CN113590339A - 一种面向批量计算任务的物联网终端协作方法 - Google Patents

一种面向批量计算任务的物联网终端协作方法 Download PDF

Info

Publication number
CN113590339A
CN113590339A CN202110938113.6A CN202110938113A CN113590339A CN 113590339 A CN113590339 A CN 113590339A CN 202110938113 A CN202110938113 A CN 202110938113A CN 113590339 A CN113590339 A CN 113590339A
Authority
CN
China
Prior art keywords
task
terminal
terminals
calculation
tasks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110938113.6A
Other languages
English (en)
Other versions
CN113590339B (zh
Inventor
毛玉星
陈学硕
李剑
李丹阳
徐宜航
熊雄
李思谋
李晋森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202110938113.6A priority Critical patent/CN113590339B/zh
Publication of CN113590339A publication Critical patent/CN113590339A/zh
Application granted granted Critical
Publication of CN113590339B publication Critical patent/CN113590339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5038Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the execution order of a plurality of tasks, e.g. taking priority or time dependency constraints into consideration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • G06F9/44594Unloading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/75Information technology; Communication
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/30Control
    • G16Y40/35Management of things, i.e. controlling in accordance with a policy or in order to achieve specified objectives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Computer And Data Communications (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及物联网技术领域,公开了一种面向批量计算任务的物联网终端协作方法,根据计算任务类型对终端的服务类型进行分类;定义终端属性并建立终端资源模型;终端属性包括算力、服务类型以及终端间通信速率;定义计算任务属性并创建任务集合;以完成任务集合中所有任务的总耗费时间最短为目标,采用多目标优化算法迭代求解终端资源模型中终端之间进行任务卸载的优化方案;各个终端根据所述优化方案卸载计算任务,执行计算任务并回传任务计算结果。本发明量化物联网终端产生的计算任务和终端本身的属性,应用多目标优化算法,实现终端之间任务的高效分配和卸载,减少服务器的计算负载和通信负载,提升物联网终端资源利用率与实时性。

Description

一种面向批量计算任务的物联网终端协作方法
技术领域
本发明涉及物联网技术领域,尤其涉及物联网的协作方法。
背景技术
随着物联网的快速发展,网络实时数据量在不断增长,若使用传统的云计算策略管理这些数据,会因为网络带宽、通信距离等因素的限制变得十分困难。海量的数据同时向云端汇集不仅会导致通信阻塞,还会使传统集中处理模式下的云端处理器负载过大。边缘计算通过将服务器部署在网络边缘,把计算和分析任务转移到数据的源头进行处理,实现云计算模型的延伸,从而提供低时延、近距离的服务,因此可以高效地处理智慧城市等场景中每个时刻产生的海量数据。
当前物联网边缘计算相关设备的部署方式通常为基于端-云或端-边-云模式的结构,且大多关注的仅仅是云端和边缘之间的资源分配和任务卸载或直接将终端的任务卸载到边缘或云端,而对具有感知信息能力的终端设备的处理能力缺乏应有的重视。实际应用中,一方面部分高级终端具有较强的处理能力,并且在运行过程中有很多时间段处在资源富余的状态;另一方面,一些需及时响应的应用场景,其计算任务更适合在端上处理,或通过多个终端进行协同处理。因此,本发明对终端边缘计算技术进行研究,面向具有高实时性数据处理需求的计算批量应用场景,建立适应性较强的任务属性-终端属性模型,设计多目标优化算法提升物联网终端对实时信息的协同处理能力。
发明内容
针对上述技术的不足,本发明提供了一种面向批量计算任务的物联网终端协作方法,解决云服务和边缘服务器面向批量计算任务时负载过重的技术问题。
为解决上述技术问题,本发明提供一种面向批量计算任务的物联网终端协作方法,包括以下步骤:
根据计算任务类型对终端的服务类型进行分类:每个终端只为一种类型的计算任务提供服务,终端的服务类型与计算任务类型一一对应;
定义终端属性并建立终端资源模型:终端属性包括算力、服务类型以及终端间通信速率;获取物联网中能够互相通信的终端的终端属性,从而建立终端资源模型;
定义计算任务属性并创建任务集合:计算任务属性包括任务卸载时的传输数据量、回传任务计算结果的数据量、任务计算量与任务产生终端;获取当前时段每种计算任务中每个计算任务的计算任务属性,从而创建任务集合;
以完成任务集合中所有任务的总耗费时间最短为目标,采用多目标优化算法迭代求解终端资源模型中终端之间进行任务卸载的优化方案;单个终端的工作时间包括传输数据时间与执行计算任务时间,所述传输数据时间包括任务卸载时间、任务接收时间、任务计算结果回传时间与任务计算结果接收时间;
各个终端根据所述优化方案卸载计算任务,执行计算任务并回传任务计算结果。
进一步的,所有终端并行工作,以工作时间最长的终端的工作时间作为完成任务集合中所有任务的总耗费时间。
进一步的,单个终端的数据传输过程与计算任务执行过程并行,单个终端的工作时间为传输数据时间与执行计算任务时间中的最长时间。
与现有技术相比,本发明具有的有益效果包括:
1、本发明量化物联网终端产生的计算任务和终端本身的属性,应用多目标优化算法,实现终端之间任务的高效分配和卸载,减少服务器的计算负载和通信负载,将相对简单的计算服务下沉至终端层,提升物联网终端资源利用率。
2、本发明中各终端并行工作,提高处理批量任务的实时性;再加上,单个终端的数据传输过程与计算任务执行过程并行,不仅提高了实时性,而且大大简化了完成所有任务的总耗费时间的计算模型,使得迭代求解过程更加简便。
附图说明
图1为任务卸载前的终端系统的初始状态图;
图2为按服务类型分类后的任务分配示意图;
图3为多目标优化算法的流程图;
图4为蚁群算法的流程图;
图5为算法迭代情况图。
具体实施方式
一)、原理概述
本发明的基本思想是:参考图1所示,对一个系统中的终端属性和任务属性建模,用终端处理器主频衡量终端处理能力、用终端两两间实际通信速率衡量终端通信能力,用任务数据量、任务处理消耗处理器周期、任务处理结果数据、产生任务的终端序号来描述每个任务的属性。通过上述基础模型,应用多目标优化算法(如蚁群算法)计算出能在最短时间内完成所有任务的方案。
(1)应用场景设计
本发明所述终端为资源受限的终端,即一个确定区域内,有若干个异构终端,每个终端上仅能提供一种服务,但能产生多种任务。提供服务指该终端服务相关类型任务的处理,每个终端同时只能处理一个任务。假设系统中一共三种服务(α、β、γ),因此终端和任务也均为三种。上述条件下,总共N个可以互相通信的终端需处理产生于这些终端的M个任务,参考图2所示。
(2)建立终端资源模型
本具体实施方式对于一个终端定义了三种属性,包括算力、服务类型以及终端间通信速率。
Figure BDA0003214009480000031
表示带序号的终端集合。其中,N′、N″、N″′分别表示服务α、β、γ类计算任务的终端的个数;第1~N′个元素是服务α类计算任务的终端;第(N′+1)~(N′+N″)个元素是服务β类计算任务的终端;第(N′+N″+1)~N个元素是服务γ类计算任务的终端,且N′+N″+N″′=N;采用终端主频来表示算力,其中第k个终端对应主频为fk,k∈{1,2,...N};
终端间通信速率矩阵V,且假设其中速度数值经过可靠的实地测试而得,与系统实际运行时速度的误差忽略不计。
Figure BDA0003214009480000041
其中,第1~N′行/列包含了所有服务α类计算任务的终端,第(N′+1)~(N′+N″)行/列包含了所有服务β类计算任务的终端,第(N′+N″+1)~N行/列包含了所有服务γ类计算任务的终端;其中vj,k表示终端j和终端k之间的传输速率;当j=k时,vj,k=inf,inf表示无穷大,vj,k=vk,j。该方法旨在直接使用实测通信速率,从而无需每次计算通信时间时考虑其他通信相关的复杂参数。
(3)创建任务集合S
Figure BDA0003214009480000042
表示带序号的任务集合。M′、M″、M″′分别表示α、β、γ类计算任务的个数,因此集合S被划分为三块:第1~M′个元素是α类计算任务;第(M′+1)~(M′+M″)个元素是β类计算任务;第(M′+M″+1)~M个元素是γ类计算任务,且M′+M″+M″′=M;任务属性用
Figure BDA0003214009480000043
表示,其中,
Figure BDA0003214009480000044
代表当前时段x类计算任务的第i个任务,x={α,β,γ};
Figure BDA0003214009480000045
是任务卸载时的传输数据量,ri x是回传任务计算结果的数据量,
Figure BDA0003214009480000046
是任务计算量,
Figure BDA0003214009480000047
代表计算任务产生于第
Figure BDA0003214009480000048
个终端,
Figure BDA0003214009480000049
(4)优化目标
首先根据上述服务类型和任务类型定义以下几个区间:
Γα:[1,M']
Γβ:[M'+1,M'+M”]
Γγ:[M'+M”+1,M]
Φα:[1,N']
Φβ:[N'+1,N'+N”]
Φγ:[N'+N”+1,N]
参考图3所示,最终实现的是将所有任务分配给对应的终端,故采用三维矩阵Q表示每个任务的初始产生终端和被最终卸载到的终端,Q矩阵中的元素用qi,j,k表示,qi,j,k取值只有1或0。qi,j,k为1表示产生于第j个终端的第i个任务卸载到第k个终端,qi,j,k为0则表示不卸载到第k个终端。Γx表示需x类型服务服务的任务序号区间,Φx表示服务x类型服务的终端序号区间。
因此每个终端有两个工作流程,①接受其他终端的待处理任务-处理任务-回传任务结果;②发送自身产生的任务给其他终端处理-接收任务结果。同时,每个从A终端卸载到B终端的任务经历3个时间段:①任务卸载到目标终端的传输时间,包括
Figure BDA0003214009480000051
发送时间和
Figure BDA0003214009480000052
接收任务的时间,且两者相同:②任务被处理花费的时间;③任务结果从
Figure BDA0003214009480000053
回传到
Figure BDA0003214009480000054
的时间,包括
Figure BDA0003214009480000055
发送该结果的时间和
Figure BDA0003214009480000056
接收该结果的时间,且两者相同。所有终端被设置为处理完任务后优先发送任务处理结果至任务来源终端,以保证任务来源终端不会长时间等待任务处理结果。因此终端
Figure BDA0003214009480000057
上传输数据花费的总时间分为:
Figure BDA0003214009480000058
逐个发送所有本地任务到其他终端的时间之和
Figure BDA0003214009480000059
②其他终端返回任务处理结果到
Figure BDA00032140094800000510
的时间之和
Figure BDA00032140094800000511
Figure BDA00032140094800000512
逐个接收其他终端卸载任务到
Figure BDA00032140094800000513
的时间之和
Figure BDA00032140094800000514
Figure BDA00032140094800000515
逐个发送处理后的任务至任务产生终端的时间之和
Figure BDA00032140094800000516
Figure BDA00032140094800000517
Figure BDA00032140094800000518
Figure BDA00032140094800000519
Figure BDA00032140094800000520
在第j个终端上,传输数据花费的总时间为
Figure BDA00032140094800000521
对于x类型服务,第j个终端上处理任务花费的总时间为
Figure BDA00032140094800000522
其中k表示第i个服务
Figure BDA00032140094800000523
卸载到第k个终端。在服务x服务的第j个终端上传输数据和处理任务所需最长时间
Figure BDA00032140094800000524
因为最终目标是在最短的时间内完成所有任务的卸载,且将任务处理结果回传至任务产生节点,故需要优化公式
Figure BDA00032140094800000525
该公式首先找出所有终端中工作时间最长,即花费最长时间处理完其他终端传来的任务并回传数据且发送完需其他终端处理的任务并接收到任务结果数据的终端。而优化目标就是让上述时间最短,即可达到全局处理任务时间最短的目的,最大程度避免部分终端在不处理任务的状态下等待其他终端处理的情况(与负载均衡策略相似),达到提升终端资源利用率的效果。
(3)多目标优化算法设计
采用多目标优化算法求解上述公式,流程如图3。
(4)任务卸载方案生成
根据设计算法,对优化问题设计求解方案。引入各种参数及约束条件,应用MATLAB等工具软件编程,计算出qi,j,k,得出任务卸载方案以及方案对应的系统时间消耗用于衡量算法的效果。
二)、应用实例
按照技术方案所述建模方式,确定以下初始参数:N'=5,N”=7,N”'=8,M'=50,M”=70,M”'=80,终端间通信速率矩阵V如下:
Figure BDA0003214009480000061
Figure BDA0003214009480000062
Figure BDA0003214009480000071
任务返回数据
Figure BDA0003214009480000072
任务计算所需处理器周期
Figure BDA0003214009480000073
Figure BDA0003214009480000074
蚂蚁在行走过程中会释放一种称为“信息素”的物质,用来标识自己的行走路径。在寻找食物的过程中,根据信息素的浓度选择行走的方向,并最终到达食物所在的地方。而信息素会随着时间的推移而逐渐挥发。一开始,由于地面上没有信息素,因此蚂蚁们的行走路径是随机的。蚂蚁们在行走的过程中会不断释放信息素,标识自己的行走路径。随着时间的推移,有若干只蚂蚁找到了食物,此时便存在若干条从洞穴到食物的路径。由于蚂蚁的行为轨迹是随机分布的,因此在单位时间内,短路径上的蚂蚁数量比长路径上的蚂蚁数量要多,从而蚂蚁留下的信息素浓度也就越高。这为后面的蚂蚁们提供了强有力的方向指引,越来越多的蚂蚁聚集到最短的路径上去。
在本专利中,“路径”指所选方案对应处理完所有任务并回传数据的总耗费时间。因此设计算法时,较优秀的方案的信息素会不断提升,而较差方案的信息素会不断减少,部分蚂蚁根据信息素浓度选择路径,部分蚂蚁完全随机的选择路径,从而加强算法的搜索能力,一定程度上避免算法在局部最优处收敛。
蚁群算法求解目标公式流程如图4,本实施例在MATLAB中仿真,最大迭代次数为50,每轮迭代的蚂蚁数目为50。
算法在接近20次迭代后收敛,得出最优任务卸载方案如下:[3,2,4,4,4,4,3,4,2,5,3,2,2,5,1,4,1,1,4,1,3,4,1,1,4,4,4,1,2,3,3,2,3,4,2,1,5,3,2,3,2,3,2,2,2,3,1,2,4,5,9,11,12,8,6,7,7,8,9,10,12,10,12,10,8,12,11,10,12,8,11,12,6,7,11,10,9,7,7,9,8,12,9,10,12,9,6,9,12,9,8,6,9,8,11,8,9,8,6,9,11,6,7,8,8,7,7,12,11,12,12,12,11,9,8,6,7,9,12,9,13,13,17,15,15,19,19,17,19,18,14,17,18,16,18,19,20,15,18,20,20,20,14,17,15,20,13,13,15,16,20,14,19,20,18,19,18,19,18,20,13,13,13,19,15,17,19,16,13,15,20,13,16,15,14,13,14,19,17,19,13,20,19,20,18,19,19,13,13,18,18,19,16,18,16,14,14,20,19,14]和,数组每个元素代表对应序号的任务被卸载到的终端的序号。任务完成所需最短时间值为5.909s,迭代情况如图5。

Claims (10)

1.一种面向批量计算任务的物联网终端协作方法,其特征在于,包括以下步骤:
根据计算任务类型对终端的服务类型进行分类:每个终端只为一种类型的计算任务提供服务,终端的服务类型与计算任务类型一一对应;
定义终端属性并建立终端资源模型:终端属性包括算力、服务类型以及终端间通信速率;获取物联网中能够互相通信的终端的终端属性,从而建立终端资源模型;
定义计算任务属性并创建任务集合:计算任务属性包括任务卸载时的传输数据量、回传任务计算结果的数据量、任务计算量与任务产生终端;获取当前时段每种计算任务中每个计算任务的计算任务属性,从而创建任务集合;
以完成任务集合中所有任务的总耗费时间最短为目标,采用多目标优化算法迭代求解终端资源模型中终端之间进行任务卸载的优化方案;单个终端的工作时间包括传输数据时间与执行计算任务时间,所述传输数据时间包括任务卸载时间、任务接收时间、任务计算结果回传时间与任务计算结果接收时间;
各个终端根据所述优化方案卸载计算任务,执行计算任务并回传任务计算结果。
2.根据权利要求1所述的面向批量计算任务的物联网终端协作方法,其特征在于,所有终端并行工作,以工作时间最长的终端的工作时间作为完成任务集合中所有任务的总耗费时间。
3.根据权利要求2所述的面向批量计算任务的物联网终端协作方法,其特征在于,单个终端的数据传输过程与计算任务执行过程并行,单个终端的工作时间为传输数据时间与执行计算任务时间中的最长时间。
4.根据权利要求1至3中任一所述的面向批量计算任务的物联网终端协作方法,其特征在于,采用蚁群算法求解终端资源模型中终端之间进行任务卸载的优化方案,并且蚁群算法中的路径对应完成任务集合中所有任务的总耗费时间,信息素浓度最高的最短路径所对应的终端之间进行任务卸载的任务卸载方案作为优化方案。
5.根据权利要求4所述的面向批量计算任务的物联网终端协作方法,其特征在于,蚁群算法在迭代过程中,部分蚂蚁根据信息素浓度选择路径,部分蚂蚁完全随机的选择路径。
6.根据权利要求3所述的面向批量计算任务的物联网终端协作方法,其特征在于,应用于如下场景:计算任务种类为α、β、γ三种,总共N个能够互相通信的终端,需要处理产生于这N个终端的M个任务,建立终端资源模型如下:
终端集合:
Figure FDA0003214009470000021
其中,N′、N″、N″′分别表示服务类型为α、β、γ类的终端的个数;第1~N′个元素是服务α类计算任务的终端;第(N′+1)~(N′+N″)个元素是服务β类计算任务的终端;第(N′+N″+1)~N个元素是服务γ类计算任务的终端,且N′+N″+N″′=N;
采用终端主频来表示算力,其中第k个终端对应主频为fk,k∈{1,2,...N};
终端间通信速率矩阵V:
Figure FDA0003214009470000022
其中,第1~N′行/列包含了所有服务α类计算任务的终端,第(N′+1)~(N′+N″)行/列包含了所有服务β类计算任务的终端,第(N′+N″+1)~N行/列包含了所有服务γ类计算任务的终端;其中vj,k表示终端j和终端k之间的传输速率;当j=k时,vj,k=inf,inf表示无穷大,vj,k=vk,j
7.根据权利要求6所述的面向批量计算任务的物联网终端协作方法,其特征在于,创建任务集合S:
Figure FDA0003214009470000023
其中,M′、M″、M″′分别表示α、β、γ类计算任务的个数,因此集合S被划分为三块:第1~M′个元素是α类计算任务;第(M′+1)~(M′+M″)个元素是β类计算任务;第(M′+M″+1)~M个元素是γ类计算任务,且M′+M″+M″′=M;任务属性用
Figure FDA0003214009470000031
表示,其中,
Figure FDA0003214009470000032
代表当前时段x类计算任务的第i个任务,x={α,β,γ};
Figure FDA0003214009470000033
是任务卸载时的传输数据量,
Figure FDA0003214009470000034
是回传任务计算结果的数据量,
Figure FDA0003214009470000035
是任务计算量,
Figure FDA0003214009470000036
代表计算任务产生于第
Figure FDA0003214009470000037
个终端,
Figure FDA0003214009470000038
8.根据权利要求7所述的面向批量计算任务的物联网终端协作方法,其特征在于,单个终端的传输数据时间
Figure FDA0003214009470000039
Figure FDA00032140094700000310
其中,
Figure FDA00032140094700000311
表示第
Figure FDA00032140094700000312
个终端逐个卸载所有本地任务到其他终端的时间之和,
Figure FDA00032140094700000313
表示其他终端返回任务处理结果到第
Figure FDA00032140094700000314
个终端的时间之和;
Figure FDA00032140094700000315
表示第
Figure FDA00032140094700000316
个终端逐个接收其他终端卸载任务的时间之和;
Figure FDA00032140094700000317
表示第
Figure FDA00032140094700000318
个终端逐个回传任务计算结果至任务产生终端的时间之和。
9.根据权利要求8所述的面向批量计算任务的物联网终端协作方法,其特征在于,单个终端的执行计算任务时间
Figure FDA00032140094700000319
Figure FDA00032140094700000320
其中,qi,j,k表示产生于第j个终端的第i个任务是否卸载到第k个终端的任务卸载状态;qi,j,k取值为0或1,qi,j,k为1表示卸载,qi,j,k为1表示不卸载;Γx表示x类计算任务的任务序号区间;Φx服务x类计算任务的终端序号区间。
Figure FDA00032140094700000321
10.根据权利要求9所述的面向批量计算任务的物联网终端协作方法,其特征在于,服务x类计算任务的第j个终端的工作时间为:
Figure FDA00032140094700000322
目标函数:
Figure FDA00032140094700000323
迭代过程中,根据迭代时的任务卸载方案找出所有终端中具有最长工作时间的终端;
优化目标则是寻找到使终端的最长工作时间最短的任务卸载方案。
CN202110938113.6A 2021-08-16 2021-08-16 一种面向批量计算任务的物联网终端协作方法 Active CN113590339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110938113.6A CN113590339B (zh) 2021-08-16 2021-08-16 一种面向批量计算任务的物联网终端协作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110938113.6A CN113590339B (zh) 2021-08-16 2021-08-16 一种面向批量计算任务的物联网终端协作方法

Publications (2)

Publication Number Publication Date
CN113590339A true CN113590339A (zh) 2021-11-02
CN113590339B CN113590339B (zh) 2023-06-23

Family

ID=78258089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110938113.6A Active CN113590339B (zh) 2021-08-16 2021-08-16 一种面向批量计算任务的物联网终端协作方法

Country Status (1)

Country Link
CN (1) CN113590339B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118365000A (zh) * 2024-05-17 2024-07-19 广州智在信息科技有限公司 一种工业互联网平台的任务处理方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418356A (zh) * 2019-06-18 2019-11-05 深圳大学 一种计算任务卸载方法、装置及计算机可读存储介质
CN111352713A (zh) * 2020-02-26 2020-06-30 福建师范大学 边缘环境面向时延优化的自动驾驶推理任务工作流调度方法
CN111580943A (zh) * 2020-04-01 2020-08-25 浙江大学 一种面向低时延边缘计算中多跳卸载的任务调度方法
KR102177432B1 (ko) * 2019-05-29 2020-11-11 연세대학교 산학협력단 포그 컴퓨팅 기반 무선 네트워크에서 태스크 우선순위별 연산량 오프로딩 장치 및 방법
CN112702401A (zh) * 2020-12-15 2021-04-23 北京邮电大学 一种电力物联网多任务协同分配方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177432B1 (ko) * 2019-05-29 2020-11-11 연세대학교 산학협력단 포그 컴퓨팅 기반 무선 네트워크에서 태스크 우선순위별 연산량 오프로딩 장치 및 방법
CN110418356A (zh) * 2019-06-18 2019-11-05 深圳大学 一种计算任务卸载方法、装置及计算机可读存储介质
CN111352713A (zh) * 2020-02-26 2020-06-30 福建师范大学 边缘环境面向时延优化的自动驾驶推理任务工作流调度方法
CN111580943A (zh) * 2020-04-01 2020-08-25 浙江大学 一种面向低时延边缘计算中多跳卸载的任务调度方法
CN112702401A (zh) * 2020-12-15 2021-04-23 北京邮电大学 一种电力物联网多任务协同分配方法及装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
QINGYONG WANG: ""Computation Tasks Offloading Scheme Based on Multi-cloudlet Collaboration for Edge Computing"", 《IEEE》 *
吕洁娜;张家波;张祖凡;甘臣权;: "移动边缘计算卸载策略综述", 小型微型计算机系统, no. 09 *
孙嘉楠: ""边缘计算环境下车联网任务卸载与数据分发技术研究"", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
王俊华: ""面向异构车联网的实时信息服务与任务迁移技术研究"", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
胡海洋;刘润华;胡华;: "移动云计算环境下任务调度的多目标优化方法", 计算机研究与发展, no. 09 *
钟英姿;杨长兴;: "一种基于改进蚁群算法的网格任务调度算法", 电脑与信息技术, no. 05 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118365000A (zh) * 2024-05-17 2024-07-19 广州智在信息科技有限公司 一种工业互联网平台的任务处理方法和系统

Also Published As

Publication number Publication date
CN113590339B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN111445111B (zh) 一种基于边缘协同的电力物联网任务分配方法
CN111641973B (zh) 一种雾计算网络中基于雾节点协作的负载均衡方法
CN113326002A (zh) 基于计算迁移的云边协同控制系统及迁移决策生成方法
CN108418718B (zh) 一种基于边缘计算的数据处理延迟优化方法及系统
CN110928654A (zh) 一种边缘计算系统中分布式的在线任务卸载调度方法
Liu et al. Task scheduling in fog enabled Internet of Things for smart cities
Heidari et al. A QoS-aware technique for computation offloading in IoT-edge platforms using a convolutional neural network and Markov decision process
CN113156992B (zh) 面向边缘环境下无人机的三层架构协同优化方法
CN105718364A (zh) 一种云计算平台中计算资源能力动态评估方法
CN110086855B (zh) 基于蚁群算法的Spark任务智能感知调度方法
Ren et al. Collaborative edge computing and caching with deep reinforcement learning decision agents
CN108845886B (zh) 基于相空间的云计算能耗优化方法和系统
Li et al. Task offloading scheme based on improved contract net protocol and beetle antennae search algorithm in fog computing networks
CN114595049A (zh) 一种云边协同任务调度方法及装置
CN114567895A (zh) 一种mec服务器集群的智能协同策略的实现方法
Gu et al. A multi-objective fog computing task scheduling strategy based on ant colony algorithm
CN116755867B (zh) 一种面向卫星云的计算资源调度系统、方法及存储介质
Rahbari et al. Fast and fair computation offloading management in a swarm of drones using a rating-based federated learning approach
Djemai et al. Mobility support for energy and qos aware iot services placement in the fog
CN113590339A (zh) 一种面向批量计算任务的物联网终端协作方法
Salehnia et al. SDN-based optimal task scheduling method in Fog-IoT network using combination of AO and WOA
Li Optimization of task offloading problem based on simulated annealing algorithm in MEC
Li et al. Optimal service selection and placement based on popularity and server load in multi-access edge computing
Subrahmanyam et al. Optimizing horizontal scalability in cloud computing using simulated annealing for Internet of Things
CN117608806A (zh) 智能电网云边协同机制下计算任务雾-雾-云优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant