CN113601306B - 基于一维分割网络的充电设施箱体焊缝打磨方法 - Google Patents
基于一维分割网络的充电设施箱体焊缝打磨方法 Download PDFInfo
- Publication number
- CN113601306B CN113601306B CN202110889693.4A CN202110889693A CN113601306B CN 113601306 B CN113601306 B CN 113601306B CN 202110889693 A CN202110889693 A CN 202110889693A CN 113601306 B CN113601306 B CN 113601306B
- Authority
- CN
- China
- Prior art keywords
- data
- dimensional
- segmentation network
- feature extraction
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000005498 polishing Methods 0.000 title claims abstract description 30
- 238000003466 welding Methods 0.000 claims abstract description 58
- 238000012549 training Methods 0.000 claims abstract description 38
- 230000000694 effects Effects 0.000 claims abstract description 10
- 238000000605 extraction Methods 0.000 claims description 53
- 238000005070 sampling Methods 0.000 claims description 44
- 230000006870 function Effects 0.000 claims description 37
- 238000010606 normalization Methods 0.000 claims description 21
- 230000004913 activation Effects 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 9
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000012805 post-processing Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000003709 image segmentation Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/04—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of metal, e.g. skate blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/12—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B51/00—Arrangements for automatic control of a series of individual steps in grinding a workpiece
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Mechanical Engineering (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Numerical Control (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110889693.4A CN113601306B (zh) | 2021-08-04 | 2021-08-04 | 基于一维分割网络的充电设施箱体焊缝打磨方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110889693.4A CN113601306B (zh) | 2021-08-04 | 2021-08-04 | 基于一维分割网络的充电设施箱体焊缝打磨方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113601306A CN113601306A (zh) | 2021-11-05 |
CN113601306B true CN113601306B (zh) | 2022-07-08 |
Family
ID=78339397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110889693.4A Active CN113601306B (zh) | 2021-08-04 | 2021-08-04 | 基于一维分割网络的充电设施箱体焊缝打磨方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113601306B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114061458B (zh) * | 2022-01-17 | 2022-04-19 | 快克智能装备股份有限公司 | 一种空间扫描定位缝隙的方法及装置和应用 |
CN114429546A (zh) * | 2022-01-21 | 2022-05-03 | 厦门大学 | 一种基于点击的户外激光点云交互式分割方法 |
CN115229374B (zh) * | 2022-07-07 | 2024-04-26 | 武汉理工大学 | 一种基于深度学习的汽车白车身焊缝质量检测方法、装置 |
CN115592501A (zh) * | 2022-10-11 | 2023-01-13 | 中国第一汽车股份有限公司(Cn) | 一种基于3d线激光视觉引导的顶盖钎焊自适应打磨方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007008598A1 (de) * | 2007-02-19 | 2008-08-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Automatische Programmierung von Robotern zum Abschweißen gehefteter Profile auf Mikropaneelen mit Hilfe digitaler Bilderfassung |
US10923141B2 (en) * | 2018-08-06 | 2021-02-16 | Spotify Ab | Singing voice separation with deep u-net convolutional networks |
US10304193B1 (en) * | 2018-08-17 | 2019-05-28 | 12 Sigma Technologies | Image segmentation and object detection using fully convolutional neural network |
US10674972B1 (en) * | 2018-10-03 | 2020-06-09 | ADANI Systems, Inc. | Object detection in full-height human X-ray images |
CN110033003B (zh) * | 2019-03-01 | 2023-12-15 | 华为技术有限公司 | 图像分割方法和图像处理装置 |
CN111784700B (zh) * | 2019-04-04 | 2022-07-22 | 阿里巴巴集团控股有限公司 | 肺叶分割、模型训练、模型构建与分割方法、系统及设备 |
CN110135513A (zh) * | 2019-05-22 | 2019-08-16 | 广东工业大学 | 一种基于深度学习的焊接机器人的焊缝识别方法 |
CN110717921B (zh) * | 2019-09-26 | 2022-11-15 | 哈尔滨工程大学 | 改进型编码解码结构的全卷积神经网络语义分割方法 |
CN112215907A (zh) * | 2020-09-17 | 2021-01-12 | 上海电机学院 | 一种焊缝缺陷自动提取方法 |
CN112926506B (zh) * | 2021-03-24 | 2022-08-12 | 重庆邮电大学 | 一种基于卷积神经网络的非受控人脸检测方法及系统 |
CN113159300B (zh) * | 2021-05-15 | 2024-02-27 | 南京逸智网络空间技术创新研究院有限公司 | 图像检测神经网络模型及其训练方法、图像检测方法 |
-
2021
- 2021-08-04 CN CN202110889693.4A patent/CN113601306B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113601306A (zh) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113601306B (zh) | 基于一维分割网络的充电设施箱体焊缝打磨方法 | |
CN109241972B (zh) | 基于深度学习的图像语义分割方法 | |
US11544900B2 (en) | Primitive-based 3D building modeling, sensor simulation, and estimation | |
Ainetter et al. | End-to-end trainable deep neural network for robotic grasp detection and semantic segmentation from rgb | |
CN109063753B (zh) | 一种基于卷积神经网络的三维点云模型分类方法 | |
CN112927357B (zh) | 一种基于动态图网络的3d物体重建方法 | |
CN110322453B (zh) | 基于位置注意力和辅助网络的3d点云语义分割方法 | |
CN114359130B (zh) | 一种基于无人机影像的道路裂缝检测方法 | |
CN111160085A (zh) | 一种人体图像关键点姿态估计方法 | |
CN111127538B (zh) | 一种基于卷积循环编码-解码结构的多视影像三维重建方法 | |
CN108921893A (zh) | 一种基于在线深度学习slam的图像云计算方法及系统 | |
CN109410321A (zh) | 基于卷积神经网络的三维重建方法 | |
CN112862824A (zh) | 新型冠状病毒肺炎病灶检测方法、系统、装置和存储介质 | |
CN111462120A (zh) | 一种基于语义分割模型缺陷检测方法、装置、介质及设备 | |
CN111860171A (zh) | 一种大规模遥感图像中不规则形状目标的检测方法及系统 | |
CN112686097A (zh) | 一种人体图像关键点姿态估计方法 | |
CN109919145B (zh) | 一种基于3d点云深度学习的矿卡检测方法及系统 | |
CN111882492A (zh) | 一种图像数据自动增强的方法 | |
CN111368637B (zh) | 一种基于多掩模卷积神经网络的搬运机器人识别目标方法 | |
CN112967296A (zh) | 一种点云动态区域图卷积方法、分类方法及分割方法 | |
CN117372617A (zh) | 一种基于GCN-Transformer模型的点云数据重建方法及电子设备 | |
CN114494703B (zh) | 一种智能车间场景目标轻量级语义分割方法 | |
Mouzenidis et al. | Multi-modal variational faster r-cnn for improved visual object detection in manufacturing | |
CN115880477A (zh) | 一种基于深度卷积神经网络的苹果检测定位方法与系统 | |
CN113723468B (zh) | 一种三维点云的物体检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Wu Xiaodong Inventor after: Yi Yuan Inventor after: Tang Xiaodong Inventor after: Xi Peifeng Inventor after: Wang Feng Inventor after: Li Yanan Inventor before: Wu Xiaodong Inventor before: Yi Yuan Inventor before: Tang Xiaodong Inventor before: Xi Peifeng Inventor before: Wang Feng Inventor before: Li Yanan |
|
CB03 | Change of inventor or designer information |