CN113589299A - 一种基于最优化模型的拖曳线列阵阵形估计方法 - Google Patents

一种基于最优化模型的拖曳线列阵阵形估计方法 Download PDF

Info

Publication number
CN113589299A
CN113589299A CN202110757017.1A CN202110757017A CN113589299A CN 113589299 A CN113589299 A CN 113589299A CN 202110757017 A CN202110757017 A CN 202110757017A CN 113589299 A CN113589299 A CN 113589299A
Authority
CN
China
Prior art keywords
array
sound source
towed linear
linear array
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110757017.1A
Other languages
English (en)
Other versions
CN113589299B (zh
Inventor
张海生
王政
张国栋
王晓林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
715th Research Institute of CSIC
Original Assignee
715th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 715th Research Institute of CSIC filed Critical 715th Research Institute of CSIC
Priority to CN202110757017.1A priority Critical patent/CN113589299B/zh
Publication of CN113589299A publication Critical patent/CN113589299A/zh
Application granted granted Critical
Publication of CN113589299B publication Critical patent/CN113589299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/53Means for transforming coordinates or for evaluating data, e.g. using computers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于最优化模型的拖曳线列阵阵形估计方法。通过时延信息确定的阵元坐标测量值;将两声源坐标、和阵元坐标测量值作为已知量,以各阵元坐标估计值作为变量,构建最优化问题的目标函数;通过求解最优化问题,得到各阵元坐标估计值,完成拖曳线列阵的阵形估计。本方法可有效估计拖曳线列阵阵形,无需GPS等外部信息输入,有效降低时延测量误差对阵形估计的影响,同时该方法适用于任何形状阵形的估计。

Description

一种基于最优化模型的拖曳线列阵阵形估计方法
技术领域
本发明涉及电子设备的声纳领域,特别是涉及了一种基于最优化模型的拖曳线列阵阵形估计方法。
背景技术
拖曳线列阵声纳具有基阵孔径较少受平台空间制约、工作频率低和远离拖曳平台噪声源等优点,广泛用于水面舰和潜艇等水下目标的探测和跟踪任务。拖曳线列阵声纳的重要组成部分是按直线排列的阵元。
阵形估计是拖曳线列阵的关键技术之一。拖曳线列阵在水中由母船拖曳使用时,母船的机动或局部涡流等因素导致拖曳线列阵阵形畸变,具体表现为各阵元不再位于一条直线上,导致波束形成质量降低,拖曳线列阵探测性能下降。通过估计畸变后的拖曳线列阵阵形,并在信号处理算法中进行相应的补偿,可以很大程度上消除阵形畸变对拖曳线列阵波束质量和探测性能的不利影响。
已报道的一种双声源交点定位方法,首先确定各阵元到两个声源的距离,再利用圆交点确定各阵元位置,但是该方法的阵形估计结果受时延测量误差影响较大。利用单声源测量声脉冲信号到达各阵元的时延,也可进行拖曳线列阵的阵形估计(一种利用合作声源信息的阵形估计方法,CN2016910879410.7),但是该方法需要增加GPS接受设备等外部设备辅助确定首阵元位置,并且仅适用于阵形为凸函数的情况。
发明内容
针对双声源交点定位方法受时延测量误差影响较大,以及单声源阵形估计方法需要GPS等外部信息输入且畸变阵形受限的不足,本发明提供了一种基于最优化模型的拖曳线列阵阵形估计方法。该方法无需GPS等外部信息输入,并且通过选择适当的最优化模型的目标函数,可有效降低时延测量误差对阵形估计结果的影响,同时该方法适用于任何畸变阵形的测量。
本发明的目的是通过如下技术方案来完成的。一种基于最优化模型的拖曳线列阵阵形估计方法,利用阵元和双声源之间的多种位置关系构造最优化模型,通过时延信息确定的阵元坐标测量值;将两声源坐标、和阵元坐标测量值作为已知量,以各阵元坐标估计值作为变量,构建最优化问题的目标函数;通过求解最优化问题,得到各阵元坐标估计值,完成拖曳线列阵的阵形估计。
更进一步的,具体包括如下步骤:
步骤一、采用主要由声源1和声源2、拖曳线列阵和上位机组成的阵形估计系统,声源1和2发出声脉冲信号,拖曳线列阵接收声脉冲信号并送至上位机,上位机解算出声脉冲信号从声源1和声源2传播至各阵元的时延τki,其中k=1,2为声源编号,i=1,2,...,n为阵元编号;
步骤二、建立坐标系,并通过双声源交点定位方法,依据时延τki确定各阵元的坐标测量值
Figure BDA0003147521930000021
步骤三、以各阵元坐标估计值
Figure BDA0003147521930000022
作为变量,构造目标函数
Figure BDA0003147521930000023
步骤四、求解最优化问题
Figure BDA0003147521930000024
得到各阵元坐标估计值
Figure BDA0003147521930000025
更进一步的,步骤二所述坐标系的原点位于两声源连线中点,y轴正方向为声源2到声源1的方向,x轴正方向位于拖曳线列阵首阵元所在一侧。
更进一步的,步骤二所述双声源交点定位方法包括以下步骤:
步骤二一:以声源1所在位置Ps1(xs1,ys1)为圆心、以τ1ic为半径作圆C1i,其中c为声速;
步骤二二:以声源2所在位置Ps2(xs2,ys2)为圆心、以τ2ic为半径作圆C2i
步骤二三:计算圆C1i和圆C2i在x轴正半平面内的交点,作为第i个阵元的坐标测量值,记为
Figure BDA0003147521930000026
更进一步的,步骤三所述目标函数为:
Figure BDA0003147521930000027
式中d0为拖曳线列阵布阵间距,权重系数ω1234≥0。
本发明的有益效果为:
本方法可有效估计拖曳线列阵阵形,无需GPS等外部信息输入,有效降低时延测量误差对阵形估计结果的影响,同时该方法适用于任何畸变阵形的阵形估计。
附图说明
图1是阵形估计系统示意图;
图2是阵元坐标测量值示意图;
图3是阵形估计效果。
具体实施方式
为了令本发明的目的、特征、优点更加明显易懂,下面结合附图中涉及的具体实施方式对本发明的实施例进行清楚、完整地描述。显然,所描述的实施例仅为本发明的一部分实施例,而不是全部实施例。基于本发明的实施例,本领域技术人员在未进行创造性劳动前提下获得的所有其它实施例,如只改变用途而不改变权利要求涉及基本原理的实施例,都属于本发明保护的范围。
本发明的原理过程如下:
图1所示测量系统中,声源1和2不失一般性的分别布置在母船左右舷两侧的Ps1和Ps2。以两声源连线中点O作为坐标原点,以Ps2Ps1方向为y轴正方向建立坐标系。拖曳线列阵实际阵形如图1中实线所示,阵元实际位置坐标Pi(xi,yi)用位于实线上的十字标识。如图2所示,通过时延信息确定的阵元坐标测量值
Figure BDA0003147521930000031
将两声源坐标Ps1(xs1,ys1)、Ps2(xs2,ys2)和阵元坐标测量值
Figure BDA0003147521930000032
作为已知量,以各阵元坐标估计值
Figure BDA0003147521930000033
作为变量,构造目标函数
Figure BDA0003147521930000034
通过求解最优化问题
Figure BDA0003147521930000035
得到各阵元坐标估计值,完成对拖曳线列阵阵形的阵形估计。
实施例:
如图3所示,拖曳线列阵共包含20个阵元,阵元布阵间距d0为2m,实际阵形如图中实线所示,阵元位置用十字标识,首阵元距离声源约100m,其坐标为P1(100,0)。声源1布置于Ps1(0,10),声源2布置于Ps2(0,-10)。时间延时τki的测量误差在0至1ms内均匀分布。通过双声源交点定位方法得到的阵形估计结果如图3中三角号标识所示,可以看出该方法估计结果与实际阵形的偏差较大。
本方法所构造目标函数如下:
Figure BDA0003147521930000036
等式右边第一项为任意两个阵元与声源距离差引入的代价函数,第二项为相邻两个阵元距离引入的代价函数,第三项为阵元坐标测量值和估计值引入的代价函数,第四项保证阵形估计结果平滑。
取ω1(k,i,j)=1,ω2(i)=1,ω3(i)=1,ω4(i)=1。通过求解
Figure BDA0003147521930000037
得到阵元坐标估计值,获得阵型估计结果如图3中圆圈标识所示。可以看出本方法所提出的基于最优化模型的拖曳线列阵阵型估计方法在不增加外部设备的条件下,显著提升了阵形估计的准确性,并且可以用于阵形非凸的情况。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

1.一种基于最优化模型的拖曳线列阵阵形估计方法,其特征在于:利用阵元和双声源之间的多种位置关系构造最优化模型,通过时延信息确定的阵元坐标测量值;将两声源坐标、和阵元坐标测量值作为已知量,以各阵元坐标估计值作为变量,构建最优化问题的目标函数;通过求解最优化问题,得到各阵元坐标估计值,完成拖曳线列阵的阵形估计。
2.根据权利要求1所述的基于最优化模型的拖曳线列阵阵形估计方法,其特征在于:具体包括如下步骤:
步骤一、采用主要由声源1和声源2、拖曳线列阵和上位机组成的阵形估计系统,声源1和2发出声脉冲信号,拖曳线列阵接收声脉冲信号并送至上位机,上位机解算出声脉冲信号从声源1和声源2传播至各阵元的时延τki,其中k=1,2为声源编号,i=1,2,...,n为阵元编号;
步骤二、建立坐标系,并通过双声源交点定位方法,依据时延τki确定各阵元的坐标测量值
Figure FDA0003147521920000011
步骤三、以各阵元坐标估计值
Figure FDA0003147521920000012
作为变量,构造目标函数
Figure FDA0003147521920000013
步骤四、求解最优化问题
Figure FDA0003147521920000014
得到各阵元坐标估计值
Figure FDA0003147521920000015
3.根据权利要求2所述的基于最优化模型的拖曳线列阵阵形估计方法,其特征在于:步骤二所述坐标系的原点位于两声源连线中点,y轴正方向为声源2到声源1的方向,x轴正方向位于拖曳线列阵首阵元所在一侧。
4.根据权利要求2所述的基于最优化模型的拖曳线列阵阵形估计方法,其特征在于:步骤二所述双声源交点定位方法包括以下步骤:
步骤二一:以声源1所在位置Ps1(xs1,ys1)为圆心、以τ1ic为半径作圆C1i,其中c为声速;
步骤二二:以声源2所在位置Ps2(xs2,ys2)为圆心、以τ2ic为半径作圆C2i
步骤二三:计算圆C1i和圆C2i在x轴正半平面内的交点,作为第i个阵元的坐标测量值,记为
Figure FDA0003147521920000016
5.根据权利要求2所述的基于最优化模型的拖曳线列阵阵形估计方法,其特征在于:步骤三所述目标函数为:
Figure FDA0003147521920000021
式中d0为拖曳线列阵布阵间距,权重系数ω1234≥0。
CN202110757017.1A 2021-07-05 2021-07-05 一种基于最优化模型的拖曳线列阵阵形估计方法 Active CN113589299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110757017.1A CN113589299B (zh) 2021-07-05 2021-07-05 一种基于最优化模型的拖曳线列阵阵形估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110757017.1A CN113589299B (zh) 2021-07-05 2021-07-05 一种基于最优化模型的拖曳线列阵阵形估计方法

Publications (2)

Publication Number Publication Date
CN113589299A true CN113589299A (zh) 2021-11-02
CN113589299B CN113589299B (zh) 2023-11-28

Family

ID=78245921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110757017.1A Active CN113589299B (zh) 2021-07-05 2021-07-05 一种基于最优化模型的拖曳线列阵阵形估计方法

Country Status (1)

Country Link
CN (1) CN113589299B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528554A (en) * 1992-12-01 1996-06-18 Hughes Aircraft Company Linear array lateral motion compensation method
CN101470200A (zh) * 2007-12-28 2009-07-01 中国科学院声学研究所 一种拖曳阵阵形校准装置及校准方法
CN101915922A (zh) * 2010-07-23 2010-12-15 哈尔滨工程大学 拖曳线列阵被动测距方法
JP2011158391A (ja) * 2010-02-02 2011-08-18 Oki Electric Industry Co Ltd 整相システム、整相装置及び整相プログラム
US20130142012A1 (en) * 2011-05-11 2013-06-06 Jeffrey Patrick Schultz Adaptive compact towed array shape-sensing and control module
CN103176167A (zh) * 2013-03-21 2013-06-26 徐华中 一种基于锁相放大器的强干扰下声源定位方法
CN103675819A (zh) * 2012-09-06 2014-03-26 中国科学院声学研究所 一种可用于被动合成孔径阵列偏航的目标检测方法及系统
CN104407340A (zh) * 2014-12-02 2015-03-11 河海大学常州校区 拖曳线列阵阵形标定装置及方法
KR20160119452A (ko) * 2015-04-06 2016-10-14 국방과학연구소 예인 배열 소나의 형상 추정 방법 및 추정 장치
CN106597379A (zh) * 2015-10-20 2017-04-26 沈阳新松机器人自动化股份有限公司 基于复合算法的平面声源定位方法
CN107179535A (zh) * 2017-06-01 2017-09-19 东南大学 一种基于畸变拖曳阵的保真增强波束形成的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528554A (en) * 1992-12-01 1996-06-18 Hughes Aircraft Company Linear array lateral motion compensation method
CN101470200A (zh) * 2007-12-28 2009-07-01 中国科学院声学研究所 一种拖曳阵阵形校准装置及校准方法
JP2011158391A (ja) * 2010-02-02 2011-08-18 Oki Electric Industry Co Ltd 整相システム、整相装置及び整相プログラム
CN101915922A (zh) * 2010-07-23 2010-12-15 哈尔滨工程大学 拖曳线列阵被动测距方法
US20130142012A1 (en) * 2011-05-11 2013-06-06 Jeffrey Patrick Schultz Adaptive compact towed array shape-sensing and control module
CN103675819A (zh) * 2012-09-06 2014-03-26 中国科学院声学研究所 一种可用于被动合成孔径阵列偏航的目标检测方法及系统
CN103176167A (zh) * 2013-03-21 2013-06-26 徐华中 一种基于锁相放大器的强干扰下声源定位方法
CN104407340A (zh) * 2014-12-02 2015-03-11 河海大学常州校区 拖曳线列阵阵形标定装置及方法
KR20160119452A (ko) * 2015-04-06 2016-10-14 국방과학연구소 예인 배열 소나의 형상 추정 방법 및 추정 장치
CN106597379A (zh) * 2015-10-20 2017-04-26 沈阳新松机器人自动化股份有限公司 基于复合算法的平面声源定位方法
CN107179535A (zh) * 2017-06-01 2017-09-19 东南大学 一种基于畸变拖曳阵的保真增强波束形成的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID S. HAMMOND等: "A Model for Horizontal Line Array Deployment", IEEE XPLORE *
李光远;侯朋;程广福;: "基于粒子群算法的水下多元线阵阵形有源校正方法", 舰船科学技术, no. 15 *
牛嗣亮;倪明;廖毅;梁迅;: "基于时延估计的海底线阵阵形估计方法研究", 声学技术, no. 02 *

Also Published As

Publication number Publication date
CN113589299B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN107179535A (zh) 一种基于畸变拖曳阵的保真增强波束形成的方法
CN111025273B (zh) 一种畸变拖曳阵线谱特征增强方法及系统
CN111537982B (zh) 一种畸变拖曳阵线谱特征增强方法及系统
CN110132281B (zh) 一种基于询问应答模式的水下高速目标高精度自主声学导航方法
CN110703259B (zh) 基于运动声源的水下声学基阵通道间相位一致性校准方法
CN111896962A (zh) 一种海底应答器定位方法、系统、存储介质及应用
JP4647475B2 (ja) 移動体位置等推定検出方法、装置及び移動体位置等推定検出方法のプログラム
Xin et al. A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed
CN113093159B (zh) 多波束测深误差改进模型设计方法
CN108387872B (zh) 基于最大偏移量法的超短基线定位优化方法
JP4922450B2 (ja) 音波を放出するターゲットの方位測定方法
CN114265047B (zh) 一种大潜深auv的定位基阵联合标校方法
CN117146830B (zh) 一种自适应多信标航位推算和长基线的紧组合导航方法
CN108761470B (zh) 一种基于拖缆形态方程解析的目标定位方法
CN103513238A (zh) 一种规整化最小二乘子空间相交的目标方位测向方法
CN112666519B (zh) 一种基于广义二阶时延差的水下目标高精度定位方法
CN113534161B (zh) 一种用于远距离定位水下声源的波束镜像聚焦方法
CN107202975B (zh) 一种二维矢量阵阵元姿态误差校正方法
CN113589299B (zh) 一种基于最优化模型的拖曳线列阵阵形估计方法
CN109061594B (zh) 一种强杂波环境下基于子阵空时自适应处理的测角方法
CN111323746A (zh) 一种双圆阵的方位-等效时延差被动定位方法
CN108267743B (zh) 基于拟合插值的快速迭代水下定位方法
CN110749861A (zh) 一种基于多假设深度的水底固定目标的三维定位方法
CN116520247A (zh) 根据水下航行器上的水听器来估算目标声源位置的方法
KR20230059053A (ko) 수중에서 기동하는 표적의 위치를 추정하는 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant