CN113603148A - Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid - Google Patents

Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid Download PDF

Info

Publication number
CN113603148A
CN113603148A CN202110791865.4A CN202110791865A CN113603148A CN 113603148 A CN113603148 A CN 113603148A CN 202110791865 A CN202110791865 A CN 202110791865A CN 113603148 A CN113603148 A CN 113603148A
Authority
CN
China
Prior art keywords
zinc
iron
waste acid
resource utilization
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110791865.4A
Other languages
Chinese (zh)
Inventor
赵盈男
罗恒
华蔓
杨合雄
宋德生
石肖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan Siruier Chemical Co ltd
Sriel Environmental Science And Technology Co ltd
Original Assignee
Tangshan Siruier Chemical Co ltd
Sriel Environmental Science And Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tangshan Siruier Chemical Co ltd, Sriel Environmental Science And Technology Co ltd filed Critical Tangshan Siruier Chemical Co ltd
Priority to CN202110791865.4A priority Critical patent/CN113603148A/en
Publication of CN113603148A publication Critical patent/CN113603148A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The invention discloses a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid. The invention effectively solves the problem of serious zinc-iron separation entrainment; and respectively preparing the separated zinc and iron into iron oxide red pigment, zinc hydroxide and other products. Compared with the prior art for treating hot galvanizing waste liquid, the method has simple and easily controlled process and low process cost, and the prepared sediment (iron oxyhydroxide) is in a crystalline state and has good filtering performance; less zinc entrainment, less precipitated slag and high iron content in the slag, and the iron precipitation effect reaches 100 percent. The iron oxide red pigment which is a product with higher value can be prepared by proper treatment. Thereby realizing the resource and harmless utilization of the waste and having good application prospect.

Description

Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid
Technical Field
The invention relates to the technical field of environmental protection, in particular to a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid.
Background
Hot galvanizing, also called hot dip galvanizing, is the corrosion-resistant surface protection technology for steel with the widest application range and the largest usage amount at present. The total yield of metallic zinc is about 40% for hot galvanizing steel products every year all over the world. With the development of domestic economy, especially the development of automobiles, household appliances and construction industries, the demand of hot-dip galvanized steel sheets is increasing year by year in China. The rapid increase in the yield of hot dip galvanized steel sheets inevitably leads to the generation of a large amount of hot dip galvanizing waste water. The discharge of hot galvanizing waste water is estimated to be more than 1600 million tons in China according to 300 tons/day discharge of hot galvanizing waste water of a production enterprise producing 15 million tons of hot galvanizing steel plates every year.
A large amount of hydrochloric acid is adopted by a common hot galvanizing enterprise to carry out acid cleaning and rust removal on the metal surface, and two iron salts, namely ferric chloride and ferrous iron, are generated when a metal product is subjected to acid cleaning in the hydrochloric acid. Since pickled metals generally rust very little severely, much ferrous iron is produced. The content of hydrochloric acid is continuously reduced along with the proceeding of the pickling process, the content of metal ions in the acid liquor is continuously increased, when the concentration of the pickling liquor is lower than a specified value or the content of the metal ions in the pickling liquor exceeds an allowable limit value, the acid liquor loses the pickling effect, and at the moment, the hydrochloric acid is discarded and replaced by new acid. The zinc ions in the waste acid are generated by the fact that zinc on the hanging tool and the back plating part is dissolved into the pickling solution through the re-pickling. Thus, the main components of the spent acid produced by the pickling process are ferrous ions, zinc ions and small amounts of ferric ions. If the hot galvanizing waste water is not discharged through proper treatment, the ecological balance can be seriously damaged, and the production and life of local residents are seriously influenced.
The invention patent (CN103755080A) discloses a method for treating hot galvanizing pickling waste liquid by adopting an electrolytic method. The method respectively recycles the chlorine and the sodium hydroxide solution generated by electrolysis for the production of the plating assistant bath solution and the neutralization treatment of the waste acid solution, realizes the recycling of the zinc plating waste acid solution and reduces the wastewater discharge of the hot galvanizing process. The method has higher cost and does not fundamentally solve the problem of zinc and iron treatment in hot galvanizing waste acid.
The invention patent (94112437.1) discloses a method for treating galvanized waste water and recovering precipitate, which utilizes an aqueous solution containing caustic alkali, urea, hexamethylenetetramine, phosphoric acid or salt, bone glue and other substances to add a certain dosage into the galvanized waste water, and achieves the effective treatment of the galvanized waste water and the recovery of zinc oxide by adjusting the pH value of the waste water. This method consumes a large amount of chemical reagents and introduces more impurity ions.
The invention discloses a method for recovering zinc salt in chloride galvanizing wastewater in Chinese patent 200810060227.X, which mainly comprises the following steps: adjusting the pH value of the wastewater to 8-9, adding a sodium sulfide solution, stirring to generate a precipitate, standing, and separating and filter-pressing the precipitate after a period of time. The method needs to add a large amount of alkali liquor to adjust the pH at the early stage, and has higher cost.
The invention patent (200810117788.9) discloses a method for treating cold rolling electrogalvanizing waste water. The industrial slaked lime is added into the wastewater for neutralization, the pH value is controlled within the range of 8.5-9, and after precipitates are filtered, the standard discharge of the wastewater is realized. The pH value of the waste liquid treated by the method can meet the requirement, but a large amount of lime is consumed, and a large amount of sludge with the water content of 99 percent is generated and needs to be dried. And the sludge contains a large amount of metal salts, which causes secondary pollution, and most importantly, useful metal resources in the waste acid liquor cannot be recycled. Resulting in resource waste. Moreover, the ferric hydroxide can be used as a flocculating agent, and the traditional method can cause zinc to be adsorbed and carried by the ferric hydroxide and cannot achieve the effect of zinc-iron separation at all.
Yanpu reports that when J.Carrillo-Abad and the like adopt a single-chamber electrolytic cell to treat hot galvanizing pickling wastewater, Zn is redissolved after electrolysis for a certain timeElectrolytically generated Cl using Anion Exchange Membranes (AEM)2The positive electrode is not reached and re-dissolution of Zn is prevented. However, due to Cl2In the presence of, Fe2+Will react with Zn2+Co-depositing on the cathode, resulting in a significant reduction in the purity of the zinc. In order to prevent co-deposition of iron, AEM is replaced by Cation Exchange Membrane (CEM), acid washing wastewater is in the positive part, and the NAFION-117 membrane (CEM) allows Zn2+Preferentially passes through to the negative electrode, and Fe is in the positive electrode2+Is oxidized into Fe3+But not pass through. But due to Fe3+And the existence of the water-soluble organic wastewater can cause irreversible pollution to the membrane, shorten the service life of the membrane and increase the comprehensive treatment cost of the wastewater.
Disclosure of Invention
The invention aims to provide a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid, which has the advantages of simple treatment process, easy control and low cost.
In order to solve the technical problems, the invention adopts the following technical scheme:
a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid comprises the following steps:
(1) adding iron oxyhydroxide liquid crystal with the volume ratio of 5-20% into the waste acid liquid containing zinc; adding a sodium hydroxide solution at a certain flow rate, stirring, adjusting the pH value of the solution to 2-4.5, then beginning aeration at a certain speed, controlling the water bath to heat to 40-80 ℃, reducing the stirring speed, simultaneously adding alkali to keep the pH value of the solution at 2-4.5, reacting for a period of time, continuing aeration for a period of time after the pH value is not changed greatly, stopping the reaction, separating solid from liquid, and washing filter residues to obtain iron oxyhydroxide;
(2) adding liquid caustic soda into the filtered filtrate while stirring, adjusting the pH to 8-10, continuously stirring for a period of time, and filtering; so as to obtain zinc hydroxide precipitate.
Preferably, the step (1) further comprises drying the obtained iron oxyhydroxide in an oven, and then calcining the iron oxyhydroxide in a muffle furnace at the temperature of 600-800 ℃ for 3-4 hours to obtain the iron oxide red.
Preferably, the iron oxyhydroxide seed crystal of step (1) is prepared by the following method: pouring ferrous solution with certain concentration into a four-neck flask, adding alkali liquor to adjust the pH value to 7, adjusting the water bath temperature to 25-30 ℃, stirring, introducing air for aeration, and controlling the aeration speed; after the pH dropped to 2.5-3.5, no further change and the solution was orange, the seed preparation was complete.
Preferably, the alkali liquor is sodium hydroxide with the mass fraction of 30%.
Preferably, the concentration of ferric ions in the waste acid solution containing zinc in the step (1) is 0-1%.
Preferably, the step (1) comprises pretreating the zinc-containing waste acid liquor and then adding the ferric hydroxide crystal liquid, wherein the pretreatment of the zinc-containing waste acid liquor comprises the following steps: evaporating and concentrating to obtain a high-zinc-content waste acid liquid and a ferrous crystal product, adding iron powder into the high-zinc-content waste acid liquid to reduce ferric iron in the solution into ferrous iron, and filtering to obtain a zinc-containing waste acid filtrate.
Preferably, the step (1) "adding the sodium hydroxide solution at a certain flow rate, and stirring" includes: adding 5-15% sodium hydroxide solution at 5-20mL/min, and stirring at 350 rpm. The reduction of the stirring rate in the step (1) comprises reducing the stirring rate to 250 rpm. The continuous aeration time in the step (1) is 1-1.5 h.
Preferably, the stirring time in the step (2) is 10-30 min.
The method of the invention fully utilizes the characteristics of the contents of all components in the waste acid liquid containing zinc: the method comprises the steps of preparing iron in the waste acid solution into iron oxyhydroxide by using a slow oxidation hydrolysis method, performing fractional precipitation on zinc and iron in the waste acid solution, firstly separating the iron from the waste acid solution, and then adjusting the pH value to precipitate the zinc, wherein the method effectively solves the problem of serious zinc and iron separation entrainment; the separated zinc and iron can be respectively prepared into products such as iron oxide red pigment, zinc chloride and the like.
The invention has simple treatment process, easy control, low cost and high economic value of the product, can realize the aims of recycling and productizing the waste and has good application prospect.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to specific embodiments.
The invention discloses a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid. The invention effectively solves the problem of serious zinc-iron separation entrainment. The separated zinc and iron are respectively prepared into products such as iron oxide red pigment, zinc hydroxide and the like, so that the resource utilization of the zinc and iron containing waste liquid is realized.
The invention relates to a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid, which mainly comprises the following steps:
(1) preparation of iron oxyhydroxide crystals
Pouring ferrous solution with certain concentration into a four-neck flask, adding 30% alkali liquor to adjust the pH value to 7, controlling the water bath temperature to be 25-30 ℃, stirring, introducing air to perform aeration, and controlling the aeration speed; after the pH value is reduced to 2.5-3.5 and is not changed any more and the solution is orange, the preparation of the seed crystal is finished;
(2) preparation of iron oxyhydroxide
And (3) mixing zinc and iron: 4 (adjustable parameters) of the zinc-containing waste liquid is put into a round-bottom flask, and seed crystal liquid with the solution volume ratio of 5-20% is introduced. Then adding 5-15% sodium hydroxide solution at the speed of 10mL/min, stirring at 350rpm, adjusting pH to 2-4.5, aerating at a certain speed, heating in water bath to 40-80 deg.C, and reducing stirring speed to 250rpm, while continuously adding alkali to maintain pH at 2-4.5. Stopping adding alkali when the pH value is constant, continuing aerating for 1-1.5h, and stopping reaction; and (4) carrying out solid-liquid separation, and washing filter residues to obtain the iron oxyhydroxide.
(3) Zinc precipitation method
Adding liquid caustic soda into the filtered filtrate while stirring, adjusting pH to 8-10, continuously stirring for 10-30min, and filtering; so as to obtain zinc hydroxide precipitate.
(4) Preparation of iron oxide red pigments
And (3) putting the washed iron oxyhydroxide into an oven for drying, and then putting the dried iron oxyhydroxide into a muffle furnace for calcining at the temperature of 600-800 ℃ for 3-4 hours to obtain the iron oxide red.
The invention discloses a resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid. The invention effectively solves the problem of serious zinc-iron separation entrainment; and respectively preparing the separated zinc and iron into iron oxide red pigment, zinc hydroxide and other products.
Compared with the prior art for treating hot galvanizing waste liquid, the method has simple and easily controlled process and low process cost, and the prepared sediment (iron oxyhydroxide) is in a crystalline state and has good filtering performance; less zinc entrainment, less precipitated slag and high iron content in the slag, and the iron precipitation effect reaches 100 percent. The iron oxide red pigment which is a product with higher value can be prepared by proper treatment. Thereby realizing the resource and harmless utilization of the waste and having good application prospect.
Example 1
512.65g of filtered zinc-containing waste acid (the components comprise Fe2+ 10.701%, Fe3+ 0.573%, HCl 0.66% and Zn2+ 4.556%) in a 2L four-neck flask, weighing 52.32g of seed crystal suspension, wherein the early stage alkali adding speed is 10mL/min, the stirring speed is 350rpm, after the pH is adjusted to 3.5-4, air is blown in (the aeration speed is 10L/min), the water bath is heated to 65 ℃, the stirring speed is reduced to 250rpm, the pH is controlled to be 3.5-4 by continuously adding alkali, the pH is slowly changed, after the alkali addition is stopped, the air is continuously aerated for about one hour, the pH is basically unchanged, the preliminary oxidation reaction is judged not to be carried out, and the reaction is stopped. Iron oxyhydroxide was formed at this point and the filtrate was iron free (iron was completely precipitated) with a zinc content of about 0.695% on a discus basis.
Example 2
510.38g of filtered zinc-containing waste acid (the components comprise Fe2+ 5.064%, Fe3+ 0.573%, HCl 0.3% and Zn2+ 2.273%) in a 2L four-neck flask in a water bath, 51.08g of seed crystal suspension is weighed, the early stage alkali adding speed is 10mL/min, the stirring speed is 350rpm, after the pH value is adjusted to 3.5-4, air is blown in (the aeration speed is 10L/min), the water bath is heated to 65 ℃, the stirring speed is reduced to 250rpm, the pH value is controlled to 3.5-4 by continuously adding alkali, the pH value is slowly changed, after the alkali adding is stopped, the air is continuously aerated for about one hour, the pH value is basically unchanged, the preliminary oxidation reaction is judged not to be carried out, and the reaction is stopped. Iron oxyhydroxide was formed and the filtrate was iron free (iron was completely precipitated) and the zinc content of the discus base was about 1.2%.
Example 3
500.1g of filtered zinc-containing waste acid (the components comprise Fe2+ 4.24%, Fe3+ 0.15%, HCl 0.13% and Zn2+ 2.9%) in a 2L four-mouth flask in the hot galvanizing industry is weighed, 45g of seed crystal suspension is weighed, the early stage alkali adding speed is 10mL/min, the stirring speed is 350rpm, after the pH is adjusted to 3-3.5, air is blown in (the aeration speed is 10L/min), the temperature of the water bath is increased to 65 ℃, the stirring is reduced to 250rpm, the pH is controlled to 3-3.5 by continuously adding alkali, the pH is slowly changed, after the alkali adding is stopped, the air is continuously aerated for about one hour, the pH is basically unchanged, the preliminary oxidation reaction is judged not to be carried out, and the reaction is stopped. Iron oxyhydroxide was formed at this point and the filtrate was iron free (iron was completely precipitated) with a zinc content of about 2.04% on a discus basis.
Example 4
507.95g of filtered zinc-containing waste acid (the components comprise Fe2+ 5.064%, Fe3+ 0.573%, HCl 0.3% and Zn2+ 2.273%) in a 2L four-neck flask in a water bath pot, 45g of seed crystal suspension is weighed, the early stage alkali adding speed is 7mL/min, the stirring speed is 350rpm, after the pH is adjusted to 3-3.5, air is blown in (the aeration speed is 10L/min), the water bath is heated to 65 ℃, the stirring speed is reduced to 250rpm, the pH is controlled to 3-3.5 by continuously adding alkali, the pH is slowly changed, after the alkali adding is stopped, the air is continuously aerated for about one hour, the pH is basically unchanged, the preliminary oxidation reaction is judged not to be carried out, and the reaction is stopped. Iron oxyhydroxide was formed at this point and the filtrate was iron free (iron was completely precipitated) with a zinc content of about 1.96% on a discus basis.
Example 5
Zinc-iron containing waste sulfuric acid (component composition: F)e2+8.43%,Fe3+0.300%H2SO43.851 percent and Zn2+6.76 percent, 503.45g of filtered zinc-containing waste liquid is weighed into a 2L four-neck flask and placed in a water bath, 45g of seed crystal suspension is weighed, the early stage alkali adding speed is 7mL/min, the stirring speed is 350rpm, after the pH value is adjusted to 3-3.5, air is blown in (the aeration rate is 10L/min), the water bath is heated to 65 ℃, the stirring is reduced to 250rpm, the alkali is continuously added to control the pH value to be 3-3.5, after the pH value is slowly changed, after the alkali adding is stopped, the air is continuously aerated for about one hour, the pH value is basically unchanged, the oxidation reaction is preliminarily judged not to be carried out, and the reaction is stopped. Iron oxyhydroxide was formed at this point and the filtrate was iron free (iron was completely precipitated) with a zinc content of about 0.227% on a discus basis.
Example 6
The zinc-iron containing waste sulfuric acid (composition: Fe2+ 7.587%, Fe3+ 0.546%, H)2SO42.958 percent and Zn2+6.76 percent, weighing 503.70g of filtered zinc-containing waste liquid into a 2L four-mouth flask, placing the flask into a water bath, weighing 45g of seed crystal suspension, heating the water bath to 65 ℃, reducing the stirring speed to 250rpm, continuously adding alkali to control the pH to be 3-3.5, continuing to expose the air for about one hour after the pH is adjusted to 3-3.5, keeping the pH unchanged, preliminarily judging that the oxidation reaction is not carried out, and stopping the reaction, wherein the early-stage alkali adding speed is 7mL/min, the stirring speed is 350rpm, and the aeration rate is 10L/min after the pH is adjusted to 3-3.5. Iron oxyhydroxide was formed at this point and the filtrate was iron free (iron was completely precipitated) with a zinc content of about 0.315% on a discus basis.
While the foregoing is directed to the preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention.

Claims (10)

1. A resource utilization method for fractional precipitation separation of high-zinc-iron-content waste acid is characterized by comprising the following steps:
(1) adding iron oxyhydroxide liquid crystal with the volume ratio of 5-50% into the waste acid liquid containing zinc; adding a sodium hydroxide solution at a certain flow rate, stirring, adjusting the pH value of the solution to 2-4.5, then beginning aeration at a certain speed, controlling the water bath to heat to 40-80 ℃, reducing the stirring speed, simultaneously adding alkali to keep the pH value of the solution at 2-4.5, reacting for a period of time, stopping adding the alkali when the pH value is not changed greatly, continuing aeration for a period of time until the pH value is not changed, stopping the reaction, carrying out solid-liquid separation, and washing filter residues to obtain iron oxyhydroxide;
(2) adding alkali liquor into the filtered filtrate while stirring, adjusting pH to 8-10, stirring for a while, and filtering; so as to obtain zinc hydroxide precipitate.
2. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the step (1) also comprises the step of drying the obtained iron oxyhydroxide in an oven, and then calcining the iron oxyhydroxide in a muffle furnace at the temperature of 600-800 ℃ for 3-4 hours to obtain the iron oxide red.
3. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the iron oxyhydroxide seed crystal of the step (1) is prepared by the following method: pouring ferrous solution with certain concentration into a four-neck flask, adding alkali liquor to adjust the pH value to 7, adjusting the water bath temperature to 25-30 ℃, stirring, introducing air for aeration, and controlling the aeration speed; after the pH dropped to 2.5-3.5, no further change and the solution was orange, the seed preparation was complete.
4. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 3, characterized in that: the alkali liquor is sodium hydroxide with the mass fraction of 30%.
5. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the concentration of ferric ions in the waste acid solution containing zinc in the step (1) is 0-1%.
6. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the step (1) comprises the steps of pretreating the zinc-containing waste acid liquid, and then adding the hydroxyl iron oxide liquid crystal, wherein the pretreatment of the zinc-containing waste acid liquid comprises the following steps: evaporating and concentrating the zinc-containing waste acid liquid to obtain high-zinc-containing waste acid liquid and ferrous crystal products, adding iron powder into the high-zinc-containing waste acid liquid to reduce ferric iron in the solution into ferrous iron, and filtering to obtain zinc-containing waste acid filtrate.
7. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the step (1) of adding the sodium hydroxide solution at a certain flow rate and stirring comprises the following steps: adding 5-15% sodium hydroxide solution at 5-20mL/min, and stirring at 350 rpm.
8. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the reduction of the stirring rate in the step (1) comprises reducing the stirring rate to 250 rpm.
9. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the continuous aeration time in the step (1) is 1-1.5 h.
10. The resource utilization method of fractional precipitation separation of high zinc and iron content waste acid according to claim 1, characterized in that: the stirring time in the step (2) is 10-30 min.
CN202110791865.4A 2021-07-13 2021-07-13 Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid Pending CN113603148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110791865.4A CN113603148A (en) 2021-07-13 2021-07-13 Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110791865.4A CN113603148A (en) 2021-07-13 2021-07-13 Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid

Publications (1)

Publication Number Publication Date
CN113603148A true CN113603148A (en) 2021-11-05

Family

ID=78304568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110791865.4A Pending CN113603148A (en) 2021-07-13 2021-07-13 Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid

Country Status (1)

Country Link
CN (1) CN113603148A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803658A (en) * 2006-01-16 2006-07-19 深圳市危险废物处理站 Deferrization method of iron-containing liquor
CN102010994A (en) * 2010-12-29 2011-04-13 株洲冶炼集团股份有限公司 Iron depositing method of high acid and high iron solution goethite during zinc hydrometallurgy
JP2012082458A (en) * 2010-10-08 2012-04-26 Jfe Engineering Corp Method for separating and recovering zinc from zinc plating waste liquid
CN104805305A (en) * 2015-05-14 2015-07-29 星辉再生资源(德阳)有限公司 Method for harmlessly producing zinc ingots by hot-dip galvanizing slag wet smelting
CN104805301A (en) * 2015-05-14 2015-07-29 星辉再生资源(德阳)有限公司 Method for producing zinc ingots by using hot-dip galvanizing slag wet smelting waste residue zero discharge
CN105217693A (en) * 2015-08-26 2016-01-06 昆明理工大学 A kind of method preparing iron oxide yellow and ammonium chloride
CN107935023A (en) * 2017-12-18 2018-04-20 东北大学 The method that a kind of sludge extraction zinc of iron content containing zinc prepares zinc oxide
CN107986321A (en) * 2017-12-18 2018-05-04 东北大学 A kind of waste water extraction zinc of iron content containing zinc and the method for preparing zinc hydroxide
CN109987637A (en) * 2017-12-30 2019-07-09 天津友发钢管集团股份有限公司 A method of iron oxide yellow is prepared using red soil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803658A (en) * 2006-01-16 2006-07-19 深圳市危险废物处理站 Deferrization method of iron-containing liquor
JP2012082458A (en) * 2010-10-08 2012-04-26 Jfe Engineering Corp Method for separating and recovering zinc from zinc plating waste liquid
CN102010994A (en) * 2010-12-29 2011-04-13 株洲冶炼集团股份有限公司 Iron depositing method of high acid and high iron solution goethite during zinc hydrometallurgy
CN104805305A (en) * 2015-05-14 2015-07-29 星辉再生资源(德阳)有限公司 Method for harmlessly producing zinc ingots by hot-dip galvanizing slag wet smelting
CN104805301A (en) * 2015-05-14 2015-07-29 星辉再生资源(德阳)有限公司 Method for producing zinc ingots by using hot-dip galvanizing slag wet smelting waste residue zero discharge
CN105217693A (en) * 2015-08-26 2016-01-06 昆明理工大学 A kind of method preparing iron oxide yellow and ammonium chloride
CN107935023A (en) * 2017-12-18 2018-04-20 东北大学 The method that a kind of sludge extraction zinc of iron content containing zinc prepares zinc oxide
CN107986321A (en) * 2017-12-18 2018-05-04 东北大学 A kind of waste water extraction zinc of iron content containing zinc and the method for preparing zinc hydroxide
CN109987637A (en) * 2017-12-30 2019-07-09 天津友发钢管集团股份有限公司 A method of iron oxide yellow is prepared using red soil

Similar Documents

Publication Publication Date Title
CN108191107B (en) Recovery system and method for single nickel salt coloring and medium temperature hole sealing agent in aluminum processing
CN101066827B (en) Electroplating sludge treating and utilizing process
CN108193251B (en) System and method for recovering nickel-tin salt coloring and medium-temperature hole sealing agent in aluminum processing
CN101172727B (en) Waste hydrochloric acid liquid cleaning treatment technique
CN104310647A (en) Recycling method for treating stainless steel pickling acid pickle and wastewater
CN1292093C (en) Trivalent chromium pearl opal passivator for galvanizing and manufacturing method thereof
CN102452743A (en) Method for treating complex-containing nickel plating wastewater
CN103288231B (en) Industrial treatment process for CODCr waste liquid
CN110395817A (en) The recycling processing method of chemical nickel plating waste solution
CN112978805A (en) Comprehensive recovery method of titanium, iron and sulfate radicals in titanium white waste acid
CN106477766A (en) A kind of waste electroplating liquor containing chromium processing method
CN108149017B (en) A kind of system for stewing mould liquid and replacing Alkaline etchant and recycling aluminium hydroxide
CN105274345B (en) The method of cobalt and manganese in separating and recovering cobalt manganese waste material
CN1104384C (en) Control method of waste water containing chromium
CN103833156A (en) Treatment method of cold rolling hydrochloric acid pickling waste acid
CN112853101B (en) Electroplating sludge recycling treatment method
CN106348415A (en) QCL-T complexing breaking agent and preparation method thereof
CN111995118B (en) Method for recycling water quenching of cold-rolling electrotinning unit
CN109183118B (en) Method for utilizing coloring agent recovered by coloring and sealing hole of nickel-tin salt and medium water and on-line configuration
CN1843965A (en) Purification treatment process of waste liquor of hydrochloric acid
CN113603148A (en) Resource utilization method for fractional precipitation separation of high-content zinc and iron waste acid
CN111320300A (en) Recycling method of zinc-iron acid liquid
CN108190956A (en) A kind of method that chromium sulfate basic is prepared using chromium plating sludge
CN109137037B (en) Nickel-tin salt coloring recovery coloring agent and reclaimed water utilization method
CN109082696B (en) Nickel tin salt coloring recovery colorant and method for utilizing reclaimed water and on-line configuration thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211105

RJ01 Rejection of invention patent application after publication