CN113595608B - Millimeter wave/terahertz communication method, device and system based on visual perception - Google Patents
Millimeter wave/terahertz communication method, device and system based on visual perception Download PDFInfo
- Publication number
- CN113595608B CN113595608B CN202110698104.4A CN202110698104A CN113595608B CN 113595608 B CN113595608 B CN 113595608B CN 202110698104 A CN202110698104 A CN 202110698104A CN 113595608 B CN113595608 B CN 113595608B
- Authority
- CN
- China
- Prior art keywords
- mobile terminal
- base station
- camera
- reflecting surface
- intelligent reflecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 60
- 230000016776 visual perception Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000011159 matrix material Substances 0.000 claims description 22
- 230000005855 radiation Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 3
- 101100497221 Bacillus thuringiensis subsp. alesti cry1Ae gene Proteins 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/04013—Intelligent reflective surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/08—Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/32—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提供一种基于视觉感知的毫米波/太赫兹通信方法、装置和系统,其中通信方法包括:利用相机实时采集图像信息以及移动端的深度信息;利用所述智能反射面根据所述图像信息识别出移动端在图像中的位置;基于所述移动端的深度信息,将移动端在图像中的位置转化为移动端的三维坐标;基于所述移动端的三维坐标所计算出的移动端所在实时位置的俯仰角和方位角,控制智能反射面的天线将信号波束指向移动端方向。本发明可以快速识别移动端并确定目标位置,并控制智能反射面的相控阵天线产生对应方向的俯仰角和方位角,可以使波束更快指向对应目标,提高识别移动端位置的能力,降低时延,实现实时波束跟踪。
The present invention provides a millimeter wave/terahertz communication method, device and system based on visual perception, wherein the communication method includes: using a camera to collect image information and depth information of a mobile terminal in real time; using the intelligent reflective surface to identify according to the image information The position of the mobile terminal in the image is obtained; based on the depth information of the mobile terminal, the position of the mobile terminal in the image is converted into the three-dimensional coordinates of the mobile terminal; the pitch of the real-time position of the mobile terminal is calculated based on the three-dimensional coordinates of the mobile terminal Angle and azimuth, control the antenna of the smart reflector to point the signal beam in the direction of the mobile terminal. The invention can quickly identify the mobile terminal and determine the target position, and control the phased array antenna of the intelligent reflective surface to generate the pitch angle and azimuth angle of the corresponding direction, which can make the beam point to the corresponding target faster, improve the ability to identify the position of the mobile terminal, and reduce the time delay to achieve real-time beam tracking.
Description
技术领域technical field
本发明涉及通信技术领域,尤其涉及一种基于视觉感知的毫米波/太赫兹通信方法、装置和系统。The present invention relates to the field of communication technologies, and in particular, to a millimeter wave/terahertz communication method, device and system based on visual perception.
背景技术Background technique
通信技术行业自诞生以来一直遵循着“十年一换代”的“摩尔定律”,从1980年开始的第一代移动通信(1G)的模拟通信方式,到1990左右以TDMA为核心技术的2G,再到本世纪初以CDMA为核心技术的3G时代,再到2010年左右以OFDM技术为核心的4G移动通信网络的大规模商用,移动通信整体在朝着越来越快、越来越稳定、越来越安全的方向发展。2020年因为第五代移动通信技术(5G)的问世而被称为“5G元年”,其在增强的移动带宽通信(eMBB)、超可靠低时延通信(URLLC)、大规模机器类型通信(mMTC)等场景有着很好的表现。Since its birth, the communication technology industry has been following the "Moore's Law" of "every ten years", from the analog communication method of the first generation of mobile communication (1G) started in 1980, to the 2G with TDMA as the core technology around 1990, In the 3G era with CDMA as the core technology at the beginning of this century, and the large-scale commercial use of 4G mobile communication networks with OFDM technology as the core around 2010, the overall mobile communication is moving towards faster, more stable, more and more secure. 2020 is called "the first year of 5G" because of the advent of the fifth-generation mobile communication technology (5G), which is in the field of enhanced mobile bandwidth communication (eMBB), ultra-reliable and low-latency communication (URLLC), large-scale machine type communication. (mMTC) and other scenarios have good performance.
目前,传统的高频通信领域的智能反射面的波束赋形与跟踪基本采用如下方式:先使用导频扫描和遍历智能反射面方向上的所有相位,以确定移动端的方向。当移动端移动时,传统方法需要不断发送导频扫描移动端方向附近的信噪比,移动端需要通过上行信道将信噪比的值反馈给智能反射面,随后智能反射面选取最大的方向的信噪比为反射波束的方向;在雷达相控阵领域,主要采用的是将信道分为通信信道和信标信道,依赖差功分网络对信标信道的信道值进行波达算法分析,由此判断信号来源方向。At present, the beamforming and tracking of the smart reflector in the traditional high-frequency communication field basically adopts the following method: first use the pilot frequency to scan and traverse all the phases in the direction of the smart reflector to determine the direction of the mobile terminal. When the mobile terminal moves, the traditional method needs to continuously send the pilot frequency to scan the signal-to-noise ratio near the mobile terminal. The mobile terminal needs to feed back the value of the signal-to-noise ratio to the smart reflector through the uplink channel, and then the smart reflector selects the maximum direction. The signal-to-noise ratio is the direction of the reflected beam; in the field of radar phased array, it is mainly used to divide the channel into communication channel and beacon channel, and rely on the differential power division network to analyze the channel value of the beacon channel by the wave arrival algorithm. Determine the signal source direction.
上述系统对智能反射面的硬件依赖程度较大,当扫描信号能量较弱或信标信号能量难以检测时,不便确定移动端方向。并且导频占用了较多的信道资源。当移动端数较多的时候,计算复杂度也急剧上升,时延较大。The above system relies heavily on the hardware of the smart reflective surface, and when the energy of the scanning signal is weak or the energy of the beacon signal is difficult to detect, it is inconvenient to determine the direction of the mobile terminal. And the pilot frequency occupies more channel resources. When the number of mobile terminals is large, the computational complexity also increases sharply, and the delay is large.
发明内容SUMMARY OF THE INVENTION
本发明提供一种基于视觉感知的毫米波/太赫兹通信方法、装置和系统,用以解决现有技术中存在的技术缺陷,以实现使用光谱判断目标位置,并跟踪目标,节约了导频所占用的信道资源;当移动端数目较多时,计算复杂度并未改变,时延较小。The present invention provides a millimeter wave/terahertz communication method, device and system based on visual perception, which are used to solve the technical defects in the prior art, so as to use the spectrum to determine the target position and track the target, and save the pilot frequency. Occupied channel resources; when the number of mobile terminals is large, the computational complexity does not change, and the delay is small.
本发明提供一种基于视觉感知的毫米波/太赫兹通信方法,包括:The present invention provides a millimeter wave/terahertz communication method based on visual perception, including:
利用相机实时采集图像信息以及移动端的深度信息;所述相机设置在智能反射面上;The camera is used to collect image information and depth information of the mobile terminal in real time; the camera is arranged on the intelligent reflection surface;
利用所述智能反射面根据所述图像信息识别出移动端在图像中的位置;Using the smart reflective surface to identify the position of the mobile terminal in the image according to the image information;
基于所述移动端的深度信息,将移动端在图像中的位置转化为移动端的三维坐标;Based on the depth information of the mobile terminal, convert the position of the mobile terminal in the image into the three-dimensional coordinates of the mobile terminal;
基于所述移动端的三维坐标所计算出的移动端所在实时位置的俯仰角和方位角,控制智能反射面的天线将信号波束指向移动端方向。Based on the pitch angle and azimuth angle of the real-time position of the mobile terminal calculated based on the three-dimensional coordinates of the mobile terminal, the antenna of the intelligent reflecting surface is controlled to point the signal beam in the direction of the mobile terminal.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述相机坐标原点在相机表面的几何中心处,所述智能反射面的坐标原点近似地和相机坐标原点相同;Preferably, in the millimeter wave/terahertz communication method based on visual perception, the camera coordinate origin is at the geometric center of the camera surface, and the coordinate origin of the smart reflective surface is approximately the same as the camera coordinate origin;
所述移动端在相机坐标系中的坐标为:The coordinates of the mobile terminal in the camera coordinate system are:
(XOQ,YOQ,ZOQ)(X OQ ,Y OQ ,Z OQ )
所述移动端在智能反射面坐标系中的坐标为:The coordinates of the mobile terminal in the smart reflective surface coordinate system are:
所述移动端在相机坐标系中以及在智能反射面坐标系中的坐标的转换公式为:The conversion formula of the coordinates of the mobile terminal in the camera coordinate system and in the smart reflective surface coordinate system is:
所述移动端的俯仰角θ由下式求得:The pitch angle θ of the mobile terminal is obtained by the following formula:
所述移动端的方位角由下式求得:The azimuth of the mobile terminal It is obtained by the following formula:
所述方法还包括:按照下式计算出所述智能反射面的每根天线对应的反射波束的相角 The method further includes: calculating the phase angle of the reflected beam corresponding to each antenna of the smart reflective surface according to the following formula
上式中,j为虚数单位,e为自然对数的底,M为矩阵行数,N为矩阵列数,λ为电磁波波长,d为天线间距。In the above formula, j is the imaginary unit, e is the base of the natural logarithm, M is the number of matrix rows, N is the number of matrix columns, λ is the wavelength of the electromagnetic wave, and d is the antenna spacing.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述方法还包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the method further includes:
利用所述智能反射面根据所述图像信息识别出基站端在图像中的位置;Using the intelligent reflective surface to identify the position of the base station in the image according to the image information;
基于所述基站端的深度信息,将基站端在图像中的位置转化为基站端的三维坐标;Based on the depth information of the base station, convert the position of the base station in the image into the three-dimensional coordinates of the base station;
基于所述基站端的三维坐标所计算出的基站端所在实时位置的俯仰角和方位角,对所述智能反射面的天线进行入射角补偿。Based on the elevation angle and the azimuth angle of the real-time position of the base station end calculated based on the three-dimensional coordinates of the base station end, the incident angle compensation is performed on the antenna of the smart reflector.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述基于所述基站端的三维坐标所计算出的基站端所在实时位置的俯仰角和方位角,包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the pitch angle and azimuth angle of the real-time location of the base station calculated based on the three-dimensional coordinates of the base station include:
按照下式计算出所述智能反射面的每根天线对应的入射角:Calculate the incident angle corresponding to each antenna of the smart reflector according to the following formula:
上式中,为基站端俯仰角,θ0为基站端的方位角。In the above formula, is the pitch angle of the base station, and θ 0 is the azimuth of the base station.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述控制智能反射面的天线将信号波束指向移动端方向之前,通过下式得到所述智能反射面的天线的移相相位 Preferably, in the millimeter wave/terahertz communication method based on visual perception, before the antenna that controls the smart reflective surface points the signal beam in the direction of the mobile terminal, the displacement of the antenna of the smart reflective surface is obtained by the following formula phase
其中,·表示点乘,即两个维度相同的矩阵对应位置的元素相乘。Among them, · represents the point multiplication, that is, the elements of the corresponding positions of the two matrices with the same dimension are multiplied.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述方法还包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the method further includes:
利用相机所采集的图像识别移动端与智能反射面的位置;当基站端与移动端之间的直射径可达的情况下,基站端根据相机采集的图像判断移动端的位置,再控制阵列天线将波束指向移动端的位置,所输入的相角矩阵为当直射径被遮挡时,基站端根据相机采集的图像判断智能反射面的位置,再控制阵列天线将波束指向智能反射面的位置,所输入的相角矩阵为 Use the image collected by the camera to identify the position of the mobile terminal and the smart reflector; when the direct radiation between the base station and the mobile terminal is reachable, the base station determines the position of the mobile terminal according to the image collected by the camera, and then controls the array antenna to The position where the beam points to the mobile terminal, the input phase angle matrix is When the direct beam is blocked, the base station determines the position of the smart reflector according to the image collected by the camera, and then controls the array antenna to point the beam to the position of the smart reflector. The input phase angle matrix is:
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述方法还包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the method further includes:
利用相机采集的图像识别基站端与智能反射面的位置,当基站端与移动端之间的直射径可达的情况下,移动端根据其相机采集的图像判断基站端位置,再控制阵列天线将波束指向基站端的位置,所输入的相角矩阵为当直射径被遮挡时,移动端根据其相机采集的图像判断智能反射面的位置,再控制阵列天线将波束指向智能反射面的位置,所输入的相角矩阵为 Use the image collected by the camera to identify the position of the base station and the smart reflector. When the direct radiation between the base station and the mobile terminal is reachable, the mobile terminal determines the position of the base station according to the image collected by the camera, and then controls the array antenna to The position where the beam points to the base station, and the input phase angle matrix is When the direct beam is blocked, the mobile terminal judges the position of the smart reflector according to the image collected by its camera, and then controls the array antenna to point the beam to the position of the smart reflector. The input phase angle matrix is:
本发明还提供了一种基于视觉感知的毫米波/太赫兹通信装置,包括:相机、基站端、智能反射面、移动端;The present invention also provides a millimeter wave/terahertz communication device based on visual perception, comprising: a camera, a base station, an intelligent reflective surface, and a mobile terminal;
所述相机用于实时采集图像信息以及移动端的深度信息;所述相机设置在智能反射面上;The camera is used to collect image information and depth information of the mobile terminal in real time; the camera is arranged on the intelligent reflection surface;
所述智能反射面根据所述图像信息识别出移动端在图像中的位置;所述相机还用于基于所述移动端的深度信息,将移动端在图像中的位置转化为移动端的三维坐标;The intelligent reflective surface identifies the position of the mobile terminal in the image according to the image information; the camera is also used to convert the position of the mobile terminal in the image into three-dimensional coordinates of the mobile terminal based on the depth information of the mobile terminal;
所述智能反射面还用于基于所述移动端的三维坐标所计算出的移动端所在实时位置的俯仰角和方位角,控制智能反射面的天线将信号波束指向移动端方向。The smart reflective surface is also used to control the antenna of the smart reflective surface to point the signal beam in the direction of the mobile terminal based on the pitch angle and azimuth angle of the real-time position of the mobile terminal calculated based on the three-dimensional coordinates of the mobile terminal.
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述智能反射面根据所述图像信息识别出基站端在图像中的位置;所述相机还用于基于所述基站端的深度信息,将基站端在图像中的位置转化为基站端的三维坐标;Preferably, in the millimeter wave/terahertz communication device based on visual perception, wherein the intelligent reflective surface identifies the position of the base station in the image according to the image information; the camera is also used for The depth information of the terminal is converted into the position of the base station in the image into the three-dimensional coordinates of the base station;
所述智能反射面还用于基于所述基站端的三维坐标所计算出的基站端所在实时位置的俯仰角和方位角,对所述智能反射面的天线进行入射角补偿。The smart reflective surface is also used for performing incident angle compensation on the antenna of the smart reflective surface based on the elevation angle and the azimuth angle of the real-time position of the base station end calculated based on the three-dimensional coordinates of the base station end.
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述智能反射面的天线采用无源相控阵天线,和/或,所述相机具有计算物体左右距离及深度的功能,和/或,所述相机为双目相机。Preferably, in the millimeter wave/terahertz communication device based on visual perception, the antenna of the smart reflective surface adopts a passive phased array antenna, and/or the camera has a function of calculating the left and right distance and depth of an object. function, and/or, the camera is a binocular camera.
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述相机坐标原点在相机表面的几何中心处,所述智能反射面的坐标原点近似地和相机坐标原点相同。Preferably, in the millimeter wave/terahertz communication device based on visual perception, the camera coordinate origin is at the geometric center of the camera surface, and the coordinate origin of the smart reflective surface is approximately the same as the camera coordinate origin.
本发明还提供了一种基于视觉感知的毫米波/太赫兹通信系统,包括所述的基于视觉感知的毫米波/太赫兹通信装置。The present invention also provides a millimeter wave/terahertz communication system based on visual perception, including the millimeter wave/terahertz communication device based on visual perception.
本发明提供的基于视觉感知的毫米波/太赫兹通信方法、装置和系统,使用相机作为视觉辅助,可以快速识别移动端并确定目标位置,并控制智能反射面的相控阵天线产生对应方向的俯仰角和方位角,可以使波束更快指向对应目标,提高识别移动端位置的能力,降低时延。当移动端运动时,能够计算出移动端实时位置,控制智能反射面随之改变反射方向,实现实时波束跟踪。The millimeter wave/terahertz communication method, device and system based on visual perception provided by the present invention, using the camera as a visual aid, can quickly identify the mobile terminal and determine the target position, and control the phased array antenna of the intelligent reflective surface to generate the corresponding direction. The pitch angle and azimuth angle can make the beam point to the corresponding target faster, improve the ability to identify the location of the mobile terminal, and reduce the delay. When the mobile terminal moves, the real-time position of the mobile terminal can be calculated, and the intelligent reflective surface can be controlled to change the reflection direction accordingly to realize real-time beam tracking.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are the For some embodiments of the invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本发明提供的基于视觉感知的毫米波/太赫兹通信方法的流程示意图;1 is a schematic flowchart of a visual perception-based millimeter wave/terahertz communication method provided by the present invention;
图2是本发明提供的相机获取的图片转化成的空间三维坐标的示意图;Fig. 2 is the schematic diagram of the spatial three-dimensional coordinates converted into the picture obtained by the camera provided by the present invention;
图3是本发明提供的智能反射面设定俯仰角与方位角时参考的坐标系的示意图。FIG. 3 is a schematic diagram of a coordinate system for reference when the intelligent reflective surface provided by the present invention sets the pitch angle and the azimuth angle.
图4是本发明提供的基于视觉感知的毫米波/太赫兹通信装置之三的结构示意图。FIG. 4 is a schematic structural diagram of the third millimeter wave/terahertz communication device based on visual perception provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention. , not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明提供了一种基于视觉感知的毫米波/太赫兹通信方法,参见图1,该方法包括:The present invention provides a millimeter wave/terahertz communication method based on visual perception, see FIG. 1 , the method includes:
S1、利用相机10实时采集图像信息以及移动端的深度信息;S1, use the
所述相机10可以设置在基站端20、智能反射面30或移动端40上,也可以是两个相机10分别设置在基站端20、智能反射面30、移动端40中的其中两端,或是三个相机10分别设置在基站端20、智能反射面30以及移动端40上,以上几种情况皆可实现,所述相机10用于实时采集图像信息;The
S2、利用所述智能反射面30根据所述图像信息识别出移动端40在图像中的位置;S2, using the intelligent
根据图片识别移动端40在图像中的位置既可以通过基于HSV成像原理的传统图像处理技术,也可以通过深度神经网络的人工智能技术。此时,相机10设置在智能反射面30上。Recognizing the position of the
S3、基于所述移动端的深度信息,将移动端40在图像中的位置转化为移动端40的三维坐标;S3, based on the depth information of the mobile terminal, convert the position of the
S4、基于所述移动端40的三维坐标所计算出的移动端40所在实时位置的俯仰角和方位角,控制智能反射面30的天线将信号波束指向移动端40方向。S4 , controlling the antenna of the
所述智能反射面30的天线采用无源相控阵天线。The antenna of the smart reflecting
所述基于视觉感知的毫米波/太赫兹通信方法中需要使用的硬件部分包括相机10、多核服务器、由PXIe机箱、FPGA协处理器、时钟处理模块和软件定义无线电等设备构成的基站端20、连接基站的智能反射面30、智能反射面30和由无人小车、PC机以及连接PC机的软件定义无线电模块等设备构成的移动端40。所述相机10是指相机10及其上位机,相机10位于智能反射面30上,会实时采集图像信息。相机10连接的上位机根据图像,使用传统图像处理算法或深度学习算法识别出移动端40(或基站端20)在图像中的位置,再根据相机10获取移动端40的深度信息,使用相机10的内参矩阵将图像中的二维位置转化为空间中的三维坐标。相机10的上位机根据三维坐标计算出移动端40所在位置的俯仰角和方位角,将角度信息发送给智能反射面30,使波束指向该方向。当移动端40运动时,相机10及其上位机器能够计算出移动端40实时位置,控制智能反射面30随之改变反射方向,实现实时波束跟踪。The hardware parts that need to be used in the millimeter wave/terahertz communication method based on visual perception include a
上述基站与移动端40的通信可以遵循4G-LTE、5G-NR协议或其它,软件可以使用LabVIEW、LabVIEW NXG或其它,频段可以选择任意毫米波和太赫兹等高频频段。相机10可以为双目相机10或其它,基站端20与移动端40的硬件组成可以上述硬件或其它,本方案不做限制。可以根据实际情况或需要进行合理配置。The communication between the base station and the
本发明提供的基于视觉感知的毫米波/太赫兹通信方法,使用相机10作为视觉辅助,可以快速识别移动端40并确定目标位置,并控制智能反射面30的相控阵天线产生对应方向的俯仰角和方位角,可以使波束更快指向对应目标,提高识别移动端40位置的能力,降低时延。当移动端40运动时,能够计算出移动端40实时位置,控制智能反射面30随之改变反射方向,实现实时波束跟踪。The millimeter wave/terahertz communication method based on visual perception provided by the present invention, using the
上述智能反射面30设定俯仰角与方位角时参考的坐标系如图3所示。当站在智能反射面30后方看去,原点在智能反射面30的右上角顶点所在的位置,X轴向下,Y轴向左,Z轴向前。The coordinate system referenced by the smart
在此坐标系下,θ为移动端40与原点的连线OQ与Z轴正向的夹角,为移动端40在XOY平面的投影点与原点的连线OS与X轴正向的夹角。其中在X轴左半边为正,在右半边为负。为便于描述与计算,规定以下几个主要的问题:In this coordinate system, θ is the angle between the connection line OQ between the moving
相机10坐标原点在相机10表面的几何中心处;The origin of the coordinates of the
智能反射面30的坐标原点近似地和相机10坐标原点相同;The coordinate origin of the smart
坐标系都是右手系,且X/Y/Z坐标都是自带正负性的。移动端40不论在哪个坐标系中,Z坐标都大于0,而X坐标与Y坐标的正负性没有限制。The coordinate systems are all right-handed systems, and the X/Y/Z coordinates are all positive and negative. No matter which coordinate system the
上述上位机将相机10拍摄的图片转化成的空间三维坐标如图2。当站在相机10后方看去,原点在相机10的右眼所在的位置,X轴向右,Y轴向下,Z轴向前。这是由相机10原始设定的,在此坐标系下得到移动端40位置的三维坐标。The above-mentioned upper computer converts the picture captured by the
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述相机10坐标原点在相机10表面的几何中心处,所述智能反射面30的坐标原点近似地和相机10坐标原点相同;Preferably, in the millimeter wave/terahertz communication method based on visual perception, the origin of the coordinates of the
所述移动端40在相机10坐标系中的坐标为:The coordinates of the
(XOQ,YOQ,ZOQ)(X OQ ,Y OQ ,Z OQ )
所述移动端40在智能反射面30坐标系中的坐标为:The coordinates of the
所述移动端40在相机10坐标系中以及在智能反射面30坐标系中的坐标的转换公式为:The conversion formula of the coordinates of the
为了避免不必要的计算,简化算法,下面所有的公式都只使用(XOQ,YOQ,ZOQ)作为已知量进行表示。In order to avoid unnecessary calculations and simplify the algorithm, all the following formulas are expressed only using (X OQ , Y OQ , Z OQ ) as known quantities.
所述移动端40的俯仰角θ由下式求得:The pitch angle θ of the
所述移动端40的方位角由下式求得:The azimuth of the
相机10的上位机按照以上公式求出θ与然后,所述方法还包括:按照下式计算出所述智能反射面30的每根天线对应的反射波束的相角 The upper computer of the
上式中,j为虚数单位,e为自然对数的底,M为矩阵行数,N为矩阵列数,λ为电磁波波长,d为天线间距。In the above formula, j is the imaginary unit, e is the base of the natural logarithm, M is the number of matrix rows, N is the number of matrix columns, λ is the wavelength of the electromagnetic wave, and d is the antenna spacing.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述方法还包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the method further includes:
利用所述智能反射面30根据所述图像信息识别出基站端20在图像中的位置;Using the smart
基于所述基站端的深度信息,将基站端20在图像中的位置转化为基站端20的三维坐标;Converting the position of the
基于所述基站端20的三维坐标所计算出的基站端20所在实时位置的俯仰角和方位角,对所述智能反射面30的天线进行入射角补偿。Based on the elevation angle and the azimuth angle of the real-time position of the
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述基于所述基站端20的三维坐标所计算出的基站端20所在实时位置的俯仰角和方位角,包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the pitch angle and azimuth angle of the real-time location of the
按照下式计算出所述智能反射面30的每根天线对应的入射角:Calculate the incident angle corresponding to each antenna of the smart
上式中,为基站端20俯仰角,θ0为基站端20的方位角,同上所述,M为矩阵行数,N为矩阵列数,λ为电磁波波长,d为天线间距。In the above formula, is the pitch angle of the
在本实施例中,M=N=8,设中心频段为f=30GHz,则λ=10mm,d=40mm。In this embodiment, M=N=8, and if the center frequency band is f=30GHz, then λ=10mm, d=40mm.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述控制智能反射面30的天线将信号波束指向移动端40方向之前,通过下式得到所述智能反射面30的天线的移相相位 Preferably, in the millimeter wave/terahertz communication method based on visual perception, before the antenna that controls the smart
其中,·表示点乘,即两个维度相同的矩阵对应位置的元素相乘,结果仍然为相同维度的矩阵。移相相位的每个元素即为天线阵列上对应位置天线需要相位移相的相位。Among them, · represents point multiplication, that is, the elements of the corresponding positions of two matrices with the same dimension are multiplied, and the result is still a matrix of the same dimension. phase shift Each element of is the phase of the antenna at the corresponding position on the antenna array that needs to be phase-shifted.
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述方法还包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the method further includes:
利用相机10所采集的图像识别移动端与智能反射面30的位置,此时相机10设置在基站端20;当基站端20与移动端40之间的直射径可达的情况下,基站端20根据相机10采集的图像判断移动端40的位置,再控制阵列天线将波束指向移动端40的位置,所输入的相角矩阵为当直射径被遮挡时,基站端20根据相机10采集的图像判断智能反射面30的位置,再控制阵列天线将波束指向智能反射面30的位置,所输入的相角矩阵为 Use the images collected by the
优选的,所述的基于视觉感知的毫米波/太赫兹通信方法,其中,所述方法还包括:Preferably, in the millimeter wave/terahertz communication method based on visual perception, the method further includes:
利用相机10采集的图像识别基站端20与智能反射面30的位置,此时相机10设置在移动端40,当基站端20与移动端40之间的直射径可达的情况下,移动端40根据其相机10采集的图像判断基站端20位置,再控制阵列天线将波束指向基站端20的位置,所输入的相角矩阵为当直射径被遮挡时,移动端40根据其相机采集的图像判断智能反射面30的位置,再控制阵列天线将波束指向智能反射面30的位置,所输入的相角矩阵为 The positions of the
本发明还提供了一种基于视觉感知的毫米波/太赫兹通信装置,包括:相机10、基站端20、智能反射面30、移动端40;The present invention also provides a millimeter wave/terahertz communication device based on visual perception, comprising: a
所述相机10用于实时采集图像信息以及移动端的深度信息;The
此时,所述相机10设置在智能反射面30上;At this time, the
所述智能反射面30根据所述图像信息识别出移动端40在图像中的位置;所述相机10还用于基于所述移动端的深度信息,将移动端40在图像中的位置转化为移动端40的三维坐标;The smart
所述智能反射面30还用于基于所述移动端40的三维坐标所计算出的移动端40所在实时位置的俯仰角和方位角,控制智能反射面30的天线将信号波束指向移动端40方向。The smart
参见图4,当所述相机10位于智能反射面30上时,所述智能反射面30根据所述图像信息识别出移动端40的实时位置、控制智能反射面30的天线将第二信号波束指向移动端40方向。Referring to FIG. 4 , when the
本发明提供的基于视觉感知的毫米波/太赫兹通信装置,使用相机10作为视觉辅助,可以快速识别移动端40并确定目标位置,并控制智能反射面30的相控阵天线产生对应方向的俯仰角和方位角,可以使波束更快指向对应目标,提高识别移动端40位置的能力,降低时延。整个方案是感知通信一体化的具体实现和创新型应用。The millimeter wave/terahertz communication device based on visual perception provided by the present invention, using the
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述智能反射面30根据所述图像信息识别出基站端20在图像中的位置;所述相机10还用于基于所述基站端的深度信息,将基站端20在图像中的位置转化为基站端20的三维坐标;Preferably, in the millimeter wave/terahertz communication device based on visual perception, the intelligent
所述智能反射面30还用于基于所述基站端20的三维坐标所计算出的基站端20所在实时位置的俯仰角和方位角,对所述智能反射面30的天线进行入射角补偿。The smart
需要指出,智能反射面30的入射角一般情况下是固定的,也可以通过手动测量后输入至智能反射面30,或者使用相机10识别基站端20并判断其位置,进而计算出入射角。参见图4,当所述相机10位于智能反射面30上时,所述智能反射面30根据所述图像信息识别出基站端20的实时位置,对所述智能反射面30的天线进行入射角补偿。It should be pointed out that the incident angle of the smart
相机10需要将基站端20发射至智能反射面30的波束的入射角补偿后,再将反射至移动端40的反射角度写入。相机10的上位机按照写入智能反射面30。The
本方案在通信领域的波束成形与跟踪方向上比传统方法的应用场景更加广泛、时延更低,是感知通信一体化的具体实现与应用。Compared with the traditional method, this scheme has wider application scenarios and lower delay in the beamforming and tracking direction in the communication field, and is a specific realization and application of the integration of perception and communication.
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述智能反射面30的天线采用无源相控阵天线,和/或,所述相机10具有计算物体左右距离及深度的功能,和/或,所述相机10为双目相机10。相机10也可以是其他具有计算物体左右距离及深度的功能的相机,作为优选,相机10拍照不受频段限制,因此该装置适用于任意毫米波和太赫兹等高频频段。Preferably, in the millimeter wave/terahertz communication device based on visual perception, the antenna of the
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述相机10坐标原点在相机10表面的几何中心处,所述智能反射面30的坐标原点近似地和相机10坐标原点相同。近似地和相机10坐标原点相同表示基本接近相同状态,因为很难达到完全相同,因此达到基本相同的程度即可。Preferably, in the millimeter wave/terahertz communication device based on visual perception, the origin of the coordinates of the
优选的,所述的基于视觉感知的毫米波/太赫兹通信装置,其中,所述移动端40的天线为全向天线或喇叭天线。Preferably, in the millimeter wave/terahertz communication device based on visual perception, the antenna of the
本发明还提供了一种基于视觉感知的毫米波/太赫兹通信系统,包括所述的基于视觉感知的毫米波/太赫兹通信装置,所述基于视觉感知的毫米波/太赫兹通信装置,包括:相机10、基站端20、智能反射面30、移动端40;The present invention also provides a millimeter wave/terahertz communication system based on visual perception, including the millimeter wave/terahertz communication device based on visual perception, the millimeter wave/terahertz communication device based on visual perception, including :
所述相机10用于实时采集图像信息以及移动端的深度信息;The
此时,所述相机10设置在智能反射面30上;At this time, the
所述智能反射面30根据所述图像信息识别出移动端40在图像中的位置;所述相机10还用于基于所述移动端的深度信息,将移动端40在图像中的位置转化为移动端40的三维坐标;The smart
所述智能反射面30还用于基于所述移动端40的三维坐标所计算出的移动端40所在实时位置的俯仰角和方位角,控制智能反射面30的天线将信号波束指向移动端40方向。The smart
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be The technical solutions described in the foregoing embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110698104.4A CN113595608B (en) | 2021-06-23 | 2021-06-23 | Millimeter wave/terahertz communication method, device and system based on visual perception |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110698104.4A CN113595608B (en) | 2021-06-23 | 2021-06-23 | Millimeter wave/terahertz communication method, device and system based on visual perception |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113595608A CN113595608A (en) | 2021-11-02 |
CN113595608B true CN113595608B (en) | 2022-04-12 |
Family
ID=78244366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110698104.4A Active CN113595608B (en) | 2021-06-23 | 2021-06-23 | Millimeter wave/terahertz communication method, device and system based on visual perception |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113595608B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114520980B (en) * | 2022-01-12 | 2024-11-05 | 山西鑫鹏益电子科技有限公司 | A coal mine communication network model optimization method and device |
CN118489262A (en) * | 2022-01-13 | 2024-08-13 | 华为技术有限公司 | Beam control method and device |
CN114828128B (en) * | 2022-02-25 | 2023-08-22 | 北京邮电大学 | Multi-cell communication coverage method and related equipment for high-speed mobile train |
CN114845332A (en) * | 2022-05-05 | 2022-08-02 | 东南大学 | Millimeter wave communication link blocking prediction method based on visual information fusion |
CN116488740B (en) * | 2023-04-17 | 2023-11-07 | 军事科学院系统工程研究院网络信息研究所 | Space terahertz communication load system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102374860A (en) * | 2011-09-23 | 2012-03-14 | 奇瑞汽车股份有限公司 | Three-dimensional visual positioning method and system |
CN107579759A (en) * | 2017-09-19 | 2018-01-12 | 清华大学 | Method and device for stabilizing antenna beam in UAV satellite communication system |
CN111245494A (en) * | 2020-01-13 | 2020-06-05 | 东南大学 | Positioning Information Assisted Beam Steering Method Based on Smart Reflector |
CN112994765A (en) * | 2021-03-04 | 2021-06-18 | 电子科技大学 | Wave beam alignment method of intelligent reflecting surface auxiliary millimeter wave communication system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104567758B (en) * | 2013-10-29 | 2017-11-17 | 同方威视技术股份有限公司 | Stereo imaging system and its method |
CN110411375B (en) * | 2019-08-05 | 2021-05-11 | 上海亨临光电科技有限公司 | Three-dimensional imaging method based on passive millimeter wave/terahertz imaging technology |
-
2021
- 2021-06-23 CN CN202110698104.4A patent/CN113595608B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102374860A (en) * | 2011-09-23 | 2012-03-14 | 奇瑞汽车股份有限公司 | Three-dimensional visual positioning method and system |
CN107579759A (en) * | 2017-09-19 | 2018-01-12 | 清华大学 | Method and device for stabilizing antenna beam in UAV satellite communication system |
CN111245494A (en) * | 2020-01-13 | 2020-06-05 | 东南大学 | Positioning Information Assisted Beam Steering Method Based on Smart Reflector |
CN112994765A (en) * | 2021-03-04 | 2021-06-18 | 电子科技大学 | Wave beam alignment method of intelligent reflecting surface auxiliary millimeter wave communication system |
Also Published As
Publication number | Publication date |
---|---|
CN113595608A (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113595608B (en) | Millimeter wave/terahertz communication method, device and system based on visual perception | |
WO2022117011A1 (en) | Control method and apparatus for laser radar, storage medium, and electronic apparatus | |
CN113298947A (en) | Multi-source data fusion-based three-dimensional modeling method medium and system for transformer substation | |
CN114079866B (en) | Signal transmission method, equipment and device | |
CN104038707B (en) | A Portable Terahertz Passive Color Camera | |
CN110297213A (en) | Radiation source positioning device and method based on the unmanned aerial vehicle platform for loading relatively prime linear array | |
CN108924408B (en) | Depth imaging method and system | |
CN110632670B (en) | A fast imaging method for multi-frequency reconfigurable electromagnetic surfaces | |
CN109946748A (en) | Thinned array antenna design method applied to cylinder scanning safety check imaging system | |
CN114740472B (en) | A forward-looking three-dimensional imaging method and system for non-scanning single-channel terahertz radar | |
CN110794471A (en) | Millimeter wave sparse array remote monitoring imaging method and system | |
CN106452541A (en) | Light-wireless signal mutually assisting beamforming method and apparatus | |
CN115278526A (en) | Terminal positioning method and device, electronic equipment and storage medium | |
EP3394633B1 (en) | Device in a car for communicating with at least one neighboring device, corresponding method and computer program product. | |
CN109597076B (en) | Data processing method and device for ground-based synthetic aperture radar | |
CN110286351A (en) | A two-dimensional DOA estimation method and device based on L-shaped nested matrix | |
WO2024109161A1 (en) | Unmanned aerial vehicle applied to power grid inspection, method, and power grid inspection system | |
CN110736986A (en) | Intelligent Wi-Fi imaging method and system based on field programmable metamaterial | |
CN104242996B (en) | A kind of method, system and device for establishing communication link | |
CN215835399U (en) | Millimeter wave/terahertz communication device and system based on visual perception | |
EP3482562B1 (en) | An apparatus and a method for generating data representative of a pixel beam | |
CN109884622A (en) | Three-dimensional imaging method of cylindrical array antenna | |
CN116528172A (en) | Anti-jamming method for civil aviation VHF ground-to-air communication by fusing secondary radar information | |
CN114499615A (en) | A unified transmit beamforming method for near and far fields in terahertz communication systems | |
CN110873859A (en) | Method, device, medium and equipment for determining transmitting and receiving end positions based on directional antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |