CN113575348A - 基于林分发育指数的次生林间伐方法 - Google Patents

基于林分发育指数的次生林间伐方法 Download PDF

Info

Publication number
CN113575348A
CN113575348A CN202110913694.8A CN202110913694A CN113575348A CN 113575348 A CN113575348 A CN 113575348A CN 202110913694 A CN202110913694 A CN 202110913694A CN 113575348 A CN113575348 A CN 113575348A
Authority
CN
China
Prior art keywords
forest
forest stand
tree
stand
tree species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110913694.8A
Other languages
English (en)
Other versions
CN113575348B (zh
Inventor
胡淑萍
程桂霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute Of Forest Resource Information Techniques Chinese Academy Of Forestry
Original Assignee
Research Institute Of Forest Resource Information Techniques Chinese Academy Of Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute Of Forest Resource Information Techniques Chinese Academy Of Forestry filed Critical Research Institute Of Forest Resource Information Techniques Chinese Academy Of Forestry
Priority to CN202110913694.8A priority Critical patent/CN113575348B/zh
Publication of CN113575348A publication Critical patent/CN113575348A/zh
Priority to ZA2022/04063A priority patent/ZA202204063B/en
Application granted granted Critical
Publication of CN113575348B publication Critical patent/CN113575348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G23/00Forestry
    • A01G23/02Transplanting, uprooting, felling or delimbing trees
    • A01G23/08Felling trees

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及次生林间伐技术领域,特别是一种基于林分发育指数的次生林间伐方法,包括以下步骤,A、对样地内胸径大于5cm的样木进行每木检尺;B、依据样地位置与树种组成,确定植物区系和所处的演替阶段,并按顶级树种、伴生树种、先锋树种和外来树种划分样地树种;C、构建基于林分发育指数的多目标模型;D、利用改进的遗传算法对多目标模型进行求解,获取次生林最优抚育间伐方案。本发明利用林分发育指数构建次生林抚育间伐多目标模型,利用改进的遗传算法进行全局优化,快速获得林分合理的间伐强度和间伐木空间位置,确保间伐方案的准确性和合理性,提高林分质量,促进次生林正向演替。

Description

基于林分发育指数的次生林间伐方法
技术领域
本发明涉及次生林间伐技术领域,特别是一种基于林分发育指数的次生林间伐方法。
背景技术
次生林是原始林经高强度采伐、火烧等人为干扰或严重的自然灾害破坏后,大部分原生植被消失,主要依靠自然力由大量萌生林木和部分实生林木形成。在我国,次生林面积约占全国森林面积的一半,且多为中、幼龄林。为提高林分质量,促进次生林正向演替,恢复地带性顶级群落,针对郁闭度大于0.7的林分需采取抚育间伐。
抚育间伐是根据林分发育、林木竞争和自然稀疏规律及森林培育目标,适时适量伐除部分林木,调整树种组成和林分密度,优化林分结构,改善林木生长环境条件,促进保留木生长,缩短培育周期的营林措施。目前,针对抚育间伐的研究已取得了丰硕的成果,但也存在明显的不足:一、将次生林抚育间伐等同于林分结构调控,未考虑恢复地带性顶级群落的抚育目标,缺少针对次生林抚育间伐的优化模型;二、间伐模型采用单木调节的非全局优化算法,或穷举法等优化效率低下的算法,缺少智能优化算法的有效支撑;三、只注重间伐方案的准确性,忽视林分最优间伐强度的确定。
1、次生林特点与经营方向
次生林是原始林经高强度采伐、火烧等人为干扰或严重的自然灾害破坏后,大部分原生植被消失,主要依靠自然力由大量萌生林木和部分实生林木形成,其树种组成和结构复杂。由于我国次生林以幼、中龄林为主,为提高林分质量,促进次生林正向演替,恢复地带性顶级群落,需采取人为辅助措施对次生林进行抚育间伐。
2、抚育间伐
抚育间伐以幼、中龄林为抚育对象,通过调整树种组成和林分密度,优化林分结构,改善林木生长环境条件,促进保留木生长,缩短培育周期的营林措施。
目前,抚育经营状况如下:
①理论指导型。实际作业以《GB/T 15871-2015森林抚育规程》为指导,该规程提出了抚育间伐的类型、适用条件、操作流程等,但无法确定间伐木位置,需林业工作者依据自身工作经验进行实地操作。该类方法易受主观因素影响,且难以最大程度优化林分结构。
②逐步判断型。依据大小比数、角尺度、竞争指数等构建林分多目标函数,并计算出每一株树的函数值,在对函数值进行排序后,将函数值最小的林木作为间伐对象,然后依据指标优先级或约束条件进行判断,如满足则输出为间伐对象,并开始寻找下一株间伐木。该类方法没有采用全局优化的方法,无法保证间伐方案的全局合理性。
③随机抽样型。依据大小比数、角尺度、竞争指数等构建林分多目标函数,并计算出林分初始函数值,然后按某一间伐强度采用Monte Carlo法进行抽样,计算间伐后林分的函数值,当满足抽样次数后,将林分函数值最大时的间伐方案作为最终结果。该类方法计算效率低,常需5000-10000次抽样才能获得某一间伐强度下的最佳间伐方案。
发明内容
本发明需要解决的技术问题是针对郁闭度大于0.7的次生林如何进行抚育间伐。
为解决上述技术问题,本发明包括一种基于林分发育指数的次生林间伐方法,包括以下步骤,
A、对样地内胸径大于5cm的样木进行每木检尺,记录每株样木的树种名称、胸径、树高、位置坐标;
B、依据样地位置与树种组成,确定植物区系和所处的演替阶段,并按顶级树种、伴生树种、先锋树种和外来树种划分样地树种;
C、构建基于林分发育指数的多目标模型,包括林分混交度、树种优势度、林分竞争指数、林分角尺度和多个约束条件;
D、利用改进的遗传算法对多目标模型进行求解,获取次生林最优抚育间伐方案。
优选的,所述步骤A中样地的规格为100m×100m。
优选的,所述的顶级树种是群落演替的最终方向,即抚育间伐的目标导向。
优选的,所述步骤C中基于林分发育指数的多目标模型为:
Figure BDA0003204856320000031
其中,SDI为林分发育指数,g为间伐后的保留木,Mg为间伐后林分混交度,Ag为间伐后树种优势度,CIg为间伐后林分竞争指数,Wg为间伐后林分角尺度。
优选的,所述多目标模型中Mg是单木混交度Mi的均值,Mi计算公式如下:
Figure BDA0003204856320000032
式中,当参照树i与第j株相邻木为不同种时,uij为1,否则为0。
优选的,所述多目标模型中CIg是单木竞争指数CIi的均值,CIi计算公式如下:
Figure BDA0003204856320000041
式中,dj为相邻木的胸径,LD为结构单元内4株相邻木与参照树距离的平均值,di为参照树的胸径,Lij代表相邻木j和参照树i之间的距离。
优选的,所述多目标模型中Wg是单木角尺度Wi的均值,Wi计算公式如下:
Figure BDA0003204856320000042
式中,当参照树i与第j株相邻木的α夹角<72°时,Zij为1,否则为0。
优选的,所述多目标模型中树种优势度Ag计算公式如下:
Figure BDA0003204856320000043
式中,Dg为相对显著度,即顶级树种断面积占林分总断面积的比值;
Figure BDA0003204856320000045
为顶级树种大小比数均值,树种大小比数Ui计算公式如下:
Figure BDA0003204856320000044
式中,如果参照树i的胸径比第j株相邻木小,kij为1,否则为0。
优选的,所述多目标模型的约束条件为:
1)Sg=S0
2)dg=d0
3)1.3≤qg≤1.7
4)Mg≥M0
5)Ag≥A0
6)CIg≤CI0
7)|Wg-0.496|≤|W0-0.496|
8)Np≥0.7N0
9)Dt≤D0
式中,S0、Sg为间伐前后林分树种个数;d0、dg为间伐前后林分径级个数;qg为间伐后的林分q值;M0、Mg为间伐前后林分混交度;A0、Ag为间伐前后树种优势度;CI0、CIg为间伐前后林分竞争指数;W0、Wg为间伐前后林分角尺度;N0、Np为间伐前后林木株数;Dt为间伐木直径;D0为间伐前林分优势木平均直径。
优选的,所述步骤D中改进的遗传算法为:
(1)采用整数编码方式对林分样木进行编码,即用0、1分别表示样木的间伐与保留;
(2)初始化参数,参数包括种群数量、遗传代数、样木间伐概率;
(3)计算个体适应度(即林分发育指数),记录每一世代中适应度值最大的间伐方案;
(4)采用轮盘赌法对间伐木进行选择,构成配对染色体;
(5)采用多点交叉方式对配对染色体进行交叉;
(6)采用随机突变方式对染色体进行变异;
(7)世代交替,重复(3)-(6)步,直至达到迭代次数为止;
(8)按适应度值大小,输出最优间伐方案。
本发明考虑影响林分功能和演替的林分水平结构、林分物种多样性、林分竞争、顶级树种优势度,利用林分发育指数构建次生林抚育间伐多目标模型,利用改进的遗传算法进行全局优化,快速获得林分合理的间伐强度和间伐木空间位置,确保间伐方案的准确性和合理性,提高林分质量,促进次生林正向演替。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本申请中实施例1中样地内胸径大于5cm的每株样木的空间位置图;
图2为本申请中实施例1中样地内间伐木空间位置图。
具体实施方式
现有技术中林分抚育间伐调控技术如下:
1、针对人工林的抚育间伐调控技术研究
选取1-5年生短轮伐期桉树纸浆用材林,结合大小比数、角尺度、开敞度、竞争指数和材积等5个子目标提出评价指数,并以Monte Carlo法建立林分间伐模型,得出最佳采伐方案。具体步骤包括:
(1)选取1-5年生桉树纯林样地各6块,样地大小20m×20m,测量每株样木的树高、胸径、空间坐标值,并在样地边缘设置3m的缓冲区。
(2)构建林分评价指数:
Figure BDA0003204856320000061
式中:g为间伐后得到的保留木;W(g)、U(g)、UCI(g)、K(g)、V(g)分别为间伐后的林分角尺度、大小比数、竞争指数、开敞度和平均单株材积;σW、σu、σUCI、σK、σV分别为林分角尺度、大小比数、竞争指数、开敞度和材积的标准差。
(3)研究间伐强度与评价指数提高幅度之间的关系,并将拐点值作为合理间伐强度区间值;
(4)采用Monte Carlo法计算林分评价指数,输入间伐强度值,设定模型终止条件为连续运行10000次后无更优解,将林分评价指数值最大的方案作为最佳采伐方案。
2、针对次生林的间伐调整技术
以湖南省一类清查样地为基础数据,用全混交度、大小比数、角尺度、竞争指数等空间结构指标作为建模变量,采用乘除法基本思想构建楠木次生林结构目标函数,通过林分相容性收获预估模型拟合结果来确定各年龄阶段林分最适断面积,将最适断面积作为确定间伐量的约束指标,构建湖南省楠木次生林结构化经营模型,通过间伐调整,提出楠木次生林结构化经营技术,促进森林提质增量。具体步骤包括:
(1)选取湖南省1989-2014年一类清查样地中55个楠木样地。样地为边长25.82m,面积0.067hm2的正方形。对样地内胸径大于5cm的样木进行每木检尺,获取树种、胸径、采伐类型、方位角和水平距等因子;
(2)利用前后两期调查数据,构建相容性林分生长收获模型,经检验,模型相关系数分别为0.97、0.97、0.99,模型为:
Figure BDA0003204856320000071
Figure BDA0003204856320000072
Figure BDA0003204856320000073
式中:M1为现实林分收获量,M2表示未来林分收获量,SI表示地位指数,t1为现实林分年龄,t2为未来林分年龄,G1为现实林分断面积,G2为未来林分断面积。
(3)通过林分相容性收获预估模型拟合结果来确定各年龄阶段林分最适断面积,将最适断面积作为确定间伐量的约束指标。
(4)采用全混交度、大小比数、角尺度、竞争指数空间结构指标构建林分结构目标函数:
Figure BDA0003204856320000081
式中:Q(g)为林分结构目标函数,M(g)、CI(g)、U(g)、W(g)分别代表目标树的全混交度、竞争指数、大小比数以及角尺度,σM、σCI、σU、σ|W-0.375|为相应指标的标准差。
约束条件:
1)S=S0
2)d=d0
3)M≥M0
4)CI≤CI0
5)|W-0.375|≤|W0-0.375|
6)Np≤NP-0(1-20%),且Nc>Nc-0(1-15%)
式中:S0、S为经营前后物种个数,d0、d表示经营前后径阶数,M0、M为间伐前后林分混角度,CI0、CI为间伐前后竞争指数,W0、W为间伐前后角尺度,NP-0、Np为间伐前后林木株数,Nc-0、Nc即经营前后林分内建群树种株数。
(5)通过计算各空间结构单元中目标函数的取值Q(g),对其进行排序。将Q(g)取值最小的确定为间伐对象,然后判断约束条件1)~6)是否均满足,如满足以上约束条件则输出为间伐对象,并寻找下一株间伐木。若不满足约束条件则假设不成立,需重新确定间伐木。重复以上操作,满足约束条件后停止间伐,最终确定间伐木。
现有技术的缺点表现为:
1、次生林间伐的目标导向不清晰。次生林抚育间伐应提高林分质量,促进林分正向演替,目前构建的多目标模型中多以林分水平结构和垂直结构指标为主,对林分演替中顶级树种的考虑不足,故本申请提出基于林分发育指数的次生林间伐方法。
2、基于智能优化算法的次生林间伐成果较少。次生林抚育间伐是一项系统性工作,间伐任何一株林木都会对周边林木产生影响,故应采用全局优化的方法,而不是依据适应度值逐指标进行判断。目前林分间伐中采用的Monte Carlo法,是在一确定间伐强度下大量抽样以获取最优间伐方案的方法,该方法计算量大,耗时较多,故本申请提出基于改进的遗传算法对多目标模型进行求解,可有效降低模型运行时间。
3、次生林最优间伐强度无法确定。目前,次生林间伐强度的确定多采用人为设定的方式,即在模型运行初始人为设定一个间伐强度值,或依据林分生长量、林分断面积等设置间伐强度,无法获知该林分的最优间伐强度。本研究基于改进的遗传算法,可同时获得林分最优间伐强度和间伐木位置。
本发明包括一种基于林分发育指数的次生林间伐方法,包括以下步骤,
A、对样地内胸径大于5cm的样木进行每木检尺,记录每株样木的树种名称、胸径、树高、位置坐标;
B、依据样地位置与树种组成,确定植物区系和所处的演替阶段,并按顶级树种、伴生树种、先锋树种和外来树种划分样地树种;
C、构建基于林分发育指数的多目标模型,包括林分混交度、树种优势度、林分竞争指数、林分角尺度和多个约束条件;
D、利用改进的遗传算法对多目标模型进行求解,获取次生林最优抚育间伐方案。
优选的,所述步骤A中样地的规格为100m×100m。
优选的,所述的顶级树种是群落演替的最终方向,即抚育间伐的目标导向。
优选的,所述步骤C中基于林分发育指数的多目标模型为:
Figure BDA0003204856320000101
其中,SDI为林分发育指数,g为间伐后的保留木,Mg为间伐后林分混交度,Ag为间伐后树种优势度,CIg为间伐后林分竞争指数,Wg为间伐后林分角尺度。
优选的,所述多目标模型中Mg是单木混交度Mi的均值,Mi计算公式如下:
Figure BDA0003204856320000102
式中,当参照树i与第j株相邻木为不同种时,uij为1,否则为0。
优选的,所述多目标模型中CIg是单木竞争指数CIi的均值,CIi计算公式如下:
Figure BDA0003204856320000103
式中,dj为相邻木的胸径,LD为结构单元内4株相邻木与参照树距离的平均值,di为参照树的胸径,Lij代表相邻木j和参照树i之间的距离。
优选的,所述多目标模型中Wg是单木角尺度Wi的均值,Wi计算公式如下:
Figure BDA0003204856320000104
式中,当参照树i与第j株相邻木的α夹角<72°时,Zij为1,否则为0。
优选的,所述多目标模型中树种优势度Ag计算公式如下:
Figure BDA0003204856320000105
式中,Dg为相对显著度,即顶级树种断面积占林分总断面积的比值;
Figure BDA0003204856320000106
为顶级树种大小比数均值,树种大小比数Ui计算公式如下:
Figure BDA0003204856320000111
式中,如果参照树i的胸径比第j株相邻木小,kij为1,否则为0。
优选的,所述多目标模型的约束条件为:
1)Sg=S0
2)dg=d0
3)1.3≤qg≤1.7
4)Mg≥M0
5)Ag≥A0
6)CIg≤CI0
7)|Wg-0.496|≤|W0-0.496|
8)Np≥0.7N0
9)Dt≤D0
式中,S0、Sg为间伐前后林分树种个数;d0、dg为间伐前后林分径级个数;qg为间伐后的林分q值;M0、Mg为间伐前后林分混交度;A0、Ag为间伐前后树种优势度;CI0、CIg为间伐前后林分竞争指数;W0、Wg为间伐前后林分角尺度;N0、Np为间伐前后林木株数;Dt为间伐木直径;D0为间伐前林分优势木平均直径。
优选的,所述步骤D中改进的遗传算法为:
(1)采用整数编码方式对林分样木进行编码,即用0、1分别表示样木的间伐与保留;
(2)初始化参数,参数包括种群数量、遗传代数、样木间伐概率;
(3)计算个体适应度(即林分发育指数),记录每一世代中适应度值最大的间伐方案;
(4)采用轮盘赌法对间伐木进行选择,构成配对染色体;
(5)采用多点交叉方式对配对染色体进行交叉;
(6)采用随机突变方式对染色体进行变异;
(7)世代交替,重复(3)-(6)步,直至达到迭代次数为止;
(8)按适应度值大小,输出最优间伐方案。
实施例1:
本申请以吉林省汪清县金沟岭林场的1个天然次生林林分为研究区域。
择取次生林分一处,面积100m×100m,采用相邻网格调查法,将固定标准地划分为100个10m×10m的调查单元,对每个调查单元内胸径大于5cm的样木挂牌,并记录样木的树种名称、胸径、树高、位置坐标。
依据《中国森林》,本区属东北温带针叶林及针阔叶混交林区,树种分类结果如下表所示:
Figure BDA0003204856320000121
将林分发育指数作为次生林抚育间伐的多目标模型,并计算模型初始值:
Figure BDA0003204856320000122
林分样木空间坐标图如图1所示,林分初始参数如下表所示:
Figure BDA0003204856320000123
(1)采用整数编码方式对林分样木进行编码,即用0、1分别表示样木的间伐与保留;
(2)初始化种群参数,种群数量n=50,遗传代数k=300,种群空间S=np.random.randint(0,2,(n,r)),其中r为样木株数,样木间伐概率k=np.random.uniform(0,1);
(3)用林分发育指数计算个体适应度值SSi,然后用多目标模型的约束条件对每一个体进行判断,并设定罚函数系数t,当约束条件①Sg=13不成立时,时t=t-0.2,当约束条件②dg=20不成立时,t=t-0.3,当约束条件③1.3≤qg≤1.7不成立时,t=t-0.1,当约束条件④Mg≥0.801不成立时,t=t-0.1,当约束条件⑤Ag≥0.443不成立时,t=t-0.1,当约束条件⑥CIg≤3.297不成立时,t=t-0.1,当约束条件⑦|Wg-0.496|≤0.136不成立时,t=t-0.1,当约束条件⑧Np≥428不成立时,t=t-0.1,当约束条件⑨Dt≤33.48不成立时,t=t-0.2;
(4)将每一世代中最大的适应度值和种群空间值传递给maxfitness[k,:]
(5)用轮盘赌法对个体进行选择,种群中每个个体的被选择概率为个体适应度值与种群适应度值的比值,利用随机函数a=np.random.random(1)和b=np.random.random(1)生成选择概率,构成配对染色体;
(6)染色体交叉采用随机方式,对随机函数m1=np.random.randint(10000)结果进行分段,当m1<10时,生成4个交叉点,当10≤m1<100时,生成3个交叉点,当100≤m1<1000时,生成2个交叉点,当m1≥1000时,生成1个交叉点,每个交叉点的位置由t1=np.random.randint(left,right)确定,left为染色体起始位置,right为染色体结束位置,配对染色体按交叉点个数和位置进行交叉;
(7)染色体突变采用随机方式,当随机函数m2=np.random.randint(10000)结果小于3000时,生成一个突变点,否则,不发生突变,突变点位置由t2=np.random.randint(1,right)确定,突变染色体按突变点个数和位置进行突变;
(8)世代交替,对新的子代种群重复(3)-(7)步骤;
(9)对maxfitness[k,:]中的最大适应度值进行排序,最优间伐方案显示,样地最优间伐强度为15.4%,间伐木信息如下表所示:
Figure BDA0003204856320000141
(10)间伐木空间坐标图如图2所示,间伐木标记为实心圆,样地间伐方案效果如下表所示:
Figure BDA0003204856320000151
本发明的优点:
1、构建基于林分发育指数的间伐模型。本申请采用林分角尺度、林分混交度、林分竞争指数、树种优势度构建林分发育指数,该指标综合考虑了林分水平结构、林分物种多样性、林分竞争、顶级树种优势度,可为次生林抚育间伐提供参考依据。
2、可同步确定林分最优间伐强度和间伐木位置。本研究利用改进的遗传算法,在间伐允许强度内智能化寻找最优间伐强度,并准确标记间伐木,可实现次生林抚育的定量化与精准化。
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离本发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。

Claims (10)

1.一种基于林分发育指数的次生林间伐方法,其特征在于,包括以下步骤,
A、对样地内胸径大于5cm的样木进行每木检尺,记录每株样木的树种名称、胸径、树高、位置坐标;
B、依据样地位置与树种组成,确定植物区系和所处的演替阶段,并按顶级树种、伴生树种、先锋树种和外来树种划分样地树种;
C、构建基于林分发育指数的多目标模型,包括林分混交度、树种优势度、林分竞争指数、林分角尺度和多个约束条件;
D、利用改进的遗传算法对多目标模型进行求解,获取次生林最优抚育间伐方案。
2.按照权利要求1所述的一种基于林分发育指数的次生林间伐方法,其特征在于:所述步骤A中样地的规格为100m×100m。
3.按照权利要求1所述的一种基于林分发育指数的次生林间伐方法,其特征在于:所述的顶级树种是群落演替的最终方向,即抚育间伐的目标导向。
4.按照权利要求1所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述步骤C中基于林分发育指数的多目标模型为:
Figure FDA0003204856310000011
其中,SDI为林分发育指数,g为间伐后的保留木,Mg为间伐后林分混交度,Ag为间伐后树种优势度,CIg为间伐后林分竞争指数,Wg为间伐后林分角尺度。
5.按照权利要求4所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述多目标模型中Mg是单木混交度Mi的均值,Mi计算公式如下:
Figure FDA0003204856310000012
式中,当参照树i与第j株相邻木为不同种时,uij为1,否则为0。
6.按照权利要求4所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述多目标模型中CIg是单木竞争指数CIi的均值,CIi计算公式如下:
Figure FDA0003204856310000021
式中,dj为相邻木的胸径,LD为结构单元内4株相邻木与参照树距离的平均值,di为参照树的胸径,Lij代表相邻木j和参照树i之间的距离。
7.按照权利要求4所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述多目标模型中Wg是单木角尺度Wi的均值,Wi计算公式如下:
Figure FDA0003204856310000022
式中,当参照树i与第j株相邻木的α夹角<72°时,Zij为1,否则为0。
8.按照权利要求4所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述多目标模型中树种优势度Ag计算公式如下:
Figure FDA0003204856310000023
式中,Dg为相对显著度,即顶级树种断面积占林分总断面积的比值;
Figure FDA0003204856310000024
为顶级树种大小比数均值,树种大小比数Ui计算公式如下:
Figure FDA0003204856310000025
式中,如果参照树i的胸径比第j株相邻木小,kij为1,否则为0。
9.按照权利要求4所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述多目标模型的约束条件为:
1)Sg=S0
2)dg=d0
3)1.3≤qg≤1.7
4)Mg≥M0
5)Ag≥A0
6)CIg≤CI0
7)|Wg-0.496|≤|W0-0.496|
8)Np≥0.7N0
9)Dt≤D0
式中,S0、Sg为间伐前后林分树种个数;d0、dg为间伐前后林分径级个数;qg为间伐后的林分q值;M0、Mg为间伐前后林分混交度;A0、Ag为间伐前后树种优势度;CI0、CIg为间伐前后林分竞争指数;W0、Wg为间伐前后林分角尺度;N0、Np为间伐前后林木株数;Dt为间伐木直径;D0为间伐前林分优势木平均直径。
10.按照权利要求1所述的一种基于林分发育指数的次生林间伐方法,其特征在于,所述步骤D中改进的遗传算法为:
(1)采用整数编码方式对林分样木进行编码,即用0、1分别表示样木的间伐与保留;
(2)初始化参数,参数包括种群数量、遗传代数、样木间伐概率;
(3)计算个体适应度(即林分发育指数),记录每一世代中适应度值最大的间伐方案;
(4)采用轮盘赌法对间伐木进行选择,构成配对染色体;
(5)采用多点交叉方式对配对染色体进行交叉;
(6)采用随机突变方式对染色体进行变异;
(7)世代交替,重复(3)-(6)步,直至达到迭代次数为止;
(8)按适应度值大小,输出最优间伐方案。
CN202110913694.8A 2021-08-10 2021-08-10 基于林分发育指数的次生林间伐方法 Active CN113575348B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110913694.8A CN113575348B (zh) 2021-08-10 2021-08-10 基于林分发育指数的次生林间伐方法
ZA2022/04063A ZA202204063B (en) 2021-08-10 2022-04-11 Secondary forest thinning method based on stand development index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110913694.8A CN113575348B (zh) 2021-08-10 2021-08-10 基于林分发育指数的次生林间伐方法

Publications (2)

Publication Number Publication Date
CN113575348A true CN113575348A (zh) 2021-11-02
CN113575348B CN113575348B (zh) 2022-08-02

Family

ID=78256772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110913694.8A Active CN113575348B (zh) 2021-08-10 2021-08-10 基于林分发育指数的次生林间伐方法

Country Status (2)

Country Link
CN (1) CN113575348B (zh)
ZA (1) ZA202204063B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114840799A (zh) * 2022-03-23 2022-08-02 平顶山学院 一种确定最小森林面积的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115862304B (zh) * 2023-03-03 2023-05-05 吉林省林业科学研究院 用于退化天然次生林生态修复的智能预警系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096305A (zh) * 2016-06-22 2016-11-09 张秋良 森林抚育间伐后林分的总生产量最大的间伐优化设计方法
CN110782089A (zh) * 2019-10-25 2020-02-11 中国林业科学研究院资源信息研究所 一种森林间伐方法及系统
CN111754358A (zh) * 2020-06-23 2020-10-09 中南林业科技大学 一种林分空间结构综合指数模型的构建方法及应用
CN113111504A (zh) * 2021-04-08 2021-07-13 中国林业科学研究院资源信息研究所 一种基于目标树经营间伐木智能选择算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096305A (zh) * 2016-06-22 2016-11-09 张秋良 森林抚育间伐后林分的总生产量最大的间伐优化设计方法
CN110782089A (zh) * 2019-10-25 2020-02-11 中国林业科学研究院资源信息研究所 一种森林间伐方法及系统
CN111754358A (zh) * 2020-06-23 2020-10-09 中南林业科技大学 一种林分空间结构综合指数模型的构建方法及应用
CN113111504A (zh) * 2021-04-08 2021-07-13 中国林业科学研究院资源信息研究所 一种基于目标树经营间伐木智能选择算法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
汤孟平等: "林分择伐空间结构优化模型研究", 《林业科学》 *
董莉莉: "抚育间伐对辽东山区蒙古栎阔叶混交林空间结构的影响", 《辽宁林业科技》 *
郝月兰等: "基于空间结构优化的采伐木确定方法研究", 《西北林学院学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114840799A (zh) * 2022-03-23 2022-08-02 平顶山学院 一种确定最小森林面积的方法

Also Published As

Publication number Publication date
CN113575348B (zh) 2022-08-02
ZA202204063B (en) 2022-06-29

Similar Documents

Publication Publication Date Title
CN113575348B (zh) 基于林分发育指数的次生林间伐方法
WO2024098444A1 (zh) 一种乡村生态系统碳储量预测方法
CN111783360B (zh) 高分辨率土地利用及森林景观过程耦合模拟系统及方法
CN110135585B (zh) 一种南方红壤区小流域水土保持生态服务功能优化方法
CN108872964B (zh) 基于无人机LiDAR数据的银杏人工林郁闭度提取方法
CN110162872B (zh) 一种融合样地数据与森林资源清查数据的生物量估算方法
CN110874454B (zh) 基于混合概率密度的区域尺度毛竹碳储量精确测算方法
Vettenranta Distance-dependent models for predicting the development of mixed coniferous forests in Finland
CN113408895B (zh) 基于像元尺度的生态质量指数构建方法及系统
CN114723142A (zh) 一种基于非支配排序遗传算法和flus模型的多目标土地利用模拟系统与方法
CN108984995A (zh) 一种计算数值模拟的生态园林景观设计方法
CN101477595A (zh) 区域作物品种种植比例规划系统及方法
CN113111504A (zh) 一种基于目标树经营间伐木智能选择算法
CN111292124A (zh) 一种基于优化组合神经网络的需水预测方法
CN110245882A (zh) 一种闽楠天然次生林健康评价模型及健康评价方法
CN113128871A (zh) 一种气候变化条件下落叶松分布变化和生产力协同估算方法
CN106022652A (zh) 一种森林碳汇经营方案的处理方法和装置
CN103439299B (zh) 一种作物群体光能空间分布量化方法
CN109034462B (zh) 玉米群体种植结构优化方法及装置
CN110782089B (zh) 一种森林间伐方法及系统
CN103593563A (zh) 一种天然次生林抚育间伐对象木选择方法
CN109472320B (zh) 不确定条件下作物生育期模型品种参数自动校正方法
CN116563714A (zh) 一种自动化判别水稻生长阶段的方法和系统
CN111126827A (zh) 一种基于bp人工神经网络的投入产出核算模型构建方法
CN105184234A (zh) 一种冬小麦秸秆焚烧污染物排放量的测算方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant