CN113570282B - 多主体微电网群联合储能系统容量配置与成本分摊方法 - Google Patents

多主体微电网群联合储能系统容量配置与成本分摊方法 Download PDF

Info

Publication number
CN113570282B
CN113570282B CN202111110147.2A CN202111110147A CN113570282B CN 113570282 B CN113570282 B CN 113570282B CN 202111110147 A CN202111110147 A CN 202111110147A CN 113570282 B CN113570282 B CN 113570282B
Authority
CN
China
Prior art keywords
microgrid
energy storage
grid
micro
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111110147.2A
Other languages
English (en)
Other versions
CN113570282A (zh
Inventor
汪致洵
方仍存
詹智红
杨东俊
刘畅
侯婷婷
贺兰菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority to CN202111110147.2A priority Critical patent/CN113570282B/zh
Publication of CN113570282A publication Critical patent/CN113570282A/zh
Application granted granted Critical
Publication of CN113570282B publication Critical patent/CN113570282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

一种多主体微电网群联合储能系统容量配置与成本分摊方法,包括以下步骤:以微电网群为整体,建立储能容量优化配置模型求解储能的最优配置容量、微电网群年综合运营成本、四季典型日中考虑储能参与运行后的微电网群总净功率曲线;以各微电网独立运营为对象,建模求解各微电网独立建设储能运营的年综合运营成本,由此计算微电网群联合建设储能系统获取的额外收益;从能量贡献度、净功率波形相似度两个维度分别评估各微电网对于额外收益的贡献程度,由此得到各微电网的成本分摊因子,从而计算各微电网联合运营后需要承担的年运营成本。本设计不仅能有效量化多主体微电网对于联合储能系统的容量需求程度,而且储能系统成本合理分摊。

Description

多主体微电网群联合储能系统容量配置与成本分摊方法
技术领域
本发明涉及电力系统微电网优化配置领域,尤其涉及一种多主体微电网群联合储能系统容量配置与成本分摊方法。
背景技术
为实现“30·60”的双碳长期目标,需要构建清洁、低碳、安全、高效的能源体系,深化电力体制改革,构建以新能源为主体的新型电力系统。随着分布式清洁能源、电动汽车以及用户侧储能的快速发展,新型电力系统承担着接入多种能源和供给用户能源消费等核心功能,而支持多元用户互动和分布式可再生能源接入的微电网将成为新型电力系统末端的重要组成部分。
并网型微电网可通过与大电网并网实现稳定运行,但仍需要其具备独立运行能力,国家发改委印发的《推进并网型微电网建设试行办法》指出“微电网独立运行时能保障重要负荷连续供电(不低于2小时)”。通过源荷的合理规划配置,微电网可在一定时间段内实现电力电量的平衡,但考虑到新能源出力的随机性和波动性,储能系统仍是微电网不可或缺的重要单元,其不仅可以提升微电网内部自平衡与独立运行能力,还可提高微电网电能质量与用电可靠性。此外,微电网作为电力系统源荷双重用户,在市场化电价机制中,其在上网电价与销售电价中均需要分摊并网接入工程成本与输配电成本。若微电网本身没有储能系统,其购售电量完全由微电网内部发电与负荷的实时差值决定,与大电网频繁、不受自主调度的能量交换将导致运行成本攀升。因此,配置储能系统可以优化与大电网的能量交换过程,充分利用分时电价信号提升微电网群售电收益,减少总体运营成本。
在微电网储能研究方面,一文献(“自治型微电网群多元复合储能系统容量配置方法”,田培根等,电力系统自动化,第37卷,第1期,第168-173页,2013年1月10日)针对自治型微电网群的稳定离网运行需求,提出了功率型储能与能量型储能的混合优化配置方法;中国专利,申请公布号为CN111200281A,申请公布日为2020年5月26日的发明公开了一种互联微网储能配置扩容优化方法;中国专利,申请公布号为CN111882105A,申请公布日为2020年11月3日的发明公开了一种含共享储能系统的微电网群及其日前经济优化调度方法;上述研究是从单一主体角度考虑系统的整体成本和利益最优,或是从共享储能本身投资回报率角度进行优化配置。
在电力市场化改革背景下,未来微电网可能由多个独立运营商管理,考虑到储能系统的规模效应(随储能系统容量规模增长,其单位投资成本将有所降低),多个内部互联的微电网可以联合出资配置集中型储能系统。考虑到微电网间的出力特性在时间序列上的差异,联合储能系统在运行调度时统一管理,实现储能资源在多微电网间的共享复用,可以有效提高设备的资源利用率,降低项目整体的投资成本,使得共同利益最大化。对于这种由多主体出资的储能系统配置问题,缺乏一种能有效量化分析各独立微电网对于储能系统容量需求程度的方法,导致储能系统成本如何合理分摊这一问题仍有待解决。
发明内容
本发明的目的是克服现有技术中存在的储能配置方法未计及多主体微电网对于联合储能系统的容量需求差异,导致储能系统成本难以合理分摊的缺陷与问题,提供一种能有效量化多主体微电网对于联合储能系统的容量需求程度且储能系统成本合理分摊的多主体微电网群联合储能系统容量配置与成本分摊方法。
为实现以上目的,本发明的技术解决方案是:一种多主体微电网群联合储能系统容量配置与成本分摊方法,包括以下步骤:
S1、获取微电网群中每个微电网各季度典型日的历史风光数据、负荷预测数据、新建风光发电设备容量;
S2、通过风机与光伏出力模型计算各典型日下每个微电网的发电出力曲线,并与各微电网的负荷曲线相减计算得到各微电网在各典型日下的净功率曲线;
S3、将各微电网在各典型日下的净功率曲线进行叠加,得到微电网群在各典型日下的净功率曲线;
S4、以微电网群为整体,建立考虑储能参与优化运行的微电网群储能容量优化配置模型;
S5、对微电网群储能容量优化配置模型进行求解,得到储能的最优配置容量、微电网群年综合运营成本、四季典型日中考虑储能参与运行后的微电网群总净功率曲线;
S6、分别以各微电网独立运营为对象,重复步骤S4、步骤S5的建模求解过程,求解得到各微电网独立建设储能运营的年综合运营成本;
S7、若各微电网独立建设储能运营的年综合运营成本之和高于微电网群年综合运营成本,则进入步骤S8;
S8、计算微电网群联合建设储能系统获取的额外收益;
S9、从能量贡献度、净功率波形相似度两个维度分别评估各微电网对于额外收益的贡献程度;
S10、将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子;
S11、根据成本分摊因子和额外收益,计算各微电网联合运营后,各微电网需要承担的年运营成本。
步骤S2中,各微电网在各典型日下的净功率曲线为:
Figure GDA0003349401470000031
上式中,
Figure GDA0003349401470000032
为典型日s中t时刻微电网i的净功率曲线,
Figure GDA0003349401470000033
为典型日s中t时刻微电网i的风机出力,
Figure GDA0003349401470000034
为典型日s中t时刻微电网i的光伏出力,
Figure GDA0003349401470000035
为典型日s中t时刻微电网i的负荷需求。
步骤S3中,微电网群在各典型日下的净功率曲线为:
Figure GDA0003349401470000036
上式中,
Figure GDA0003349401470000037
为典型日s中t时刻微电网群的净功率曲线。
步骤S4具体包括以下步骤:
S41、设置微电网群储能容量优化配置模型的目标函数为:
min F=Csto+Cgrid+Cbuy-Csale
上式中,F为微电网群年运营成本,Csto为储能系统的年投资及运行维护成本,Cgrid为微电网群接入大电网的年输配电成本,Cbuy为微电网群向大电网购电的成本,Csale为微电网群向大电网售电的收入;
储能系统的年投资及运行维护成本为:
Figure GDA0003349401470000038
上式中,Esto为储能配置容量,csto为储能单位容量投资成本,T为设计使用年限,r为折现率,γ为储能系统年运行维护系数;
S42、设置微电网群储能容量优化配置模型的约束条件;
(1)储能系统参与运行后,微电网群的功率平衡约束为:
Figure GDA0003349401470000041
上式中,
Figure GDA0003349401470000042
为储能系统在典型日S中t时刻的充电功率,
Figure GDA0003349401470000043
为储能系统在典型日S中t时刻的放电功率,
Figure GDA0003349401470000044
为微电网群在典型日S中t时刻向大电网的购电功率,
Figure GDA0003349401470000045
为微电网群在典型日s中t时刻向大电网的售电功率;
(2)微电网群的购售电功率需满足:
Figure GDA0003349401470000046
上式中,λ为微电网群购售电状态,1表示购电,0表示售电,M为一个无穷大正数;
(3)微电网群接入大电网的年输配电成本为:
Figure GDA0003349401470000047
上式中,
Figure GDA0003349401470000048
为微电网群与大电网的峰值交互功率,cgr1为接入工程的容量电价,cgr2为接入工程的单位电量电价;
(4)微电网群与大电网的峰值交互功率为:
Figure GDA0003349401470000049
上式用辅助形式线性化处理为:
Figure GDA00033494014700000410
(5)微电网群向大电网购电的成本为:
Figure GDA00033494014700000411
Figure GDA0003349401470000051
上式中,
Figure GDA0003349401470000052
为微电网群在典型日s中t时刻向大电网购电的成本,cbuy,1为峰时段的购电电价,cbuy,2为谷时段的购电电价,cbuy,3为平时段的购电电价,ΩT1为峰时段的时间集合,ΩT2为谷时段的时间集合,ΩT3为平时段的时间集合;
(6)微电网群向大电网售电的收入为:
Figure GDA0003349401470000053
上式中,csa为上网电价;
(7)储能系统约束为:
Figure GDA0003349401470000054
上式中,Ebat为储能系统的能量水平,
Figure GDA0003349401470000055
为储能系统在典型日s中t时刻的能量水平,
Figure GDA0003349401470000056
为储能系统在典型日s中t+1时刻的能量水平,
Figure GDA0003349401470000057
为储能系统在典型日s中t时刻的充电功率,
Figure GDA0003349401470000058
为储能系统在典型日s中t时刻的放电功率,ηbat为储能充放电效率,Δt为时间步长;mbat为储能的充放电状态,1表示充电,0表示放电;Pbat max为储能的最大充放电功率,
Figure GDA0003349401470000059
为重要负荷的最大功率需求。
步骤S5中,采用Cplex求解软件对微电网群储能容量优化配置模型进行求解。
步骤S7中,判断各微电网独立建设储能运营的年综合运营成本之和
Figure GDA00033494014700000510
是否高于微电网群年综合运营成本Cgroup
Figure GDA0003349401470000061
则进入步骤S8;
Figure GDA0003349401470000062
则各微电网仍采用各自独立运营模式。
步骤S8中,微电网群联合建设储能系统获取的额外收益ΔCextra为:
Figure GDA0003349401470000063
步骤S9具体包括以下步骤:
S91、计算微电网i在各季节典型日内的净发电量;
S92、采用Sigmoid函数将微电网i的净发电量映射到[0,1]区间,由此得到微电网i的能量贡献度:
Figure GDA0003349401470000064
Figure GDA0003349401470000065
上式中,
Figure GDA0003349401470000066
为微电网i在典型日s中的净发电量,
Figure GDA0003349401470000067
为进行归一化后的能量贡献度;
S93、先分别消除微电网i和微电网群净功率曲线的振幅偏移,再计算微电网i在典型日s中净功率曲线的平均值
Figure GDA0003349401470000068
以及微电网群在典型日s中t时刻总净功率曲线的平均值
Figure GDA0003349401470000069
然后得到修正后的净功率曲线:
Figure GDA00033494014700000610
Figure GDA00033494014700000611
上式中,
Figure GDA00033494014700000612
为修正后的微电网i在典型日s中t时刻的净功率曲线,
Figure GDA00033494014700000613
为修正后的微电网群在典型日s中t时刻的总净功率曲线,
Figure GDA00033494014700000614
为微电网群在典型日s中t时刻的总净功率曲线;
S94、采用余弦相似度法计算各典型日内微电网i净功率曲线与微电网群净功率曲线的余弦相似度:
Figure GDA0003349401470000071
上式中,cos(θs,i)为典型日s内微电网i净功率曲线与微电网群净功率曲线的余弦相似度;
将余弦相似度归一化到[0,1]区间:
Figure GDA0003349401470000072
上式中,
Figure GDA0003349401470000073
为微电网i的净功率波形相似度。
步骤S10中,采用固定加权参数将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子:
Figure GDA0003349401470000074
上式中,Ri为微电网i的成本分摊因子,w1、w2为权重系数。
步骤S11中,各微电网联合运营后,微电网i需要承担的年运营成本
Figure GDA0003349401470000075
为:
Figure GDA0003349401470000076
上式中,Cind,i为微电网i独立建设储能运营的年综合运营成本。
与现有技术相比,本发明的有益效果为:
本发明一种多主体微电网群联合储能系统容量配置与成本分摊方法中,首先,以微电网群整体运营成本最低为目标,建立优化模型求解储能系统的最优容量配置和运行调度方案;其次,以各微电网为单一主体,建立优化模型求解各微电网独立运营时各自的运营成本,由此计算联合运营给微电网群带来的额外运营效益;最后,分别从能量贡献度、净功率波形相似度两个维度量化分析各微电网对于额外运营效益的贡献程度,由此确定额外收益在各微电网间的分摊比例,从而计算出各微电网联合运营后实际需支付的运营成本。因此,本发明不仅能有效量化多主体微电网对于联合储能系统的容量需求程度,而且储能系统成本合理分摊。
附图说明
图1是本发明中多主体微电网群系统的结构示意图。
图2是本发明多主体微电网群联合储能系统容量配置与成本分摊方法的流程图。
图3是本发明中能量贡献度和净功率波形相似度的计算流程图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1至图3,一种多主体微电网群联合储能系统容量配置与成本分摊方法,包括以下步骤:
S1、获取微电网群中每个微电网各季度典型日的历史风光数据、负荷预测数据、新建风光发电设备容量;
S2、通过风机与光伏出力模型计算各典型日下每个微电网的发电出力曲线,并与各微电网的负荷曲线相减计算得到各微电网在各典型日下的净功率曲线;
S3、将各微电网在各典型日下的净功率曲线进行叠加,得到微电网群在各典型日下的净功率曲线;
S4、以微电网群为整体,建立考虑储能参与优化运行的微电网群储能容量优化配置模型;
S5、对微电网群储能容量优化配置模型进行求解,得到储能的最优配置容量、微电网群年综合运营成本、四季典型日中考虑储能参与运行后的微电网群总净功率曲线;
S6、分别以各微电网独立运营为对象,重复步骤S4、步骤S5的建模求解过程,求解得到各微电网独立建设储能运营的年综合运营成本;
S7、若各微电网独立建设储能运营的年综合运营成本之和高于微电网群年综合运营成本,则进入步骤S8;
S8、计算微电网群联合建设储能系统获取的额外收益;
S9、从能量贡献度、净功率波形相似度两个维度分别评估各微电网对于额外收益的贡献程度;
S10、将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子;
S11、根据成本分摊因子和额外收益,计算各微电网联合运营后,各微电网需要承担的年运营成本。
步骤S2中,各微电网在各典型日下的净功率曲线为:
Figure GDA0003349401470000091
上式中,
Figure GDA0003349401470000092
为典型日S中t时刻微电网i的净功率曲线,
Figure GDA0003349401470000093
为典型日s中t时刻微电网i的风机出力,
Figure GDA0003349401470000094
为典型日s中t时刻微电网i的光伏出力,
Figure GDA0003349401470000095
为典型日s中t时刻微电网i的负荷需求。
步骤S3中,微电网群在各典型日下的净功率曲线为:
Figure GDA0003349401470000096
上式中,
Figure GDA0003349401470000097
为典型日s中t时刻微电网群的净功率曲线。
步骤S4具体包括以下步骤:
S41、设置微电网群储能容量优化配置模型的目标函数为:
min F=Csto+Cgrid+Cbuy-Csale
上式中,F为微电网群年运营成本,Csto为储能系统的年投资及运行维护成本,Cgrid为微电网群接入大电网的年输配电成本,Cbuy为微电网群向大电网购电的成本,Csale为微电网群向大电网售电的收入;
储能系统的年投资及运行维护成本为:
Figure GDA0003349401470000098
上式中,Esto为储能配置容量,csto为储能单位容量投资成本,T为设计使用年限,r为折现率,γ为储能系统年运行维护系数;
S42、设置微电网群储能容量优化配置模型的约束条件;
(1)储能系统参与运行后,微电网群的功率平衡约束为:
Figure GDA0003349401470000099
上式中,
Figure GDA00033494014700000910
为储能系统在典型日s中t时刻的充电功率,
Figure GDA00033494014700000911
为储能系统在典型日S中t时刻的放电功率,
Figure GDA0003349401470000101
为微电网群在典型日s中t时刻向大电网的购电功率,
Figure GDA0003349401470000102
为微电网群在典型日s中t时刻向大电网的售电功率;
(2)微电网群的购售电功率需满足:
Figure GDA0003349401470000103
上式中,λ为微电网群购售电状态,1表示购电,0表示售电,M为一个无穷大正数;
(3)微电网群接入大电网的年输配电成本为:
Figure GDA0003349401470000104
上式中,
Figure GDA0003349401470000105
为微电网群与大电网的峰值交互功率,cgr1为接入工程的容量电价,cgr2为接入工程的单位电量电价;
(4)微电网群与大电网的峰值交互功率为:
Figure GDA0003349401470000106
上式用辅助形式线性化处理为:
Figure GDA0003349401470000107
(5)微电网群向大电网购电的成本为:
Figure GDA0003349401470000108
Figure GDA0003349401470000109
上式中,
Figure GDA00033494014700001010
为微电网群在典型日s中t时刻向大电网购电的成本,cbuy,1为峰时段的购电电价,cbuy,2为谷时段的购电电价,cbuy,3为平时段的购电电价,ΩT1为峰时段的时间集合,ΩT2为谷时段的时间集合,ΩT3为平时段的时间集合;
(6)微电网群向大电网售电的收入为:
Figure GDA0003349401470000111
上式中,csa为上网电价;
(7)储能系统约束为:
Figure GDA0003349401470000112
上式中,Ebat为储能系统的能量水平,
Figure GDA0003349401470000113
为储能系统在典型日s中t时刻的能量水平,
Figure GDA0003349401470000114
为储能系统在典型日s中t+1时刻的能量水平,
Figure GDA0003349401470000115
为储能系统在典型日s中t时刻的充电功率,
Figure GDA0003349401470000116
为储能系统在典型日s中t时刻的放电功率,ηbat为储能充放电效率,Δt为时间步长;mbat为储能的充放电状态,1表示充电,0表示放电;Pbat max为储能的最大充放电功率,
Figure GDA0003349401470000117
为重要负荷的最大功率需求。
步骤S5中,采用Cplex求解软件对微电网群储能容量优化配置模型进行求解。
步骤S7中,判断各微电网独立建设储能运营的年综合运营成本之和
Figure GDA0003349401470000118
是否高于微电网群年综合运营成本Cgroup
Figure GDA0003349401470000119
则进入步骤S8;
Figure GDA00033494014700001110
则各微电网仍采用各自独立运营模式。
步骤S8中,微电网群联合建设储能系统获取的额外收益ΔCextra为:
Figure GDA00033494014700001111
步骤S9具体包括以下步骤:
S91、计算微电网i在各季节典型日内的净发电量;
S92、采用Sigmoid函数将微电网i的净发电量映射到[0,1]区间,由此得到微电网i的能量贡献度:
Figure GDA0003349401470000121
Figure GDA0003349401470000122
上式中,
Figure GDA0003349401470000123
为微电网i在典型日S中的净发电量,
Figure GDA0003349401470000124
为进行归一化后的能量贡献度;
S93、先分别消除微电网i和微电网群净功率曲线的振幅偏移,再计算微电网i在典型日S中净功率曲线的平均值
Figure GDA0003349401470000125
以及微电网群在典型日S中t时刻总净功率曲线的平均值
Figure GDA0003349401470000126
然后得到修正后的净功率曲线:
Figure GDA0003349401470000127
Figure GDA0003349401470000128
上式中,
Figure GDA0003349401470000129
为修正后的微电网i在典型日s中t时刻的净功率曲线,
Figure GDA00033494014700001210
为修正后的微电网群在典型日s中t时刻的总净功率曲线,
Figure GDA00033494014700001211
为微电网群在典型日s中t时刻的总净功率曲线;
S94、采用余弦相似度法计算各典型日内微电网i净功率曲线与微电网群净功率曲线的余弦相似度:
Figure GDA00033494014700001212
上式中,cos(θs,i)为典型日s内微电网i净功率曲线与微电网群净功率曲线的余弦相似度;
将余弦相似度归一化到[0,1]区间:
Figure GDA0003349401470000131
上式中,
Figure GDA0003349401470000132
为微电网i的净功率波形相似度。
步骤S10中,采用固定加权参数将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子:
Figure GDA0003349401470000133
上式中,Ri为微电网i的成本分摊因子,w1、w2为权重系数。
步骤S11中,各微电网联合运营后,微电网i需要承担的年运营成本
Figure GDA0003349401470000134
为:
Figure GDA0003349401470000135
上式中,Cind,i为微电网i独立建设储能运营的年综合运营成本。
本发明的原理说明如下:
本设计用于解决现有储能配置方法未计及多主体微电网对于联合储能系统的容量需求差异,导致储能系统成本难以合理分摊的缺陷。本设计能够在微电网隶属于不同利益主体时,通过联合建设储能,平滑功率波动,降低向大电网支付的辅助服务及输配电费用,获取额外利润,并通过利润的合理分摊使得各微电网主体均可降低自身的运营成本,最终实现多方共赢。
本设计的相似度计算方式还可以为标准欧式距离算法、明氏距离算法、皮尔森相关系数等时间序列相似性度量方法。
本设计的能量贡献度计算方式还可以任选以净发电量为基准的归一化方式,例如min-max标准化、log函数转换以及不同系数的Sigmoid函数。
微电网累计净发电量越多,则能量贡献度越高,对于储能系统的需求程度越低,从而应分摊的收益越高;微电网净功率波形与联合运行后微电网群的净功率波形相似度越高,则微电网需要储能系统参与微电网内部削峰填谷的需求度也越低,从而应分摊的额外收益也越高。
实施例:
参见图1,微电网群由不同的微电网运营商1~3组成,其中,微电网运营商1通过AC/DC变换器4连入电力公共母线7;微电网运营商2和微电网运营商3分别通过AC/AC变换器5、AC/AC变换器6连入电力公共母线7;所建设的联合储能系统9通过DC/DC变换器10连入电力公共母线7;电力公共母线7通过PCC节点11与外部电网13互联;微电网运营商1~3、联合储能系统9与微电网群中央控制系统8通过通信母线12进行通信,由微电网群中央控制系统8负责统一运行调度。
参见图2,一种多主体微电网群联合储能系统容量配置与成本分摊方法,包括以下步骤:
S1、获取微电网群中每个微电网各季度典型日的历史风光数据、负荷预测数据、新建风光发电设备容量;其中,风光发电设备容量和未来负荷水平在微电网筹建时已根据用地面积、各区域功能属性以及整体投资经济性提前规划确定;
S2、通过风机与光伏出力模型计算各典型日下每个微电网的发电出力曲线,并与各微电网的负荷曲线相减计算得到各微电网在各典型日下的净功率曲线:
Figure GDA0003349401470000141
上式中,
Figure GDA0003349401470000142
为典型日s中t时刻微电网i的净功率曲线,
Figure GDA0003349401470000143
为典型日s中t时刻微电网i的风机出力,
Figure GDA0003349401470000144
为典型日s中t时刻微电网i的光伏出力,
Figure GDA0003349401470000145
为典型日s中t时刻微电网i的负荷需求;
S3、将各微电网在各典型日下的净功率曲线进行叠加,得到微电网群在各典型日下的净功率曲线:
Figure GDA0003349401470000146
上式中,
Figure GDA0003349401470000147
为典型日s中t时刻微电网群的净功率曲线;
S4、以微电网群为整体,建立考虑储能参与优化运行的微电网群储能容量优化配置模型,在各季节典型日场景中分别进行优化,各季节典型日权重均等,优化变量为微电网中储能系统功率及容量;具体包括以下步骤:
S41、设置微电网群储能容量优化配置模型的目标函数为:
min F=Csto+Cgrid+Cbuy-Csale
上式中,F为微电网群年运营成本,Csto为储能系统的年投资及运行维护成本,Cgrid为微电网群接入大电网的年输配电成本,Cbuy为微电网群向大电网购电的成本,Csale为微电网群向大电网售电的收入;
储能系统的年投资及运行维护成本为:
Figure GDA0003349401470000151
上式中,Esto为储能配置容量,csto为储能单位容量投资成本,T为设计使用年限,r为折现率,γ为储能系统年运行维护系数;
S42、设置微电网群储能容量优化配置模型的约束条件;
(1)储能系统参与运行后,微电网群的功率平衡约束为:
Figure GDA0003349401470000152
上式中,
Figure GDA0003349401470000153
为储能系统在典型日s中t时刻的充电功率,
Figure GDA0003349401470000154
为储能系统在典型日s中t时刻的放电功率,
Figure GDA0003349401470000155
为微电网群在典型日s中t时刻向大电网的购电功率,
Figure GDA0003349401470000156
为微电网群在典型日s中t时刻向大电网的售电功率;
(2)微电网群在任一时刻仅能向大电网购电或售电,二者不可同时进行,因此微电网群的购售电功率需满足:
Figure GDA0003349401470000157
上式中,λ为微电网群购售电状态,1表示购电,0表示售电,M为一个无穷大正数,本设计取为106
(3)微电网群接入大电网的年输配电成本为:
Figure GDA0003349401470000158
上式中,
Figure GDA0003349401470000159
为微电网群与大电网的峰值交互功率,cgr1为接入工程的容量电价,cgr2为接入工程的单位电量电价;
(4)微电网群与大电网的峰值交互功率为:
Figure GDA00033494014700001510
上式用辅助形式线性化处理为:
Figure GDA0003349401470000161
(5)微电网群向大电网购电的成本按照现行的省级电网分时销售电价执行,分为峰谷平三个时段进行结算,计算公式为:
Figure GDA0003349401470000162
Figure GDA0003349401470000163
上式中,
Figure GDA0003349401470000164
为微电网群在典型日S中t时刻向大电网购电的成本,cbuy,1为峰时段的购电电价,cbuy,2为谷时段的购电电价,cbuy,3为平时段的购电电价,ΩT1为峰时段的时间集合,ΩT2为谷时段的时间集合,ΩT3为平时段的时间集合;
(6)微电网群向大电网售电的收入按照无补贴平价上网政策执行,由电网企业统一收购,计算公式为:
Figure GDA0003349401470000165
上式中,csa为上网电价,电价标准去当地燃煤标杆环保电价;
(7)假定储能充放电深度为60%,除满足功率平衡与容量约束外,储能系统最小容量需满足重要负荷2小时的用电需求,储能系统约束为:
Figure GDA0003349401470000166
上式中,Ebat为储能系统的能量水平,
Figure GDA0003349401470000167
为储能系统在典型日s中t时刻的能量水平,
Figure GDA0003349401470000168
为储能系统在典型日s中t+1时刻的能量水平,
Figure GDA0003349401470000169
为储能系统在典型日s中t时刻的充电功率,
Figure GDA0003349401470000171
为储能系统在典型日s中t时刻的放电功率,ηbat为储能充放电效率,Δt为时间步长;mbat为储能的充放电状态,1表示充电,0表示放电;Pbat max为储能的最大充放电功率,
Figure GDA0003349401470000172
为重要负荷的最大功率需求;
S5、采用Cplex求解软件对微电网群储能容量优化配置模型(优化配置模型为混合整数线性规划模型)进行求解,得到储能的最优配置容量、微电网群年综合运营成本、四季典型日中考虑储能参与运行后的微电网群总净功率曲线;
S6、分别以各微电网独立运营为对象,重复步骤S4、步骤S5的建模求解过程,求解得到各微电网独立建设储能运营的年综合运营成本Cind,i
S7、判断各微电网独立建设储能运营的年综合运营成本之和
Figure GDA0003349401470000173
是否高于微电网群年综合运营成本Cgroup
Figure GDA0003349401470000174
证明联合建设储能系统能获取额外收益,则进入步骤S8;
Figure GDA0003349401470000175
则各微电网仍采用各自独立运营模式;
S8、计算微电网群联合建设储能系统获取的额外收益ΔCextra
Figure GDA0003349401470000176
S9、从能量贡献度、净功率波形相似度两个维度分别评估各微电网对于额外收益的贡献程度;具体包括以下步骤:
S91、计算微电网i在各季节典型日内的净发电量,当微电网i一天内累计发电电量大于累计负荷需求(即一天内净功率累计值为正)时,表示微电网i向微电网群输出电能,能量贡献度为正值;
S92、采用Sigmoid函数将微电网i的净发电量映射到[0,1]区间,由此得到微电网i的能量贡献度:
Figure GDA0003349401470000177
Figure GDA0003349401470000181
上式中,
Figure GDA0003349401470000182
为微电网i在典型日s中的净发电量,
Figure GDA0003349401470000183
为进行归一化后的能量贡献度;
S93、先分别消除微电网i和微电网群净功率曲线的振幅偏移,再计算微电网i在典型日s中净功率曲线的平均值
Figure GDA0003349401470000184
以及微电网群在典型日s中t时刻总净功率曲线的平均值
Figure GDA0003349401470000185
然后得到修正后的净功率曲线:
Figure GDA0003349401470000186
Figure GDA0003349401470000187
上式中,
Figure GDA0003349401470000188
为修正后的微电网i在典型日s中t时刻的净功率曲线,
Figure GDA0003349401470000189
为修正后的微电网群在典型日s中t时刻的总净功率曲线,
Figure GDA00033494014700001810
为微电网群在典型日s中t时刻的总净功率曲线;
S94、采用余弦相似度法计算各典型日内微电网i净功率曲线与微电网群净功率曲线的余弦相似度,该方法用向量空间中两个向量夹角的余弦值衡量个体间差异,计算公式为:
Figure GDA00033494014700001811
上式中,cos(θs,i)为典型日s内微电网i净功率曲线与微电网群净功率曲线的余弦相似度,该相似度取值范围为[-1,1];
将余弦相似度归一化到[0,1]区间:
Figure GDA00033494014700001812
上式中,
Figure GDA00033494014700001813
为微电网i的净功率波形相似度;
S10、采用固定加权参数将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子:
Figure GDA0003349401470000191
上式中,Ri为微电网i的成本分摊因子,w1、w2为权重系数,根据实际项目情况进行选择;
S11、根据成本分摊因子和额外收益,可按照各微电网的成本分摊因子对于额外收益进行分摊,在微电网原有独立运营时需承担的运营成本中减掉这部分收益,假设各微电网联合运营后,微电网i需要承担的年运营成本
Figure GDA0003349401470000192
为:
Figure GDA0003349401470000193
上式中,Cind,i为微电网i独立建设储能运营的年综合运营成本。
在多主体微电网联合后,可以看出微电网i需要承担的年运营成本
Figure GDA0003349401470000194
将低于微电网i独立建设储能运营的年综合运营成本Cind,i,满足激励相容原理,从而实现各主体的多赢。

Claims (10)

1.一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于,包括以下步骤:
S1、获取微电网群中每个微电网各季度典型日的历史风光数据、负荷预测数据、新建风光发电设备容量;
S2、通过风机与光伏出力模型计算各典型日下每个微电网的发电出力曲线,并与各微电网的负荷曲线相减计算得到各微电网在各典型日下的净功率曲线;
S3、将各微电网在各典型日下的净功率曲线进行叠加,得到微电网群在各典型日下的净功率曲线;
S4、以微电网群为整体,建立考虑储能参与优化运行的微电网群储能容量优化配置模型;
S5、对微电网群储能容量优化配置模型进行求解,得到储能的最优配置容量、微电网群年综合运营成本、四季典型日中考虑储能参与运行后的微电网群总净功率曲线;
S6、分别以各微电网独立运营为对象,重复步骤S4、步骤S5的建模求解过程,求解得到各微电网独立建设储能运营的年综合运营成本;
S7、若各微电网独立建设储能运营的年综合运营成本之和高于微电网群年综合运营成本,则进入步骤S8;
S8、计算微电网群联合建设储能系统获取的额外收益;
S9、从能量贡献度、净功率波形相似度两个维度分别评估各微电网对于额外收益的贡献程度;
S10、将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子;
S11、根据成本分摊因子和额外收益,计算各微电网联合运营后,各微电网需要承担的年运营成本。
2.根据权利要求1所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S2中,各微电网在各典型日下的净功率曲线为:
Figure FDA0003349401460000011
上式中,
Figure FDA0003349401460000012
为典型日s中t时刻微电网i的净功率曲线,
Figure FDA0003349401460000013
为典型日s中t时刻微电网i的风机出力,
Figure FDA0003349401460000014
为典型日s中t时刻微电网i的光伏出力,
Figure FDA0003349401460000015
为典型日s中t时刻微电网i的负荷需求。
3.根据权利要求2所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S3中,微电网群在各典型日下的净功率曲线为:
Figure FDA0003349401460000021
上式中,
Figure FDA0003349401460000022
为典型日s中t时刻微电网群的净功率曲线。
4.根据权利要求3所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S4具体包括以下步骤:
S41、设置微电网群储能容量优化配置模型的目标函数为:
min F=Csto+Cgrid+Cbuy-Csale
上式中,F为微电网群年运营成本,Csto为储能系统的年投资及运行维护成本,Cgrid为微电网群接入大电网的年输配电成本,Cbuy为微电网群向大电网购电的成本,Csale为微电网群向大电网售电的收入;
储能系统的年投资及运行维护成本为:
Figure FDA0003349401460000023
上式中,Esto为储能配置容量,csto为储能单位容量投资成本,T为设计使用年限,r为折现率,γ为储能系统年运行维护系数;
S42、设置微电网群储能容量优化配置模型的约束条件;
(1)储能系统参与运行后,微电网群的功率平衡约束为:
Figure FDA0003349401460000024
上式中,
Figure FDA0003349401460000025
为储能系统在典型日s中t时刻的充电功率,
Figure FDA0003349401460000026
为储能系统在典型日s中t时刻的放电功率,
Figure FDA0003349401460000027
为微电网群在典型日s中t时刻向大电网的购电功率,
Figure FDA0003349401460000028
为微电网群在典型日s中t时刻向大电网的售电功率;
(2)微电网群的购售电功率需满足:
Figure FDA0003349401460000031
上式中,λ为微电网群购售电状态,1表示购电,0表示售电,M为一个无穷大正数;
(3)微电网群接入大电网的年输配电成本为:
Figure FDA0003349401460000032
上式中,
Figure FDA0003349401460000033
为微电网群与大电网的峰值交互功率,cgr1为接入工程的容量电价,cgr2为接入工程的单位电量电价;
(4)微电网群与大电网的峰值交互功率为:
Figure FDA0003349401460000034
上式用辅助形式线性化处理为:
Figure FDA0003349401460000035
(5)微电网群向大电网购电的成本为:
Figure FDA0003349401460000036
Figure FDA0003349401460000037
上式中,
Figure FDA0003349401460000038
为微电网群在典型日s中t时刻向大电网购电的成本,cbuy,1为峰时段的购电电价,cbuy,2为谷时段的购电电价,cbuy,3为平时段的购电电价,ΩT1为峰时段的时间集合,ΩT2为谷时段的时间集合,ΩT3为平时段的时间集合;
(6)微电网群向大电网售电的收入为:
Figure FDA0003349401460000039
上式中,csa为上网电价;
(7)储能系统约束为:
Figure FDA0003349401460000041
上式中,Ebat为储能系统的能量水平,
Figure FDA0003349401460000042
为储能系统在典型日s中t时刻的能量水平,
Figure FDA0003349401460000043
为储能系统在典型日s中t+1时刻的能量水平,
Figure FDA0003349401460000044
为储能系统在典型日s中t时刻的充电功率,
Figure FDA0003349401460000045
为储能系统在典型日s中t时刻的放电功率,ηbat为储能充放电效率,Δt为时间步长;mbat为储能的充放电状态,1表示充电,0表示放电;Pbat max为储能的最大充放电功率,
Figure FDA0003349401460000046
为重要负荷的最大功率需求。
5.根据权利要求4所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S5中,采用Cplex求解软件对微电网群储能容量优化配置模型进行求解。
6.根据权利要求5所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:
步骤S7中,判断各微电网独立建设储能运营的年综合运营成本之和
Figure FDA0003349401460000047
是否高于微电网群年综合运营成本Cgroup
Figure FDA0003349401460000048
则进入步骤S8;
Figure FDA0003349401460000049
则各微电网仍采用各自独立运营模式。
7.根据权利要求6所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S8中,微电网群联合建设储能系统获取的额外收益ΔCextra为:
Figure FDA0003349401460000051
8.根据权利要求7所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S9具体包括以下步骤:
S91、计算微电网i在各季节典型日内的净发电量;
S92、采用Sigmoid函数将微电网i的净发电量映射到[0,1]区间,由此得到微电网i的能量贡献度:
Figure FDA0003349401460000052
Figure FDA0003349401460000053
上式中,
Figure FDA0003349401460000054
为微电网i在典型日s中的净发电量,
Figure FDA0003349401460000055
为进行归一化后的能量贡献度;
S93、先分别消除微电网i和微电网群净功率曲线的振幅偏移,再计算微电网i在典型日s中净功率曲线的平均值
Figure FDA0003349401460000056
以及微电网群在典型日s中t时刻总净功率曲线的平均值
Figure FDA0003349401460000057
然后得到修正后的净功率曲线:
Figure FDA0003349401460000058
Figure FDA0003349401460000059
上式中,
Figure FDA00033494014600000510
为修正后的微电网i在典型日s中t时刻的净功率曲线,
Figure FDA00033494014600000511
为修正后的微电网群在典型日s中t时刻的总净功率曲线,
Figure FDA00033494014600000512
为微电网群在典型日s中t时刻的总净功率曲线;
S94、采用余弦相似度法计算各典型日内微电网i净功率曲线与微电网群净功率曲线的余弦相似度:
Figure FDA0003349401460000061
上式中,cos(θs,i)为典型日s内微电网i净功率曲线与微电网群净功率曲线的余弦相似度;
将余弦相似度归一化到[0,1]区间:
Figure FDA0003349401460000062
上式中,
Figure FDA0003349401460000063
为微电网i的净功率波形相似度。
9.根据权利要求8所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S10中,采用固定加权参数将能量贡献度和净功率波形相似度进行融合,得到各微电网的成本分摊因子:
Figure FDA0003349401460000064
上式中,Ri为微电网i的成本分摊因子,w1、w2为权重系数。
10.根据权利要求9所述的一种多主体微电网群联合储能系统容量配置与成本分摊方法,其特征在于:步骤S11中,各微电网联合运营后,微电网i需要承担的年运营成本
Figure FDA0003349401460000065
为:
Figure FDA0003349401460000066
上式中,Cind,i为微电网i独立建设储能运营的年综合运营成本。
CN202111110147.2A 2021-09-23 2021-09-23 多主体微电网群联合储能系统容量配置与成本分摊方法 Active CN113570282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111110147.2A CN113570282B (zh) 2021-09-23 2021-09-23 多主体微电网群联合储能系统容量配置与成本分摊方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111110147.2A CN113570282B (zh) 2021-09-23 2021-09-23 多主体微电网群联合储能系统容量配置与成本分摊方法

Publications (2)

Publication Number Publication Date
CN113570282A CN113570282A (zh) 2021-10-29
CN113570282B true CN113570282B (zh) 2021-12-10

Family

ID=78173975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111110147.2A Active CN113570282B (zh) 2021-09-23 2021-09-23 多主体微电网群联合储能系统容量配置与成本分摊方法

Country Status (1)

Country Link
CN (1) CN113570282B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530872A (zh) * 2021-11-16 2022-05-24 国网浙江省电力有限公司乐清市供电公司 一种多边共享的储能优化配置及其成本分摊方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786523A (zh) * 2016-12-19 2017-05-31 华北电力大学 考虑新电改政策影响的分布式电源和微电网运营互动方法
WO2018131174A1 (en) * 2017-01-13 2018-07-19 Nec Corporation Microgrid power management system and method of managing
CN109103914A (zh) * 2018-10-17 2018-12-28 上海电力设计院有限公司 考虑源荷储协同运行的微电网储能优化配置方法
CN112491087A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种基于需求侧响应的风光储独立微电网经济优化方法
CN113361875A (zh) * 2021-05-24 2021-09-07 三峡大学 计及需求侧响应和共享储能的多微电网综合能源系统优化调度方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043839B2 (en) * 2017-11-09 2021-06-22 Wisys Technology Foundation, Inc. Micro-grid energy management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786523A (zh) * 2016-12-19 2017-05-31 华北电力大学 考虑新电改政策影响的分布式电源和微电网运营互动方法
WO2018131174A1 (en) * 2017-01-13 2018-07-19 Nec Corporation Microgrid power management system and method of managing
CN109103914A (zh) * 2018-10-17 2018-12-28 上海电力设计院有限公司 考虑源荷储协同运行的微电网储能优化配置方法
CN112491087A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种基于需求侧响应的风光储独立微电网经济优化方法
CN113361875A (zh) * 2021-05-24 2021-09-07 三峡大学 计及需求侧响应和共享储能的多微电网综合能源系统优化调度方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Coordinated Energy and Reserve Sharing of Isolated Microgrid Cluster using Deep Reinforcement Learning;Hasan Saeed Qazi, Nian Liu, Tong Wang;《2020 5th Asia Conference on Power and Electrical Engineering (ACPEE)》;20200607;全文 *
基于交替乘子法与Shapley分配法的多微网联合经济调度;胡蓉,等;《电力建设》;20210731;第42卷(第7期);全文 *
微电网复合储能容量配置的多目标优化;胡仕灿;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20190115(第01期);全文 *

Also Published As

Publication number Publication date
CN113570282A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
Lilla et al. Day-ahead scheduling of a local energy community: An alternating direction method of multipliers approach
Liu et al. Distributed day-ahead peer-to-peer trading for multi-microgrid systems in active distribution networks
Yan et al. Two-stage adjustable robust optimal dispatching model for multi-energy virtual power plant considering multiple uncertainties and carbon trading
Jianwei et al. Configuration optimization and benefit allocation model of multi-park integrated energy systems considering electric vehicle charging station to assist services of shared energy storage power station
Yu System contributions of residential battery systems: New perspectives on PV self-consumption
Eseye et al. Grid-price dependent optimal energy storage management strategy for grid-connected industrial microgrids
CN109103914A (zh) 考虑源荷储协同运行的微电网储能优化配置方法
Negri et al. Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation
Gao et al. Green electricity trading driven low-carbon sharing for interconnected microgrids
Pilz et al. Selfish energy sharing in prosumer communities: A demand-side management concept
Wu et al. Dynamic pricing and energy management of hydrogen-based integrated energy service provider considering integrated demand response with a bi-level approach
CN113570282B (zh) 多主体微电网群联合储能系统容量配置与成本分摊方法
Tan et al. Joint scheduling optimization of virtual power plants and equitable profit distribution using shapely value theory
Mohamed et al. Residential battery energy storage sizing and profitability in the presence of PV and EV
Yang et al. Enhancing utilization of PV energy in building microgrids via autonomous demand response
CN117332937A (zh) 一种考虑需求响应的多能互补虚拟电厂经济调度方法
CN116683529A (zh) 风光储工业园区优化运行的实时控制方法、系统及设备
Hambridge et al. A frequency based real-time electricity rate for residential prosumers
Wang et al. Hybrid battery charging strategy for maximizing PV customers' economic benefits
Jiang et al. Monthly electricity purchase and decomposition optimization considering wind power accommodation and day-ahead schedule
CN112651544B (zh) 一种增量配电多主体协调优化方法
Brandt et al. A household-oriented approach to the benefits of vehicle-to-grid-capable electric vehicles
CN114498769A (zh) 一种高比例风光孤岛微电网群能量调度方法及系统
Wang et al. Integrated operation mode of grid-connected microgrid considering double-layer demand response
CN113255957A (zh) 综合服务站不确定因素的定量优化分析方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant