CN113596786A - 一种端到端通信的资源分配分组优化方法 - Google Patents

一种端到端通信的资源分配分组优化方法 Download PDF

Info

Publication number
CN113596786A
CN113596786A CN202110844870.7A CN202110844870A CN113596786A CN 113596786 A CN113596786 A CN 113596786A CN 202110844870 A CN202110844870 A CN 202110844870A CN 113596786 A CN113596786 A CN 113596786A
Authority
CN
China
Prior art keywords
group
resource allocation
optimization
vector
grouping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110844870.7A
Other languages
English (en)
Other versions
CN113596786B (zh
Inventor
陈畅
许斌斌
袁晶
黄均才
刘鉴栋
唐金锐
唐若笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority to CN202110844870.7A priority Critical patent/CN113596786B/zh
Publication of CN113596786A publication Critical patent/CN113596786A/zh
Application granted granted Critical
Publication of CN113596786B publication Critical patent/CN113596786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种端到端通信的资源分配分组优化方法,实现步骤为:构建蜂窝网络端到端通信的资源分配优化向量、资源分配模型以及约束条件;将资源分配优化向量中各优化变量根据变量属性进行分组,得到分组后的资源分配优化向量;将资源分配模型作为优化目标,结合其约束条件,采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,得到优化后的优化向量最优解;根据优化后的优化向量最优解建立所有蜂窝用户与端到端通信用户对之间的匹配关系。本发明所提出的方法通过将优化变量分组后进行协同进化,且通过动态分组的方法确保耦合变量具有足够概率被分至同一组并充分进化,从而确保本方法对高维度资源分配模型具有良好的优化效果。

Description

一种端到端通信的资源分配分组优化方法
技术领域
本发明涉及无线通信技术领域,尤其涉及蜂窝网络下一种端到端通信的资源分配分组优化方法。
背景技术
在无线通信技术领域,端到端(device-to-device,D2D)通信是一种在基站控制作用下,相距较近的通信终端相互之间直接进行数据传输的通信技术。
进行D2D通信的终端设备通过复用其他蜂窝用户的链路资源以建立D2D通信链路,从而实现通信数据的直接传递。为此,D2D通信技术可有效提升基于传统蜂窝网络的通信系统的频谱利用率,具有广阔的应用前景。
在D2D通信技术中,复用蜂窝用户的通信链路资源往往会造成额外的信号干扰。为此,建立蜂窝用户与D2D通信设备间的最优匹配关系,即实现D2D通信系统中的资源最优分配,对于提升系统通信质量、降低干扰及设备能耗具有重要意义。
现有的D2D通信资源优化分配方法能够响应的用户数量有限。对于用户数量较大的网络,待优化变量数激增所带来的“维度灾难”问题会造成现有方法优化效率的显著降低甚至失效。本发明针对包含用户数量较多的D2D通信系统资源优化分配问题,提出一种基于变量分组的资源分配方法。
发明内容
本发明要解决的技术问题在于针对现有技术中的缺陷,提供一种端到端通信的资源分配分组优化方法。
本发明解决其技术问题所采用的技术方案是:一种端到端通信的资源分配分组优化方法,包括以下步骤:
步骤1:根据当前蜂窝网络中蜂窝用户的数量,以及端到端通信用户对的数量,构建蜂窝网络端到端通信的资源分配优化向量;
步骤2:建立蜂窝网络端到端通信的资源分配模型、以及蜂窝网络端到端通信资源分配模型的约束条件;
步骤3:将蜂窝网络端到端通信的资源分配优化向量中各优化变量根据变量属性进行分组,得到分组后的资源分配优化向量;
步骤4:将蜂窝网络端到端通信资源分配模型作为优化目标,结合蜂窝网络端到端通信资源分配模型约束条件,采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,最终得到优化后的优化向量最优解;
步骤5:根据优化后的优化向量最优解建立所有蜂窝用户与端到端通信用户对之间的匹配关系。
作为优选,步骤1所述的资源分配优化向量,定义为:
x={x1^1,x1^2,…,x1^N,…,xM^1,xM^2,…,xM^N}
其中,x表示资源分配优化向量,所述资源分配优化向量的维度为N×M维,xm^n为资源分配优化向量x中的优化变量,表示第m个端到端通信用户对与第n个蜂窝用户链路资源的匹配关系,N表示当前蜂窝网络中蜂窝用户的数量,M表示端到端通信用户对的数量,m=1,2,…,M;n=1,2,…,N;
若xm^n>B表示第m个端到端通信用户对复用第n个蜂窝用户的通信链路资源,否则第m个端到端通信用户对不复用第n个蜂窝用户的通信链路资源;
B为预定义的分界点数值,且B>0;
作为优选,步骤2所述蜂窝网络端到端通信的资源分配模型为:
Figure BDA0003180474670000021
其中,fcost(x)表示资源分配优化向量x所对应的代价值;
Figure BDA0003180474670000022
为第m个端到端通信用户对复用第n个蜂窝用户的通信链路资源时的发射功率;Pα为端到端通信用户对的总电路功耗;
Figure BDA0003180474670000023
为第m个端到端通信用户对发送端到第m个端到端通信用户对接收端的信道增益;PCUn为第n个蜂窝用户的发射功率;
Figure BDA0003180474670000024
为第n个蜂窝用户到第m个端到端通信用户对接收端的信道增益;n0为高斯白噪声功率;N表示当前蜂窝网络中蜂窝用户的数量;M表示端到端通信用户对的数量;
步骤2所述蜂窝网络端到端通信资源分配模型的约束条件为:
可根据通信系统的应用场景,定义上述资源分配模型必须满足的若干约束条件:
一个蜂窝用户的通信链路资源最多只能被一个端到端通信用户对所复用,即
Figure BDA0003180474670000031
一个端到端通信用户对应当复用至少一个蜂窝用户的通信链路资源,即
Figure BDA0003180474670000032
作为优选,步骤3所述的资源分配优化向量为:x={x1^1,x1^2,…,x1^N,…,xM^1,xM^2,…,xM^N};
步骤3所述分组后的资源分配优化向量为:xgroup
步骤3所述根据变量属性进行分组,得到分组后的资源分配优化向量,具体为:
随机产生分组选择变量rg∈[0,1],并按如下规则对资源分配优化向量x中的各优化变量xm^n(m=1,2,…,M;n=1,2,…,N)进行分组:
Figure BDA0003180474670000033
其中,组别I1、组别Ik、组别II1、组别IIh以及组别III具体指:
组别I1:将资源分配优化向量x中与同一个蜂窝用户相关联的优化变量划分为同一组,即GroupI1-i={x1^i,x2^i,…,xM^i},i=1,2,…,N。按组别I1进行变量分组,得到分组后的资源分配优化向量xgroup={Gi}={GroupI1-1,GroupI1-2,…,GroupI1-Ngroup},i=1,2,…,Ngroup,Ngroup=N为分组后的资源分配优化向量xgroup的变量分组总数;
组别Ik:将资源分配优化向量x中与随机k个蜂窝用户相关联的优化变量划分为同一组,即GroupIk-i={GroupI1-r1,GroupI1-r2,…,GroupI1-rk},i=1,2,…,Nk,Nk=N/k,r1,r2,...,rk∈{1,2,...,N}。按组别Ik进行分组后,得到分组后的资源分配优化向量xgroup={Gi}={GroupIk-1,GroupIk-2,…,GroupIk-Ngroup},i=1,2,…,Ngroup,Ngroup=Nk为分组后的资源分配优化向量xgroup的变量分组总数;
组别II1:将资源分配优化向量x中与同一个端到端通信用户对相关联的变量划分为同一组,即GroupII1-j={xj^1,xj^2,…,xj^N},j=1,2,…,M。按组别II1进行分组后,得到分组后的资源分配优化向量xgroup={Gj}={GroupII1-1,GroupII1-2,…,GroupII1-Ngroup},j=1,2,…,Ngroup,Ngroup=M为分组后的资源分配优化向量xgroup的变量分组总数;
组别IIh:将资源分配优化向量x中与随机h个端到端通信用户对相关联的变量划分为同一组,即GroupIIh-j={GroupII1-r1,GroupII1-r2,…,GroupII1-rh},j=1,2,…,Mh,Mh=M/h,r1,r2,...,rh∈{1,2,...,M}。按组别IIh进行分组后,得到分组后的资源分配优化向量xgroup={Gj}={GroupIIh-1,GroupIIh-2,…,GroupIIh-Ngroup},j=1,2,…,Ngroup,Ngroup=Mh为分组后的资源分配优化向量xgroup的变量分组总数;
组别III:将资源分配优化向量x中的全部N×M个优化变量随机打乱,打乱后每s个划分为同一组,即GroupR-u={xp1^q1,xp2^q2,…,xps^qs},u=1,2,…,U,U=(N×M)/s,p1,p2,...,ps∈{1,2,...,M},q1,q2,...,qs∈{1,2,...,N}。按组别III进行分组后,得到分组后的资源分配优化向量xgroup={Gu}={GroupR-1,GroupR-2,…,GroupR-Ngroup},u=1,2,…,Ngroup,Ngroup=U为分组后的资源分配优化向量xgroup的变量分组总数;
作为优选,所述步骤4中采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,具体按照以下步骤实施:
步骤4.1:在[0,2B]范围内随机初始化包含Np个优化向量的种群
Figure BDA0003180474670000041
i=1,2,…,Np。其中,每一个优化向量
Figure BDA0003180474670000042
i=1,2,…,Np均代表步骤3中的一个分组后的资源分配优化向量xgroup;B>0为分界点数值;
步骤4.2:对种群Population中的每一个优化向量
Figure BDA0003180474670000043
i=1,2,…,Np,计算不满足步骤(2)中任意一个约束条件的蜂窝用户和端到端通信用户对的总个数,记录为Ci,i=1,2,…,Np。同时,计算每一个优化向量
Figure BDA0003180474670000044
所对应的步骤2中的代价值
Figure BDA0003180474670000045
并由下式计算每一个优化向量
Figure BDA0003180474670000046
所对应的目标函数值
Figure BDA0003180474670000047
Figure BDA0003180474670000051
其中,β>0为惩罚项系数。
步骤4.3:将当前种群Population中目标函数值fmin最小的优化向量
Figure BDA0003180474670000052
j=1,2,…,Ngroup,定义为参考向量CV=xbest。其中,
Figure BDA0003180474670000053
为优化向量xbest的各变量分组;Ngroup为优化向量xbest的变量分组总数;
步骤4.4:对于当前种群Population中的每一个优化向量
Figure BDA0003180474670000054
2,…,Np,j=1,2,…,Ngroup,依次遍历其每一个变量分组
Figure BDA0003180474670000055
i=1,2,…,Np,j=1,2,…,Ngroup,并采用进化算法对变量分组
Figure BDA0003180474670000056
中所包含的优化变量进行一次进化,得到进化后的优化向量
Figure BDA0003180474670000057
i=1,2,…,Np
按上述方案,所述步骤4.4中采用进化算法对变量分组
Figure BDA0003180474670000058
中所包含的优化变量进行一次进化,在此过程中,当需要计算变量分组
Figure BDA0003180474670000059
i=1,2,…,Np,j∈{1,2,...,Ngroup}的目标函数值
Figure BDA00031804746700000510
时,对于变量分组
Figure BDA00031804746700000511
中所包含的优化变量之外的其余维度的优化变量,均使用当前参考向量CV中对应维度的优化变量值进行填补,即采用下式计算变量分组
Figure BDA00031804746700000512
的目标函数值:
Figure BDA00031804746700000513
i=1,2,…,Np,j∈{1,2,...,Ngroup};
步骤4.5:用步骤4.4中所有进化后的优化向量
Figure BDA00031804746700000514
i=1,2,…,Np更新当前种群Population;
步骤4.6:随机产生分组选择变量rg∈[0,1],并按如下规则对步骤4.5中更新后的种群Population中每一个优化向量
Figure BDA00031804746700000515
i=1,2,…,Np重新进行变量分组:
Figure BDA0003180474670000061
其中,组别I1、组别Ik、组别II1、组别IIh以及组别III为步骤3中所定义的相应组别;
步骤4.7:重复步骤4.3至步骤4.6,直至重复次数达到预定义的最大重复次数Tmax。随后,将当前种群Population中目标函数值fmin最小的优化向量
Figure BDA0003180474670000062
j=1,2,…,Ngroup作为优化后的优化向量最优解,即xgbest=xbest
步骤4所述优化后的优化向量最优解为:
Figure BDA0003180474670000063
其中,xgbest为优化后的优化向量最优解;
Figure BDA0003180474670000064
m=1,2,…,M;n=1,2,…,N为最优解xgbest中的优化变量,表示第m个端到端通信用户对与第n个蜂窝用户链路资源的匹配关系,N表示当前蜂窝网络中蜂窝用户的数量,M表示端到端通信用户对的数量;
作为优选,步骤5所述的解码并建立所有蜂窝用户与端到端通信用户对之间的匹配关系,具体为:
Figure BDA0003180474670000065
则将第n个蜂窝用户的通信链路资源分配给第m个端到端通信用户对;
Figure BDA0003180474670000066
则不予以分配;
其中,B>0为分界点数值。
本发明产生的有益效果是:
本发明适用于解决端到端通信中的资源优化分配问题,尤其适用于蜂窝用户数量以及端到端用户对数量较多的大规模蜂窝网络。
本发明所提出的方法通过将变量分组后进行协同优化,且通过动态分组的方法确保耦合变量具有足够概率被分至同一组并进行充分进化,从而保证本方法对高维度资源分配模型具有良好的优化效果。
附图说明
图1:是实现本发明方法的系统模型示意图。
图2:是本发明实施例的方法流程图。
图3:是组别I1与组别Ik所对应的变量分组示意图。
图4:是组别II1与组别IIh所对应的变量分组示意图。
图5:是组别III所对应的变量分组示意图。
图6:是本发明所提方法与不采用变量分组的常规优化方法的对比示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,该实施例中所采用的蜂窝网络包含有N=100个蜂窝用户,记为C={CUn|n=1,2,…,100};以及M=40个端到端通信用户对,记为D={DPm|m=1,2,…,40}。
如图2所示,本发明具体实施方式的技术方案为一种端到端通信的资源分配分组优化方法,包括以下步骤:
步骤1:根据当前蜂窝网络中蜂窝用户CU的数量N=100,以及端到端通信用户对DP的数量M=40,构建蜂窝网络端到端通信的资源分配优化向量;
步骤1所述的资源分配优化向量,定义为:
x={x1^1,x1^2,…,x1^100,…,x40^1,x40^2,…,x40^100}
其中,x表示资源分配优化向量,所述资源分配优化向量的维度为N×M=4000维,xm^n,m=1,2,…,40;n=1,2,…,100为资源分配优化向量x中的优化变量,表示第m个端到端通信用户对与第n个蜂窝用户链路资源的匹配关系;
若xm^n>B表示第m个端到端通信用户对复用第n个蜂窝用户的通信链路资源,否则第m个端到端通信用户对不复用第n个蜂窝用户的通信链路资源。其中,B为预定义的分界点数值,在本实施例中,取B=50。
例如,若x20^40=55.8>50,则表示第20个端到端通信用户对(即DP20),复用第40个蜂窝用户(即CU40)的通信链路资源;反之,若x20^40=32.5≤50,则表示DP20不复用CU40的通信链路资源;
步骤2:建立蜂窝网络端到端通信的资源分配模型、以及蜂窝网络端到端通信资源分配模型的约束条件;
步骤2所述蜂窝网络端到端通信的资源分配模型为:
Figure BDA0003180474670000081
其中,fcost(x)表示资源分配优化向量x所对应的代价值;
Figure BDA0003180474670000082
为第m个端到端通信用户对(即DPm)复用第n个蜂窝用户(即CUn)的通信链路资源时的发射功率;Pα为端到端通信用户对的总电路功耗;
Figure BDA0003180474670000083
为第m个端到端通信用户对的发送端(即DTm)到第m个端到端通信用户对的接收端(即DRm)的信道增益;PCUn为第n个蜂窝用户(即CUn)的发射功率;
Figure BDA0003180474670000084
为第n个蜂窝用户(即CUn)到第m个端到端通信用户对的接收端(即DRm)的信道增益;n0为高斯白噪声功率;
步骤2所述蜂窝网络端到端通信资源分配模型的约束条件,在本实施例中定义为:
①一个蜂窝用户的通信链路资源最多只能被一个端到端通信用户对所复用,即
Figure BDA0003180474670000085
②一个端到端通信用户对应当复用至少一个蜂窝用户的通信链路资源,即
Figure BDA0003180474670000086
步骤3:将蜂窝网络端到端通信的资源分配优化向量中各优化变量根据变量属性进行分组,得到分组后的资源分配优化向量;
步骤3所述的资源分配优化向量为:x={x1^1,x1^2,…,x1^100,…,x40^1,x40^2,…,x40^100};
步骤3所述分组后的资源分配优化向量为:xgroup
步骤3所述根据变量属性进行分组,得到分组后的资源分配优化向量,具体为:
随机产生分组选择变量rg∈[0,1],并按如下规则对资源分配优化向量x中的各优化变量xm^n(m=1,2,…,40;n=1,2,…,100)进行分组:
Figure BDA0003180474670000091
例如,若随机产生的分组选择变量rg=0.455,则选择按组别II1进行变量分组;
其中,组别I1、组别Ik、组别II1、组别IIh、组别III的示意图如图3、图4以及图5所示,具体含义如下:
组别I1:将资源分配优化向量x中与同一个蜂窝用户相关联的优化变量划分为同一组,即GroupI1-i={x1^i,x2^i,…,x40^i},i=1,2,…,100。按组别I1进行变量分组,得到分组后的资源分配优化向量xgroup={GroupI1-1,GroupI1-2,…,GroupI1-100}。可见,若按组别I1进行变量分组,分组后的资源分配优化向量xgroup的变量分组总数为100组;
组别Ik:将资源分配优化向量x中与随机k个蜂窝用户相关联的优化变量划分为同一组,即GroupIk-i={GroupI1-r1,GroupI1-r2,…,GroupI1-rk},i=1,2,…,Nk,Nk=N/k,r1,r2,...,rk∈{1,2,...,100}。例如,产生随机数k=4,则按组别I4进行变量分组,即GroupI4-i={GroupI1-r1,GroupI1-r2,GroupI1-r3,GroupI1-r4},i=1,2,…,25,r1,r2,r3,r4∈{1,2,...,100}。可见,若按组别I4进行变量分组,分组后的资源分配优化向量xgroup的变量分组总数为25组;
组别II1:将资源分配优化向量x中与同一个端到端通信用户对相关联的变量划分为同一组,即GroupII1-j={xj^1,xj^2,…,xj^100},j=1,2,…,40。按组别II1进行分组后,得到分组后的资源分配优化向量xgroup={GroupII1-1,GroupII1-2,…,GroupII1-40}。可见,若按组别II1进行变量分组,分组后的资源分配优化向量xgroup的变量分组总数为40组;
组别IIh:将资源分配优化向量x中与随机h个端到端通信用户对相关联的变量划分为同一组,即GroupIIh-j={GroupII1-r1,GroupII1-r2,…,GroupII1-rh},j=1,2,…,Mh,Mh=M/h,r1,r2,...,rh∈{1,2,...,40}。例如,产生随机数h=2,则按组别II2进行变量分组,即GroupII2-j={GroupII1-r1,GroupII1-r2},j=1,2,…,20,r1,r2∈{1,2,...,40}。可见,若按组别II2进行变量分组,分组后的资源分配优化向量xgroup的变量分组总数为20组;
组别III:将资源分配优化向量x中的全部4000个优化变量随机打乱,打乱后每s个划分为同一组,即GroupR-u={xp1^q1,xp2^q2,…,xps^qs},u=1,2,…,U,U=4000/s,p1,p2,...,ps∈{1,2,...,40},q1,q2,...,qs∈{1,2,...,100}。例如,产生随机数s=50,则按组别III进行变量分组,即GroupR-u={xp1^q1,xp2^q2,…,xp50^q50},u=1,2,…,80,p1,p2,...,p50∈{1,2,...,40},q1,q2,...,q50∈{1,2,...,100}。可见,若按组别III进行变量分组,当每组的变量数s=50时,分组后的资源分配优化向量xgroup的变量分组总数为80组;
步骤4:将步骤2所述的蜂窝网络端到端通信资源分配模型作为优化目标,结合步骤2所述的蜂窝网络端到端通信资源分配模型约束条件,采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,最终得到优化后的优化向量最优解;
所述步骤4中采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,具体按照以下步骤实施:
步骤4.1:在[0,100]范围内随机初始化包含Np=50个优化向量的种群
Figure BDA0003180474670000101
i=1,2,…,50。即每个优化向量
Figure BDA0003180474670000102
i=1,2,…,50中每一个维度的变量值均在[0,100]范围内进行随机取值。其中,每一个优化向量
Figure BDA0003180474670000103
i=1,2,…,50均代表步骤3中的一个分组后的资源分配优化向量xgroup
步骤4.2:对种群Population中的每一个优化向量
Figure BDA0003180474670000104
i=1,2,…,50,计算不满足步骤(2)中任意一个约束条件的蜂窝用户和端到端通信用户对的总个数,记录为Ci,i=1,2,…,50。例如,某一个优化向量
Figure BDA0003180474670000105
其所代表的资源优化分配方案中,100个蜂窝用户(CU1至CU100)中共有10个不满足约束条件,40个端到端通信用户对(DP1至DP40)中共有5个不满足约束条件,则C35=15;
与此同时,计算每一个优化向量
Figure BDA0003180474670000106
所对应的步骤2中的代价值
Figure BDA0003180474670000107
并由下式计算每一个优化向量
Figure BDA0003180474670000108
所对应的目标函数值
Figure BDA0003180474670000111
Figure BDA0003180474670000112
其中,β>0为惩罚项系数,在本实施例中,取β=10000。
步骤4.3:将当前种群Population中目标函数值fmin最小的优化向量
Figure BDA0003180474670000113
j=1,2,…,Ngroup,定义为参考向量CV=xbest。其中,
Figure BDA0003180474670000114
为优化向量xbest的各变量分组;Ngroup为优化向量xbest的变量分组总数;
例如,若当前选择使用组别II1进行变量分组,则4000个变量共分为40组,即Ngroup=40。同时,若当前种群中目标函数值fmin最小的优化向量为第25个优化向量,即
Figure BDA0003180474670000115
j=1,2,…,40,则可定义参考向量
Figure BDA0003180474670000116
Figure BDA0003180474670000117
j=1,2,…,40;
步骤4.4:对于当前种群Population中的每一个优化向量
Figure BDA0003180474670000118
i=1,2,…,50,j=1,2,…,Ngroup,依次遍历其每一个变量分组
Figure BDA0003180474670000119
i=1,2,…,50,j=1,2,…,Ngroup,并采用进化算法对变量分组
Figure BDA00031804746700001110
中所包含的优化变量进行一次进化,得到进化后的优化向量
Figure BDA00031804746700001111
i=1,2,…,50。其中,Ngroup表示当前分组方案下优化向量的变量分组总数。值得注意的是,采用进化算法对优化向量中的每一个变量分组进行迭代进化,每进化一代后均需要重新进行变量分组。为此,变量分组总数Ngroup在每一次迭代进化时并不一定相同;
本实施例中采用粒子群进化算法对优化变量进行进化,则种群中第i个优化向量
Figure BDA00031804746700001112
内与第j个变量分组
Figure BDA00031804746700001113
所包含维度相对应的优化变量(记为xi-Gi),其进化方法如下:
vi-Gi(t+1)=ω·vi-Gi(t)+c1·r1·[xi-pbest-xi-Gi(t)]+c2·r1·[x-gbest-xi-Gi(t)]
xi-Gi(t+1)=xi-Gi(t)+vi-Gi(t+1)
其中,r1、r2为[0,1]间的随机数;ω=0.6、c1=2、c2=2为粒子群算法参数;t为当前迭代次数;vi-Gi(t+1)为第t+1代xi-Gi的速度值;xi-Gi(t)为第t代xi-Gi的变量取值;xi-Gi(t+1)为进化一代后(即第t+1代)xi-Gi的变量取值;xi-pbest为优化向量
Figure BDA0003180474670000121
的历史最优值;x-gbest为当前种群中目标函数值最小的优化向量;
按上述方案,所述步骤4.4中采用进化算法对变量分组
Figure BDA0003180474670000122
中所包含的优化变量进行一次进化,在此过程中,当需要计算变量分组
Figure BDA0003180474670000123
i=1,2,…,50,j∈{1,2,...,Ngroup}的目标函数值
Figure BDA0003180474670000124
时,对于变量分组
Figure BDA0003180474670000125
中所包含的优化变量之外的其余维度的优化变量,均使用当前参考向量CV中对应维度的优化变量值进行填补,即采用下式计算变量分组
Figure BDA0003180474670000126
的目标函数值:
Figure BDA0003180474670000127
i=1,2,…,50,j∈{1,2,...,Ngroup},Ngroup为当前所采用组别的变量分组总数;
步骤4.5:用步骤4.4中所有进化后的优化向量
Figure BDA0003180474670000128
i=1,2,…,50更新当前种群Population;
步骤4.6:随机产生分组选择变量rg∈[0,1],并按如下规则对步骤4.5中更新后的种群Population中每一个优化向量
Figure BDA0003180474670000129
i=1,2,…,Np重新进行变量分组:
Figure BDA00031804746700001210
例如,若当前随机产生的分组选择变量rg=0.131,则当前选择按组别I1重新进行一次变量分组;
其中,组别I1、组别Ik、组别II1、组别IIh以及组别III为步骤3中所定义的相应组别;
步骤4.7:重复步骤4.3至步骤4.6,直至重复次数达到预定义的最大重复次数Tmax=106。随后,将当前种群Population中目标函数值fmin最小的优化向量
Figure BDA00031804746700001211
j=1,2,…,Ngroup作为优化后的优化向量最优解,即xgbest=xbest
步骤4所述优化后的优化向量最优解为:
Figure BDA00031804746700001212
其中,xgbest为优化后的优化向量最优解;
Figure BDA0003180474670000131
m=1,2,…,40;n=1,2,…,100为最优解xgbest中的优化变量,表示第m个端到端通信用户对与第n个蜂窝用户链路资源的匹配关系;
步骤5:将步骤4中所述优化后的优化向量最优解xgbest
Figure BDA0003180474670000132
建立所有蜂窝用户与端到端通信用户对之间的匹配关系。
步骤5所述的解码并建立所有蜂窝用户与端到端通信用户对之间的匹配关系,具体为:
Figure BDA0003180474670000133
则将第n个蜂窝用户的通信链路资源分配给第m个端到端通信用户对;
Figure BDA0003180474670000134
则不予以分配。
例如,优化后的优化向量最优解为
Figure BDA0003180474670000135
Figure BDA0003180474670000136
则根据各维度优化变量与分界点数值B=50的相对大小关系,得出建立所有蜂窝用户与端到端通信用户对之间的匹配关系如下:
(1)
Figure BDA0003180474670000137
则第1个蜂窝用户CU1的通信链路资源不分配给第1个端到端通信用户对DP1
(2)
Figure BDA0003180474670000138
则第2个蜂窝用户CU2的通信链路资源分配给第1个端到端通信用户对DP1
(100)
Figure BDA0003180474670000139
则第100个蜂窝用户CU100的通信链路资源不分配给第1个端到端通信用户对DP1
(3901)
Figure BDA00031804746700001310
,则第1个蜂窝用户CU1的通信链路资源分配给第40个端到端通信用户对DP40
(3902)
Figure BDA00031804746700001311
则第2个蜂窝用户CU1的通信链路资源不分配给第40个端到端通信用户对DP40
(4000)
Figure BDA0003180474670000141
则第100个蜂窝用户CU100的通信链路资源不分配给第40个端到端通信用户对DP40
图6是本发明所提方法给出的资源优化分配方案与不采用变量分组的经典粒子群算法给出方案的对比结果。其中,纵轴表示目标函数fmin的函数值;横轴表示目标函数调用次数与种群规模的比值,可用于反应算法给出的资源优化分配方案的进化过程;由图6可见,当系统中所包含的蜂窝用户CU以及端到端通信用户对DP的数目较多时(即目标函数中的变量个数较多),资源优化模型将出现“维度灾难”问题。此时,若采用常规进化算法(如经典粒子群算法)对模型进行直接优化,很容易因“维度灾难”而过早收敛于局部最优值,进而导致算法失效。相比之下,本发明所提出的方法能够保证持续进化,最终给出的资源优化分配方案在满足模型约束条件的同时,能够实现对系统总能效的充分优化,优化结果显著优于不采用变量分组的常规优化算法。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种端到端通信的资源分配分组优化方法,其特征在于,包括以下步骤:
步骤1:根据当前蜂窝网络中蜂窝用户的数量,以及端到端通信用户对的数量,构建蜂窝网络端到端通信的资源分配优化向量;
步骤2:建立蜂窝网络端到端通信的资源分配模型、以及蜂窝网络端到端通信资源分配模型的约束条件;
步骤3:将蜂窝网络端到端通信的资源分配优化向量中各优化变量根据变量属性进行分组,得到分组后的资源分配优化向量;
步骤4:将蜂窝网络端到端通信资源分配模型作为优化目标,结合蜂窝网络端到端通信资源分配模型约束条件,采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,最终得到优化后的优化向量最优解;
步骤5:根据优化后的优化向量最优解建立所有蜂窝用户与端到端通信用户对之间的匹配关系;
步骤3所述的资源分配优化向量为:x={x1^1,x1^2,…,x1^N,…,xM^1,xM^2,…,xM^N};
步骤3所述分组后的资源分配优化向量为:xgroup
步骤3所述根据变量属性进行分组,得到分组后的资源分配优化向量,具体为:
随机产生分组选择变量rg∈[0,1],并按如下规则对资源分配优化向量x中的各优化变量xm^n(m=1,2,…,M;n=1,2,…,N)进行分组:
Figure FDA0003180474660000011
其中,组别I1、组别Ik、组别II1、组别IIh以及组别III具体指:
组别I1:将资源分配优化向量x中与同一个蜂窝用户相关联的优化变量划分为同一组,即GroupI1-i={x1^i,x2^i,…,xM^i},i=1,2,…,N;按组别I1进行变量分组,得到分组后的资源分配优化向量xgroup={Gi}={GroupI1-1,GroupI1-2,…,GroupI1-Ngroup},i=1,2,…,Ngroup,Ngroup=N为分组后的资源分配优化向量xgroup的变量分组总数;
组别Ik:将资源分配优化向量x中与随机k个蜂窝用户相关联的优化变量划分为同一组,即GroupIk-i={GroupI1-r1,GroupI1-r2,…,GroupI1-rk},i=1,2,…,Nk,Nk=N/k,r1,r2,...,rk∈{1,2,...,N};按组别Ik进行分组后,得到分组后的资源分配优化向量xgroup={Gi}={GroupIk-1,GroupIk-2,…,GroupIk-Ngroup},i=1,2,…,Ngroup,Ngroup=Nk为分组后的资源分配优化向量xgroup的变量分组总数;
组别II1:将资源分配优化向量x中与同一个端到端通信用户对相关联的变量划分为同一组,即GroupII1-j={xj^1,xj^2,…,xj^N},j=1,2,…,M;按组别II1进行分组后,得到分组后的资源分配优化向量xgroup={Gj}={GroupII1-1,GroupII1-2,…,GroupII1-Ngroup},j=1,2,…,Ngroup,Ngroup=M为分组后的资源分配优化向量xgroup的变量分组总数;
组别IIh:将资源分配优化向量x中与随机h个端到端通信用户对相关联的变量划分为同一组,即GroupIIh-j={GroupII1-r1,GroupII1-r2,…,GroupII1-rh},j=1,2,…,Mh,Mh=M/h,r1,r2,...,rh∈{1,2,...,M};按组别IIh进行分组后,得到分组后的资源分配优化向量xgroup={Gj}={GroupIIh-1,GroupIIh-2,…,GroupIIh-Ngroup},j=1,2,…,Ngroup,Ngroup=Mh为分组后的资源分配优化向量xgroup的变量分组总数;
组别III:将资源分配优化向量x中的全部N×M个优化变量随机打乱,打乱后每s个划分为同一组,即GroupR-u={xp1^q1,xp2^q2,…,xps^qs},u=1,2,…,U,U=(N×M)/s,p1,p2,...,ps∈{1,2,...,M},q1,q2,...,qs∈{1,2,...,N};按组别III进行分组后,得到分组后的资源分配优化向量xgroup={Gu}={GroupR-1,GroupR-2,…,GroupR-Ngroup},u=1,2,…,Ngroup,Ngroup=U为分组后的资源分配优化向量xgroup的变量分组总数。
2.根据权利要求1所述的端到端通信的资源分配分组优化方法,其特征在于,步骤1所述的资源分配优化向量,定义为:
x={x1^1,x1^2,…,x1^N,…,xM^1,xM^2,…,xM^N}
其中,x表示资源分配优化向量,所述资源分配优化向量的维度为N×M维,xm^n为资源分配优化向量x中的优化变量,表示第m个端到端通信用户对与第n个蜂窝用户链路资源的匹配关系,N表示当前蜂窝网络中蜂窝用户的数量,M表示端到端通信用户对的数量,m=1,2,…,M;n=1,2,…,N;
若xm^n>B表示第m个端到端通信用户对复用第n个蜂窝用户的通信链路资源,否则第m个端到端通信用户对不复用第n个蜂窝用户的通信链路资源;
B为预定义的分界点数值,且B>0。
3.根据权利要求1所述的端到端通信的资源分配分组优化方法,其特征在于,步骤2所述蜂窝网络端到端通信的资源分配模型为:
Figure FDA0003180474660000031
其中,fcost(x)表示资源分配优化向量x所对应的代价值;
Figure FDA0003180474660000032
为第m个端到端通信用户对复用第n个蜂窝用户通信链路资源时的发射功率;Pα为端到端通信用户对的总电路功耗;
Figure FDA0003180474660000033
为第m个端到端通信用户对发送端到第m个端到端通信用户对接收端的信道增益;PCUn为第n个蜂窝用户的发射功率;
Figure FDA0003180474660000034
为第n个蜂窝用户到第m个端到端通信用户对接收端的信道增益;n0为高斯白噪声功率;N表示当前蜂窝网络中蜂窝用户的数量;M表示端到端通信用户对的数量;
步骤2所述蜂窝网络端到端通信资源分配模型的约束条件为:
可根据通信系统的应用场景,定义上述资源分配模型必须满足的若干约束条件:
一个蜂窝用户的通信链路资源最多只能被一个端到端通信用户对所复用,即
Figure FDA0003180474660000035
一个端到端通信用户对应当复用至少一个蜂窝用户的通信链路资源,即
Figure FDA0003180474660000036
4.根据权利要求1所述的端到端通信的资源分配分组优化方法,其特征在于,所述步骤4中采用进化算法对分组后的资源分配优化向量不断进行迭代优化和重新分组,具体按照以下步骤实施:
步骤4.1:在[0,2B]范围内随机初始化包含Np个优化向量的种群
Figure FDA0003180474660000037
其中,每一个优化向量
Figure FDA0003180474660000038
均代表步骤3中的一个分组后的资源分配优化向量xgroup;B>0为分界点数值;
步骤4.2:对种群Population中的每一个优化向量
Figure FDA0003180474660000041
计算不满足步骤2中任意一个约束条件的蜂窝用户和端到端通信用户对的总个数,记录为Ci,i=1,2,…,Np;同时,计算每一个优化向量
Figure FDA0003180474660000042
所对应的步骤2中的代价值
Figure FDA0003180474660000043
并由下式计算每一个优化向量
Figure FDA0003180474660000044
所对应的目标函数值
Figure FDA0003180474660000045
Figure FDA0003180474660000046
其中,β>0为惩罚项系数;
步骤4.3:将当前种群Population中目标函数值fmin最小的优化向量
Figure FDA0003180474660000047
定义为参考向量CV=xbest;其中,
Figure FDA0003180474660000048
为优化向量xbest的各变量分组;Ngroup为优化向量xbest的变量分组总数;
步骤4.4:对于当前种群Population中的每一个优化向量
Figure FDA0003180474660000049
Figure FDA00031804746600000410
依次遍历其每一个变量分组
Figure FDA00031804746600000411
Figure FDA00031804746600000412
并采用进化算法对变量分组
Figure FDA00031804746600000413
中所包含的优化变量进行一次进化,得到进化后的优化向量
Figure FDA00031804746600000414
按上述方案,所述步骤4.4中采用进化算法对变量分组
Figure FDA00031804746600000415
中所包含的优化变量进行一次进化,在此过程中,当需要计算变量分组
Figure FDA00031804746600000416
Figure FDA00031804746600000417
的目标函数值
Figure FDA00031804746600000418
时,对于变量分组
Figure FDA00031804746600000419
中所包含的优化变量之外的其余维度的优化变量,均使用当前参考向量CV中对应维度的优化变量值进行填补,即采用下式计算变量分组
Figure FDA00031804746600000420
的目标函数值:
Figure FDA00031804746600000421
Figure FDA00031804746600000422
步骤4.5:用步骤4.4中所有进化后的优化向量
Figure FDA00031804746600000423
更新当前种群Population;
步骤4.6:随机产生分组选择变量rg∈[0,1],并按如下规则对步骤4.5中更新后的种群Population中每一个优化向量
Figure FDA0003180474660000051
重新进行变量分组:
Figure FDA0003180474660000052
其中,组别I1、组别Ik、组别II1、组别IIh以及组别III为步骤3中所定义的相应组别;
步骤4.7:重复步骤4.3至步骤4.6,直至重复次数达到预定义的最大重复次数Tmax;随后,将当前种群Population中目标函数值fmin最小的优化向量
Figure FDA0003180474660000053
作为优化后的优化向量最优解,即xgbest=xbest
步骤4所述优化后的优化向量最优解为:
Figure FDA0003180474660000054
其中,xgbest为优化后的优化向量最优解;
Figure FDA0003180474660000055
为最优解xgbest中的优化变量,表示第m个端到端通信用户对与第n个蜂窝用户链路资源的匹配关系,N表示当前蜂窝网络中蜂窝用户的数量,M表示端到端通信用户对的数量。
5.根据权利要求1所述的端到端通信的资源分配分组优化方法,其特征在于,步骤5所述的解码并建立所有蜂窝用户与端到端通信用户对之间的匹配关系,具体为:
Figure FDA0003180474660000056
则将第n个蜂窝用户的通信链路资源分配给第m个端到端通信用户对;
Figure FDA0003180474660000057
则不予以分配;
其中,B>0为分界点数值。
CN202110844870.7A 2021-07-26 2021-07-26 一种端到端通信的资源分配分组优化方法 Active CN113596786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110844870.7A CN113596786B (zh) 2021-07-26 2021-07-26 一种端到端通信的资源分配分组优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110844870.7A CN113596786B (zh) 2021-07-26 2021-07-26 一种端到端通信的资源分配分组优化方法

Publications (2)

Publication Number Publication Date
CN113596786A true CN113596786A (zh) 2021-11-02
CN113596786B CN113596786B (zh) 2023-11-14

Family

ID=78249964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110844870.7A Active CN113596786B (zh) 2021-07-26 2021-07-26 一种端到端通信的资源分配分组优化方法

Country Status (1)

Country Link
CN (1) CN113596786B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114401491A (zh) * 2021-12-24 2022-04-26 中国电信股份有限公司 一种设备到设备通信中的资源分配方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398975A1 (en) * 2002-09-04 2004-03-17 Alcatel Method for maintaining a radio network having elements coming from more than one supplier, and components therefor
US20090323604A1 (en) * 2006-03-14 2009-12-31 De Jaeger Bogena Method for optimizing the allocation of resources in a cellular network using a shared radio transmission link, network and network adapters thereof
CN106793116A (zh) * 2016-12-20 2017-05-31 南京邮电大学 基于物理层网络编码的自回程异构蜂窝虚拟资源优化方法
CN108718445A (zh) * 2018-05-10 2018-10-30 西安交通大学 一种QoS驱动的D2D安全通信资源分配方法
CN109729528A (zh) * 2018-12-21 2019-05-07 北京邮电大学 一种基于多智能体深度强化学习的d2d资源分配方法
CN109982437A (zh) * 2018-12-21 2019-07-05 北京邮电大学 一种基于位置感知加权图的d2d通信频谱分配方法
CN110225494A (zh) * 2019-06-28 2019-09-10 华北电力大学 一种基于外部性和匹配算法的机器类通信资源分配方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398975A1 (en) * 2002-09-04 2004-03-17 Alcatel Method for maintaining a radio network having elements coming from more than one supplier, and components therefor
US20090323604A1 (en) * 2006-03-14 2009-12-31 De Jaeger Bogena Method for optimizing the allocation of resources in a cellular network using a shared radio transmission link, network and network adapters thereof
CN106793116A (zh) * 2016-12-20 2017-05-31 南京邮电大学 基于物理层网络编码的自回程异构蜂窝虚拟资源优化方法
CN108718445A (zh) * 2018-05-10 2018-10-30 西安交通大学 一种QoS驱动的D2D安全通信资源分配方法
CN109729528A (zh) * 2018-12-21 2019-05-07 北京邮电大学 一种基于多智能体深度强化学习的d2d资源分配方法
CN109982437A (zh) * 2018-12-21 2019-07-05 北京邮电大学 一种基于位置感知加权图的d2d通信频谱分配方法
CN110225494A (zh) * 2019-06-28 2019-09-10 华北电力大学 一种基于外部性和匹配算法的机器类通信资源分配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114401491A (zh) * 2021-12-24 2022-04-26 中国电信股份有限公司 一种设备到设备通信中的资源分配方法及装置
CN114401491B (zh) * 2021-12-24 2024-05-10 中国电信股份有限公司 一种设备到设备通信中的资源分配方法及装置

Also Published As

Publication number Publication date
CN113596786B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
CN111372314A (zh) 基于移动边缘计算场景下的任务卸载方法及任务卸载装置
CN103249007B (zh) Imt-a系统中的d2d多播通信建立与其无线资源分配方法
US7613165B2 (en) Method for selecting broadcast routing path using genetic algorithm in Ad-hoc network
CN108391317B (zh) 一种蜂窝网络中d2d通信的资源分配方法及系统
CN106792451B (zh) 一种基于多种群遗传算法的d2d通信资源优化方法
CN108600999B (zh) Fd-d2d基于信道分配与功率控制联合优化方法
CN105873214A (zh) 一种基于遗传算法的d2d通信系统的资源分配方法
WO2024113974A1 (zh) 算力网络的路由分配方法、装置、电子设备及存储介质
CN115568024A (zh) 面向边缘计算的无线信道匹配方法
CN111182511A (zh) 一种mMTC场景中基于AGA的NOMA资源分配方法
CN113596786A (zh) 一种端到端通信的资源分配分组优化方法
CN104394569B (zh) 无线d2d网络中基于角度和干扰控制建立多播路由的方法
CN113891481A (zh) 一种面向吞吐量的蜂窝网络d2d通信动态资源分配方法
CN114423070A (zh) 一种基于d2d的异构无线网络功率分配方法及系统
CN113301637A (zh) 一种基于q学习和神经网络的d2d通信功率控制算法
CN113301638A (zh) 一种基于q学习的d2d通信频谱分配与功率控制算法
CN112770398A (zh) 一种基于卷积神经网络的远端射频端功率控制方法
CN106102146B (zh) 一种多蜂窝下的d2d通信的能耗优化方法
CN108111991B (zh) 基于可伸缩视频流用户体验质量的d2d网络搭建方法
CN110248403A (zh) 一种基于非正交多址的最大化d2d连接数的资源管控方法
CN112770343B (zh) 基于haga的d2d-noma资源分配方法及系统
CN110611698A (zh) 一种基于随机边缘缓存及现实条件的柔性协作传输方法及系统
Zhao et al. Distributed probability random access scheme in satellite IoT system
Wu et al. An improved resource allocation scheme for plane cover multiple access using genetic algorithm
Lof Power control in cellular radio systems with multicast traffic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant