CN113592832A - 一种工业品缺陷检测方法和装置 - Google Patents
一种工业品缺陷检测方法和装置 Download PDFInfo
- Publication number
- CN113592832A CN113592832A CN202110895162.6A CN202110895162A CN113592832A CN 113592832 A CN113592832 A CN 113592832A CN 202110895162 A CN202110895162 A CN 202110895162A CN 113592832 A CN113592832 A CN 113592832A
- Authority
- CN
- China
- Prior art keywords
- image
- industrial product
- detected
- product
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 113
- 238000001514 detection method Methods 0.000 title claims abstract description 49
- 230000002950 deficient Effects 0.000 claims abstract description 34
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000010586 diagram Methods 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 10
- 230000002708 enhancing effect Effects 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 8
- 238000011176 pooling Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- 238000011179 visual inspection Methods 0.000 description 4
- 238000013136 deep learning model Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011551 log transformation method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110895162.6A CN113592832A (zh) | 2021-08-05 | 2021-08-05 | 一种工业品缺陷检测方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110895162.6A CN113592832A (zh) | 2021-08-05 | 2021-08-05 | 一种工业品缺陷检测方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113592832A true CN113592832A (zh) | 2021-11-02 |
Family
ID=78255332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110895162.6A Pending CN113592832A (zh) | 2021-08-05 | 2021-08-05 | 一种工业品缺陷检测方法和装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113592832A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114648077A (zh) * | 2022-05-18 | 2022-06-21 | 合肥高斯智能科技有限公司 | 一种用于多点位工业数据缺陷检测的方法及装置 |
CN114742791A (zh) * | 2022-04-02 | 2022-07-12 | 深圳市国电科技通信有限公司 | 印刷电路板组装的辅助缺陷检测方法、装置及计算机设备 |
CN114782445A (zh) * | 2022-06-22 | 2022-07-22 | 深圳思谋信息科技有限公司 | 对象缺陷检测方法、装置、计算机设备和存储介质 |
CN116664586A (zh) * | 2023-08-02 | 2023-08-29 | 长沙韶光芯材科技有限公司 | 一种基于多模态特征融合的玻璃缺陷检测方法及系统 |
CN117314895A (zh) * | 2023-11-27 | 2023-12-29 | 北京阿丘科技有限公司 | 缺陷检测方法、设备及计算机可读存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020007096A1 (zh) * | 2018-07-02 | 2020-01-09 | 北京百度网讯科技有限公司 | 显示屏质量检测方法、装置、电子设备及存储介质 |
CN111583187A (zh) * | 2020-04-14 | 2020-08-25 | 佛山市南海区广工大数控装备协同创新研究院 | 一种基于cnn可视化的pcb电路板缺陷检测方法 |
CN111862092A (zh) * | 2020-08-05 | 2020-10-30 | 复旦大学 | 一种基于深度学习的快递外包装缺陷检测方法及装置 |
CN111882546A (zh) * | 2020-07-30 | 2020-11-03 | 中原工学院 | 基于弱监督学习的三分支卷积网络织物疵点检测方法 |
CN112070733A (zh) * | 2020-08-28 | 2020-12-11 | 深兰人工智能芯片研究院(江苏)有限公司 | 基于弱监督模式的缺陷粗定位方法和装置 |
CN112184667A (zh) * | 2020-09-28 | 2021-01-05 | 京东方科技集团股份有限公司 | 缺陷检测、修复方法、装置以及存储介质 |
WO2021062536A1 (en) * | 2019-09-30 | 2021-04-08 | Musashi Auto Parts Canada Inc. | System and method for ai visual inspection |
CN113160200A (zh) * | 2021-04-30 | 2021-07-23 | 聚时科技(上海)有限公司 | 一种基于多任务孪生网络的工业图像缺陷检测方法及系统 |
-
2021
- 2021-08-05 CN CN202110895162.6A patent/CN113592832A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020007096A1 (zh) * | 2018-07-02 | 2020-01-09 | 北京百度网讯科技有限公司 | 显示屏质量检测方法、装置、电子设备及存储介质 |
WO2021062536A1 (en) * | 2019-09-30 | 2021-04-08 | Musashi Auto Parts Canada Inc. | System and method for ai visual inspection |
CN111583187A (zh) * | 2020-04-14 | 2020-08-25 | 佛山市南海区广工大数控装备协同创新研究院 | 一种基于cnn可视化的pcb电路板缺陷检测方法 |
CN111882546A (zh) * | 2020-07-30 | 2020-11-03 | 中原工学院 | 基于弱监督学习的三分支卷积网络织物疵点检测方法 |
CN111862092A (zh) * | 2020-08-05 | 2020-10-30 | 复旦大学 | 一种基于深度学习的快递外包装缺陷检测方法及装置 |
CN112070733A (zh) * | 2020-08-28 | 2020-12-11 | 深兰人工智能芯片研究院(江苏)有限公司 | 基于弱监督模式的缺陷粗定位方法和装置 |
CN112184667A (zh) * | 2020-09-28 | 2021-01-05 | 京东方科技集团股份有限公司 | 缺陷检测、修复方法、装置以及存储介质 |
CN113160200A (zh) * | 2021-04-30 | 2021-07-23 | 聚时科技(上海)有限公司 | 一种基于多任务孪生网络的工业图像缺陷检测方法及系统 |
Non-Patent Citations (2)
Title |
---|
D. NEUPANE等: "\"Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review\"", 《IEEE ACCESS》, vol. 8, pages 93155 - 93178 * |
张磊: "\"深度学习在铝型材表面缺陷检测中的应用研究\"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 2021, pages 022 - 269 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114742791A (zh) * | 2022-04-02 | 2022-07-12 | 深圳市国电科技通信有限公司 | 印刷电路板组装的辅助缺陷检测方法、装置及计算机设备 |
CN114648077A (zh) * | 2022-05-18 | 2022-06-21 | 合肥高斯智能科技有限公司 | 一种用于多点位工业数据缺陷检测的方法及装置 |
CN114782445A (zh) * | 2022-06-22 | 2022-07-22 | 深圳思谋信息科技有限公司 | 对象缺陷检测方法、装置、计算机设备和存储介质 |
CN116664586A (zh) * | 2023-08-02 | 2023-08-29 | 长沙韶光芯材科技有限公司 | 一种基于多模态特征融合的玻璃缺陷检测方法及系统 |
CN116664586B (zh) * | 2023-08-02 | 2023-10-03 | 长沙韶光芯材科技有限公司 | 一种基于多模态特征融合的玻璃缺陷检测方法及系统 |
CN117314895A (zh) * | 2023-11-27 | 2023-12-29 | 北京阿丘科技有限公司 | 缺陷检测方法、设备及计算机可读存储介质 |
CN117314895B (zh) * | 2023-11-27 | 2024-03-12 | 北京阿丘科技有限公司 | 缺陷检测方法、设备及计算机可读存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113592832A (zh) | 一种工业品缺陷检测方法和装置 | |
CN112200045B (zh) | 基于上下文增强的遥感图像目标检测模型建立方法及应用 | |
CN107169954B (zh) | 一种基于并行卷积神经网络的图像显著性检测方法 | |
CN111709456A (zh) | 酒瓶表面缺陷检测方法、电子装置及存储介质 | |
CN111666842B (zh) | 一种基于双流空洞卷积神经元网络的阴影检测方法 | |
CN110232379A (zh) | 一种车辆姿态检测方法及系统 | |
TWI667621B (zh) | 人臉辨識方法 | |
JP2018081442A (ja) | 学習済モデル生成方法及び信号データ判別装置 | |
CN111339832A (zh) | 人脸合成图像的检测方法及装置 | |
CN113780484B (zh) | 工业产品缺陷检测方法和装置 | |
CN114495098B (zh) | 一种基于显微镜图像的盘星藻类细胞统计方法及系统 | |
CN112052907A (zh) | 基于图像边缘信息的目标检测方法、装置及存储介质 | |
CN111415339A (zh) | 一种复杂纹理工业产品图像缺陷检测方法 | |
CN113313678A (zh) | 一种基于多尺度特征融合的精子形态学自动分析方法 | |
Chen et al. | Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling | |
Mu et al. | Salient object detection in low contrast images via global convolution and boundary refinement | |
CN111709451B (zh) | 酒瓶表面缺陷检测方法、电子装置及存储介质 | |
CN117593548A (zh) | 基于加权注意力机制去除动态特征点的视觉slam方法 | |
CN113205136A (zh) | 一种用于电源适配器外观缺陷的实时高精度检测方法 | |
Qu et al. | Long-term reliable visual tracking with UAVs | |
CN113989265B (zh) | 基于深度学习的速度传感器螺栓丢失故障识别方法 | |
CN116958031A (zh) | 一种缺陷检测方法和相关装置 | |
CN110232314A (zh) | 一种基于改进的Hog特征结合神经网络的图像行人检测方法 | |
CN116739959A (zh) | 基于改进Faster-RCNN的注射器缺陷检测方法 | |
CN110728310B (zh) | 一种基于超参数优化的目标检测模型融合方法及融合系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 518000 Xili street xilihu town xilihu bank, Nanshan District, Shenzhen City, Guangdong Province Applicant after: Shenzhen Vocational and Technical University Applicant after: SHENZHEN MOULD-TIP TECHNOLOGY Co.,Ltd. Address before: 518000 Xili street xilihu town xilihu bank, Nanshan District, Shenzhen City, Guangdong Province Applicant before: SHENZHEN POLYTECHNIC Country or region before: China Applicant before: SHENZHEN MOULD-TIP TECHNOLOGY Co.,Ltd. |
|
CB02 | Change of applicant information |