级联群的参数相同。第一可调延迟线、第二可调延迟线的参数相同。第一光电探测器、第二光电探测器、第三光电探测器、第四光电探测器的参数相同。第一射频放大器、第二射频放大器的参数相同。As a preferred solution, the parameters of the corresponding devices between the transmitting end and the receiving end are the same, that is, the parameters of the first phase modulator, the second phase modulator, and the third phase modulator are the same. The parameters of the first grating Bragg fiber and the second fiber Bragg grating are the same. The parameters of the first optical coupler and the second optical coupler are the same, and the parameters of the first Gires-Tournois interferometer cascade group and the second Gires-Tournois interferometer cascade group are the same. The parameters of the first adjustable delay line and the second adjustable delay line are the same. The parameters of the first photodetector, the second photodetector, the third photodetector, and the fourth photodetector are the same. The parameters of the first radio frequency amplifier and the second radio frequency amplifier are the same.
作为优选方案,所有耦合器的耦合系数都为0.5。As a preferred solution, all couplers have a coupling coefficient of 0.5.
作为优选方案,所述激光器产生的信号波长为1550nm,掺铒光纤放大器产生的ASE噪声(第一光信号)的带宽为42nm、中心频率为193.4Thz。As a preferred solution, the wavelength of the signal generated by the laser is 1550 nm, the bandwidth of the ASE noise (first optical signal) generated by the erbium-doped fiber amplifier is 42 nm, and the center frequency is 193.4 Thz.
作为优选方案,接收端直接输出恢复的明文信息。As a preferred solution, the receiving end directly outputs the restored plaintext information.
本发明与现有技术相比,有益效果是:Compared with the prior art, the present invention has the following beneficial effects:
本发明具有四维密钥空间的光混沌通信系统,其具有的四维密钥空间分别是光纤布拉格光栅的累积色散度、可调延迟线延迟时间、Gires-Tournois干涉仪级联群时延曲线及Gires-Tournois干涉仪级联群级联个数,扩大了密钥空间,提高了信息的保密性,并实现了相位和强度的双混沌加密,可以与更高级的调制方式如16QAM相结合,进行信息的保密传递。The present invention has an optical chaotic communication system with a four-dimensional key space. The four-dimensional key space of the present invention is the cumulative dispersion degree of the fiber Bragg grating, the delay time of the adjustable delay line, the Gires-Tournois interferometer cascaded group delay curve and the Gires-Tournois interferometer cascaded group delay curve. -The number of cascades of Tournois interferometer cascade groups expands the key space, improves the confidentiality of information, and realizes double chaotic encryption of phase and intensity, which can be combined with more advanced modulation methods such as 16QAM to carry out information confidential transmission.
附图说明Description of drawings
图1是本发明实施例的具有四维密钥空间的光混沌保密通信系统的架构示意图。FIG. 1 is a schematic structural diagram of an optical chaotic secure communication system with a four-dimensional key space according to an embodiment of the present invention.
图2为本发明实施例的具有四维密钥空间的光混沌保密通信系统中电光时延反馈环反馈强度与发射端输出信号强度的混沌分岔图。FIG. 2 is a chaotic bifurcation diagram of the feedback strength of the electro-optical delay feedback loop and the strength of the output signal at the transmitter in the optical chaotic secure communication system with a four-dimensional key space according to an embodiment of the present invention.
图3为本发明实施例的具有四维密钥空间的光混沌保密通信系统中电光时延反馈环反馈强度与发射端输出信号相位的混沌分岔图。FIG. 3 is a chaotic bifurcation diagram of the feedback strength of the electro-optical delay feedback loop and the phase of the output signal at the transmitter in the optical chaotic secure communication system with a four-dimensional key space according to an embodiment of the present invention.
图4为本发明实施例的具有四维密钥空间的光混沌保密通信系统中发送端输出信号x(t)的混沌吸引子。FIG. 4 is the chaotic attractor of the output signal x(t) of the transmitting end in the optical chaotic secure communication system with four-dimensional key space according to the embodiment of the present invention.
具体实施方式Detailed ways
为了更清楚地说明本发明实施例,下面将对照附图说明本发明的具体实施方式。显而易见地,以下描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。In order to describe the embodiments of the present invention more clearly, the following will describe specific embodiments of the present invention with reference to the accompanying drawings. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained from these drawings without creative efforts, and obtain other implementations.
如图1所示,本发明实施例具有四维密钥空间的光混沌保密通信系统,包括发送端和接收端,发射端与接收端相连,具体元器件包括掺铒光纤放大器1、第一相位调制器2-1、第一光栅布拉格光纤3-1、第二相位调制器2-2、第一光耦合器4-1、第一Gires-Tournois干涉仪级联群5-1、第一可调延迟线6-1、第一光电探测器7-1、第一射频放大器8-1、激光器9、同相正交调制器10、第四光电探测器7-4、标准单模光纤11、色散补偿光纤12、光放大器13、第二光耦合器4-2、第二Gires-Tournois干涉仪级联群5-2、第二可调延迟线6-2、第二光电探测器7-2、第二射频放大器8-2、第三相位调制器2-3、第二光纤布拉格光栅3-2、第三光电探测器7-3。As shown in Figure 1, an optical chaotic secure communication system with a four-dimensional key space in an embodiment of the present invention includes a transmitter and a receiver, the transmitter is connected to the receiver, and the specific components include an erbium-doped
上述元器件的具体连接方式如下:发射端的掺铒光纤放大器1的端口a1与第一相位调制器2-1的第一端口b1相连,第一相位调制器2-1的第三端口b3与第一光纤布拉格光栅3-1的第一端口c1相连,第一光纤布拉格光栅3-1的第二端口c2与第二相位调制器2-2的第一端口d1相连,第二相位调制器2-2的第二端口d2与第一光耦合器4-1的第一端口e1相连,第一光耦合器4-1的第二端口e2与第一Gires-Tournois干涉仪级联群5-1的第一端口f1相连,第一Gires-Tournois干涉仪级联群5-1的第二端口f2与第一可调延迟线6-1的第一端口g1相连,第一可调延迟线6-1的第二端口g2与第一光电探测器7-1的第一端口h1相连,第一光电探测器7-1的第二端口h2与第一射频放大器8-1的第一端口i1相连,第一射频放大器8-1的第二端口i2与第二相位调制器2-2的第三端口d3相连,从第二相位调制器2-2的d2端口到d3端口形成一个电光时延反馈环。The specific connection mode of the above-mentioned components is as follows: the port a1 of the erbium-doped
激光器9的输出端口u1与同相正交调制器10的第一端口v1相连,同相正交调制器10的第二端口v2与第四光电探测器7-4的第一端口w1相连,第四光电探测器7-4的第二端口w2与第一相位调制器2-1的第二端口b2相连。The output port u1 of the laser 9 is connected to the first port v1 of the in-
第一光耦合器4-1的第三端口e3与标准单模光纤11的第一端口j1相连,标准单模光纤11的第二端口j2与色散补偿光纤12的第一端口k1相连,色散补偿光纤12的第二端口k2与光放大器13的第一端口l1相连,光放大器13的第二端口l2与第二光耦合器4-2的第一端口m1相连,第二光耦合器4-2的第二端口m2与第二Gires-Tournois干涉仪级联群5-2的第一端口n1相连,第二Gires-Tournois干涉仪级联群5-2的第二端口n2与第二可调延迟线6-2的第一端口o1相连,第二可调延迟线6-2的第二端口o2与第二光电探测器7-2的第一端口p1相连,第二光电探测器7-2的第二端口p2与第二射频放大器8-2的第一端口q1相连,第二射频放大器8-2的第二端口q2和第三相位调制器2-3的第一端口r1相连,第三相位调制器2-3的第二端口r2与第二光耦合器4-2的第三端口m3相连,第三相位调制器2-3的第三端口r3和第二光纤布拉格光栅3-2的第一端口s1相连,第二光纤布拉格光栅3-2的第二端口s2与第三光电探测器7-3的第一端口t1相连,第三光电探测器7-3的第二端口t2输出恢复的信息。The third port e3 of the first optical coupler 4-1 is connected to the first port j1 of the standard single-
本实施例公开的具有四维密钥空间的光混沌保密通信系统,其对信息加密和扩大密钥空间的原理为:利用掺铒光纤放大器产生的ASE噪声作为随机序列对明文信息进行相位调制,在相位上对明文信息进行加密,相位加密后的信号送入光纤布拉格光栅中,使相位加密转化为强度加密,并提供第一维密钥—光纤布拉格光栅的累积色散度。随后,强度加密信号进入带有Gires-Tournois干涉仪级联群的电光时延反馈环中实现相位加密,Gires-Tournois干涉仪级联群可以对不同频率的光信号产生不同程度的时延,大大增强了混沌系统参数的复杂性,最终对明文信息的相位和强度实现双加密。在该系统中,混沌载波可以有效隐藏Gires-Tournois干涉仪级联群的时延曲线信息,而时延信息曲线又防止了混沌系统参数被轻易破解,从而共同构建了一个具有鲁棒性的保密通信系统。电光时延反馈环中可调延迟线产生的时间延迟、Gires-Tournois干涉仪的时延曲线及Gires-Tournois干涉仪的级联个数分别提供三维密钥,进一步扩大了密钥空间,增强了混沌系统参数的复杂程度,提高了混沌通信系统的安全性。The optical chaotic secure communication system with a four-dimensional key space disclosed in this embodiment, the principle of encrypting information and expanding the key space is as follows: using the ASE noise generated by the erbium-doped fiber amplifier as a random sequence to phase-modulate the plaintext information, The plaintext information is encrypted on the phase, and the phase-encrypted signal is sent into the fiber Bragg grating to convert the phase encryption into intensity encryption, and provide the first-dimensional key—the cumulative dispersion degree of the fiber Bragg grating. Then, the intensity-encrypted signal enters the electro-optical delay feedback loop with Gires-Tournois interferometer cascade group to realize phase encryption. The complexity of the parameters of the chaotic system is enhanced, and finally the phase and intensity of the plaintext information are double encrypted. In this system, the chaotic carrier can effectively hide the delay curve information of the cascaded Gires-Tournois interferometer group, and the delay information curve prevents the parameters of the chaotic system from being easily deciphered, thus jointly constructing a robust security Communication Systems. The time delay generated by the adjustable delay line in the electro-optical delay feedback loop, the time delay curve of the Gires-Tournois interferometer and the number of cascades of the Gires-Tournois interferometer respectively provide a three-dimensional key, which further expands the key space and enhances the The complexity of the parameters of the chaotic system improves the security of the chaotic communication system.
采用本实施例的具有四维密钥空间的光混沌通信系统实现通信的过程如下:The process of using the optical chaotic communication system with the four-dimensional key space of the present embodiment to realize communication is as follows:
1.利用掺铒光纤放大器产生的ASE噪声作为随机熵源对同相正交调制器输出的16QAM信息进行相位加密,将加密后的信息经过光纤布拉格光栅实现相位加密到强度加密的转换,得到强度加密波形。1. Use the ASE noise generated by the erbium-doped fiber amplifier as a random entropy source to phase-encrypt the 16QAM information output by the in-phase quadrature modulator, and pass the encrypted information through the fiber Bragg grating to realize the conversion from phase encryption to intensity encryption, and obtain intensity encryption. waveform.
2.强度加密波形进入电光时延反馈环中,通过Gires-Tournois干涉仪级联群和可调延迟线产生时延,通过光电检测器变为电信号,经过射频放大器放大反馈到相位调制器中,在反馈环内对明文的相位信息进行加密,并扩大密钥空间为四维。2. The intensity encrypted waveform enters the electro-optical time delay feedback loop, generates time delay through the cascade group of Gires-Tournois interferometers and adjustable delay line, turns into an electrical signal through the photoelectric detector, and is amplified by the RF amplifier and fed back to the phase modulator , encrypt the phase information of the plaintext in the feedback loop, and expand the key space to four dimensions.
3.在接收端通过参数完全相同的电光时延反馈环和光纤布拉格光栅进行解密后,通过光电探测器转化为电信号输出,输出即为传递的明文信息。3. After decryption through the electro-optical delay feedback loop and fiber Bragg grating with the same parameters at the receiving end, it is converted into an electrical signal output by a photodetector, and the output is the transmitted plaintext information.
本发明实现了四维密钥空间,扩大了密钥空间,提高了信息的保密性,并实现了相位和强度的双混沌加密,可以与更高级的调制方式如16QAM相结合,进行信息的保密传递。The invention realizes the four-dimensional key space, expands the key space, improves the confidentiality of information, and realizes the double chaotic encryption of phase and intensity, and can be combined with a more advanced modulation mode such as 16QAM to carry out the confidential transmission of information .
以上为本发明的优选实施方式,并不限定本发明的保护范围,对于本领域普通技术人员而言,依据本发明提供的研究思路,在具体的设计方案上会有改进之处,而这些改变也应当视为本发明的保护范围。The above are the preferred embodiments of the present invention and do not limit the protection scope of the present invention. For those of ordinary skill in the art, based on the research ideas provided by the present invention, there will be improvements in specific design schemes, and these changes It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110789779.XA CN113612544B (en) | 2021-07-13 | 2021-07-13 | Optical chaotic secret communication system with four-dimensional secret key space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110789779.XA CN113612544B (en) | 2021-07-13 | 2021-07-13 | Optical chaotic secret communication system with four-dimensional secret key space |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113612544A CN113612544A (en) | 2021-11-05 |
CN113612544B true CN113612544B (en) | 2022-08-19 |
Family
ID=78304533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110789779.XA Active CN113612544B (en) | 2021-07-13 | 2021-07-13 | Optical chaotic secret communication system with four-dimensional secret key space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113612544B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114337832B (en) * | 2021-12-22 | 2024-02-09 | 杭州电子科技大学 | Key control optical chaos communication system based on chaos coding |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113890721A (en) * | 2021-08-25 | 2022-01-04 | 杭州电子科技大学 | Optical chaotic secret communication system with random key and complex entropy source |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2743459B1 (en) * | 1996-01-05 | 1998-04-03 | France Telecom | OPTICAL TRANSMISSION SYSTEM USING DETERMINISTIC CHAOS ENCRYPTION |
WO2017034112A1 (en) * | 2015-08-24 | 2017-03-02 | 한국과학기술원 | High-speed communication system and method with enhanced security |
CN107769859B (en) * | 2017-10-19 | 2019-08-13 | 华中科技大学 | A kind of security photo-communication system based on phase-magnitude conversion |
CN107508665B (en) * | 2017-10-23 | 2020-02-18 | 南京大学 | A high-dimensional chaotic laser secure communication system |
CN108667596B (en) * | 2018-03-21 | 2021-04-30 | 杭州电子科技大学 | Chaos secret communication system with time delay signature hiding electro-optical feedback of digital secret key |
CN109039465A (en) * | 2018-09-29 | 2018-12-18 | 杭州电子科技大学 | A kind of secret signalling based on electric light phase chaos |
CN109450613B (en) * | 2018-11-14 | 2021-08-20 | 杭州电子科技大学 | A two-way communication system based on optoelectronic phase chaos |
CN109600214B (en) * | 2018-12-25 | 2021-08-20 | 杭州电子科技大学 | Chaotic Communication System Using Frequency Dependent Delay Modules as Hard Keys |
CN110086544B (en) * | 2019-05-06 | 2020-09-18 | 杭州电子科技大学 | Full-optical-intensity and electro-optical-phase hybrid chaotic bidirectional communication system |
CN110120838B (en) * | 2019-05-08 | 2020-10-09 | 杭州电子科技大学 | Bidirectional Secure Communication System with Polarization Rotation and Phase and Intensity Chaos |
CN112838921B (en) * | 2020-12-31 | 2022-06-10 | 杭州电子科技大学 | A chaotic two-way secure communication system with multiple feedback and electro-optical phase oscillation |
CN112865951B (en) * | 2021-01-25 | 2022-06-14 | 杭州电子科技大学 | Electro-optical phase mutual coupling bidirectional chaotic communication system |
-
2021
- 2021-07-13 CN CN202110789779.XA patent/CN113612544B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113890721A (en) * | 2021-08-25 | 2022-01-04 | 杭州电子科技大学 | Optical chaotic secret communication system with random key and complex entropy source |
Also Published As
Publication number | Publication date |
---|---|
CN113612544A (en) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109462479B (en) | A secure optical fiber communication system | |
CN107769859B (en) | A kind of security photo-communication system based on phase-magnitude conversion | |
CN107086891B (en) | A Phase Compensation Method for Continuous Variable Quantum Key Distribution System | |
Wang et al. | Long-distance continuous-variable quantum key distribution with entangled states | |
CN108809638A (en) | Device and method for inveigling state tri-state quantum key distribution | |
CN108667596B (en) | Chaos secret communication system with time delay signature hiding electro-optical feedback of digital secret key | |
CN112260816B (en) | A high-speed physical key distribution system with enhanced security | |
CN112260824B (en) | A Gbps Physical Key Security Distribution System | |
CN104065421A (en) | A wavelength-hopping chaotic secure communication method and system based on multi-mode lasers | |
CN106712890A (en) | Transmitting terminal and receiving terminal of secure communication system | |
CN110120838A (en) | Two-way secure communication system with polarization rotation and phase and intensity chaos | |
CN109039465A (en) | A kind of secret signalling based on electric light phase chaos | |
CN114928411A (en) | Physical layer secret communication system based on chromatic dispersion-phase feedback loop encryption | |
CN111162893A (en) | A chaotic two-way secure communication system with delay signature hiding | |
CN109088716B (en) | A Bidirectional Chaotic Communication System Based on Vertical Surface Laser | |
CN113612544B (en) | Optical chaotic secret communication system with four-dimensional secret key space | |
CN106888053B (en) | Ultra-high-speed all-optical data real-time encryption/decryption system and method based on composite logic | |
CN104980228A (en) | Optical signal transmission method and device | |
CN114142933A (en) | A kind of security communication device and communication method based on multi-core optical fiber | |
CN114362914B (en) | A phase chaos laser communication system based on time-delay dual-balanced detection structure | |
Liu et al. | Research on the performance of multimode optical chaotic secure communication system with multidimensional keys and a complex entropy source | |
CN113890721B (en) | Optical chaotic secret communication system with random key and complex entropy source | |
CN115996093A (en) | Physical layer encryption system and method based on optical carrier driving chaotic laser synchronization | |
Lin et al. | Asynchronous secure communication scheme using a new modulation of message on optical chaos | |
Sampson et al. | High-speed random-channel cryptography in multimode fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |