CN113570156A - Thermal environment prediction model and thermal environment prediction method based on agricultural facilities - Google Patents
Thermal environment prediction model and thermal environment prediction method based on agricultural facilities Download PDFInfo
- Publication number
- CN113570156A CN113570156A CN202110950819.4A CN202110950819A CN113570156A CN 113570156 A CN113570156 A CN 113570156A CN 202110950819 A CN202110950819 A CN 202110950819A CN 113570156 A CN113570156 A CN 113570156A
- Authority
- CN
- China
- Prior art keywords
- thermal environment
- term
- long
- short
- term spatiotemporal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/061—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Business, Economics & Management (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Neurology (AREA)
- Marketing (AREA)
- Animal Husbandry (AREA)
- Agronomy & Crop Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Marine Sciences & Fisheries (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Primary Health Care (AREA)
- Mining & Mineral Resources (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Evolutionary Biology (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
Abstract
本发明提供一种基于农业设施的热环境预测模型及热环境预测方法,模型包括:第一记忆模块,用于对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,时间序列信息包括:热环境的环境参数和目标参数;第二记忆模块,用于基于长期时空特征,提取热环境的短期时空特征;自回归模块,用于基于目标参数的历史信息,确定初始预测结果;输出模块,用于基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果。本发明用于解决现有技术没有结合农业设施热环境的特征,导致热环境长期预测任务中效果差的缺陷。
The invention provides a thermal environment prediction model and a thermal environment prediction method based on agricultural facilities. The model includes: a first memory module, which is used to perform feature extraction on time series information corresponding to the thermal environment to obtain long-term spatiotemporal characteristics of the thermal environment. The sequence information includes: environmental parameters and target parameters of the thermal environment; the second memory module is used to extract the short-term spatiotemporal characteristics of the thermal environment based on the long-term spatiotemporal characteristics; the autoregressive module is used to determine the initial prediction result based on the historical information of the target parameters ; The output module is used to output the final prediction result of thermal environment based on long-term spatiotemporal features, short-term spatiotemporal features and initial prediction results. The invention is used to solve the defect that the prior art does not combine the characteristics of the thermal environment of agricultural facilities, resulting in poor effect in the long-term prediction task of the thermal environment.
Description
技术领域technical field
本发明涉及农业设施技术领域,尤其涉及一种基于农业设施的热环境预测模型及热环境预测方法。The invention relates to the technical field of agricultural facilities, in particular to a thermal environment prediction model and a thermal environment prediction method based on agricultural facilities.
背景技术Background technique
对于设施农业(温室、工厂化鱼菜共生、无土栽培、循环水养殖)中热环境的预测方法可以划分为机理模型预测、机器学习模型预测和时间序列模型预测。由于后两种方法无需关注系统中的物理定律和原理,因此被称为“黑箱模型”。以下将详细介绍这几类方法在机理预测建模中的运用。The prediction methods for thermal environment in facility agriculture (greenhouse, factory aquaponics, soilless culture, recirculating aquaculture) can be divided into mechanism model prediction, machine learning model prediction and time series model prediction. The latter two methods are called "black box models" because they do not pay attention to the laws and principles of physics in the system. The application of these types of methods in mechanism prediction modeling will be introduced in detail below.
机理模型使用生物和物理原理来定量分析系统中的相关因素,是通过能量和质量守恒定律建立平衡方程的。机理模型包括静态模型和动态模型:静态模型又被称为稳态模型;动态模型通常由微分方程式描述,它描述了系统的变化规律。最早的温室环境静态模型由学者Businger建立,为后人的研究奠定了基础。尽管静态模型易于实现,但其准确性较低。因此,日本学者Takakura等人对未加热的单层玻璃温室建立了第一个相对完整的动力学模型,该模型全面的描述了温室中的热量和水分传递过程。Mechanism models use biological and physical principles to quantitatively analyze relevant factors in a system, and establish equilibrium equations through the laws of conservation of energy and mass. The mechanism model includes a static model and a dynamic model: the static model is also called the steady-state model; the dynamic model is usually described by a differential equation, which describes the changing law of the system. The earliest static model of greenhouse environment was established by scholar Businger, which laid the foundation for future research. Although static models are easy to implement, their accuracy is low. Therefore, Japanese scholars Takakura et al. established the first relatively complete kinetic model for the unheated single-layer glass greenhouse, which comprehensively described the heat and moisture transfer process in the greenhouse.
随着机理模型的不断完善,也为农业设施环境的预测和调控带来了便利。但由于机理模型使用了大量的参数和物理变量,农业系统往往是时变的。因此,在开发和实践中难以调优,越来越多的研究者开始关注基于数据的模型。并且,随着人工智能的发展,计算性能和数据生产力得到了进一步的提高,从而推动了机器学习模型在农业环境建模中的应用。With the continuous improvement of the mechanism model, it also brings convenience to the prediction and regulation of the agricultural facility environment. However, agricultural systems tend to be time-varying due to the large number of parameters and physical variables used in mechanistic models. Therefore, it is difficult to tune in development and practice, and more and more researchers start to focus on data-based models. And, with the development of artificial intelligence, computing performance and data productivity have been further improved, thus promoting the application of machine learning models in agricultural environment modeling.
虽然现有技术通过机器学习的方式,能够实现时间序列预测,但是并没有结合农业设施热环境的特征,在热环境长期预测任务中无法取得满意的效果。因此,如何实现农业设施的热环境的精准预测是目前业界亟待解决的重要课题。Although the existing technology can achieve time series prediction through machine learning, it does not combine the characteristics of the thermal environment of agricultural facilities, and cannot achieve satisfactory results in the long-term thermal environment prediction task. Therefore, how to achieve accurate prediction of the thermal environment of agricultural facilities is an important issue to be solved urgently in the industry.
发明内容SUMMARY OF THE INVENTION
本发明提供一种基于农业设施的热环境预测模型及热环境预测方法,用以解决现有技术没有结合农业设施热环境的特征,导致热环境长期预测任务中效果差的缺陷,实现热环境的精准预测。The invention provides a thermal environment prediction model and a thermal environment prediction method based on agricultural facilities, which are used to solve the defect that the existing technology does not combine the characteristics of the thermal environment of agricultural facilities, resulting in poor effect in the long-term prediction task of the thermal environment, and realizes the improvement of the thermal environment. Precise predictions.
本发明提供一种基于农业设施的热环境预测模型,包括:第一记忆模块,用于对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,所述时间序列信息包括:所述热环境的环境参数和目标参数;The present invention provides a thermal environment prediction model based on agricultural facilities, comprising: a first memory module for performing feature extraction on time series information corresponding to the thermal environment to obtain long-term spatiotemporal characteristics of the thermal environment, where the time series information includes: environmental parameters and target parameters of the thermal environment;
第二记忆模块,用于基于所述长期时空特征,提取所述热环境的短期时空特征;a second memory module, configured to extract short-term spatiotemporal features of the thermal environment based on the long-term spatiotemporal features;
自回归模块,用于基于所述目标参数的历史信息,确定初始预测结果;The autoregressive module is used to determine the initial prediction result based on the historical information of the target parameter;
输出模块,用于基于所述长期时空特征、所述短期时空特征和所述初始预测结果,输出所述热环境的最终预测结果。An output module, configured to output the final prediction result of the thermal environment based on the long-term spatiotemporal features, the short-term spatiotemporal features and the initial prediction result.
根据本发明提供的一种基于农业设施的热环境预测模型,所述第二记忆模块包括:注意力单元和至少两个第二记忆单元;According to a thermal environment prediction model based on agricultural facilities provided by the present invention, the second memory module includes: an attention unit and at least two second memory units;
所述注意力单元,用于连接所述第一记忆模块和所述第二记忆模块,用于调整所述长期时空特征,并将调整后的长期时空特征,传输至所述第二记忆单元。The attention unit is used for connecting the first memory module and the second memory module, for adjusting the long-term spatiotemporal features, and transmitting the adjusted long-term spatiotemporal features to the second memory unit.
根据本发明提供的一种基于农业设施的热环境预测模型,所述第一记忆模块,包括至少两个第一记忆单元;According to a thermal environment prediction model based on agricultural facilities provided by the present invention, the first memory module includes at least two first memory units;
所述注意力单元,具体用于当得到所述长期时空特征之后,基于所述长期时空特征和所述短期时空特征,计算每个所述第一记忆单元对应的注意力权重,基于所述注意力权重,调整所述长期时空特征,并将所述调整后的长期时空特征,传输至所述第二记忆单元。The attention unit is specifically configured to calculate the attention weight corresponding to each of the first memory units based on the long-term space-time feature and the short-term space-time feature after the long-term space-time feature is obtained, and based on the attention force weight, adjust the long-term spatiotemporal feature, and transmit the adjusted long-term spatiotemporal feature to the second memory unit.
根据本发明提供的一种基于农业设施的热环境预测模型,所述第二记忆单元,用于基于所述调整后的长期时空特征和所述历史信息,确定所述短期时空特征。According to a thermal environment prediction model based on agricultural facilities provided by the present invention, the second memory unit is configured to determine the short-term spatiotemporal characteristics based on the adjusted long-term spatiotemporal characteristics and the historical information.
根据本发明提供的一种基于农业设施的热环境预测模型,所述第二记忆模块为循环神经网络RNN,所述第二记忆单元包括:长短期记忆网络LSTM。According to a thermal environment prediction model based on agricultural facilities provided by the present invention, the second memory module is a recurrent neural network RNN, and the second memory unit includes: a long short-term memory network LSTM.
根据本发明提供的一种基于农业设施的热环境预测模型,所述第一记忆单元包括:时域卷积网络TCN。According to a thermal environment prediction model based on agricultural facilities provided by the present invention, the first memory unit includes: a time-domain convolutional network TCN.
根据本发明提供的一种基于农业设施的热环境预测模型,所述输出模块,具体用于对所述长期时空特征、所述短期时空特征和所述初始预测结果进行求和,得到所述最终预测结果。According to a thermal environment prediction model based on agricultural facilities provided by the present invention, the output module is specifically configured to sum the long-term spatiotemporal features, the short-term spatiotemporal features, and the initial prediction results to obtain the final forecast result.
本发明还提供一种基于农业设施的热环境预测模型的热环境预测方法,包括:The present invention also provides a thermal environment prediction method based on a thermal environment prediction model of agricultural facilities, comprising:
对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,所述时间序列信息包括:所述热环境的环境参数和目标参数;Perform feature extraction on time series information corresponding to the thermal environment to obtain long-term spatiotemporal characteristics of the thermal environment, where the time series information includes: environmental parameters and target parameters of the thermal environment;
基于所述长期时空特征,提取所述热环境的短期时空特征;extracting short-term spatiotemporal features of the thermal environment based on the long-term spatiotemporal features;
基于所述目标参数的历史信息,确定初始预测结果;determining an initial prediction result based on the historical information of the target parameter;
基于所述长期时空特征、所述短期时空特征和所述初始预测结果,输出所述热环境的最终预测结果。Based on the long-term spatiotemporal features, the short-term spatiotemporal features, and the initial prediction result, a final prediction result of the thermal environment is output.
本发明提供的热环境预测方法,所述基于所述长期时空特征,提取所述热环境的短期时空特征,包括:In the thermal environment prediction method provided by the present invention, the short-term spatiotemporal features of the thermal environment are extracted based on the long-term spatiotemporal features, including:
调整所述长期时空特征,基于调整后的长期时空特征和所述历史信息,确定所述短期时空特征。The long-term spatiotemporal features are adjusted, and the short-term spatiotemporal features are determined based on the adjusted long-term spatiotemporal features and the historical information.
本发明提供的热环境预测方法,所述基于所述长期时空特征、所述短期时空特征和所述初始预测结果,输出所述热环境的最终预测结果,包括:In the thermal environment prediction method provided by the present invention, the output of the final prediction result of the thermal environment based on the long-term spatiotemporal characteristics, the short-term spatiotemporal characteristics and the initial prediction result includes:
对所述长期时空特征、所述短期时空特征和所述初始预测结果进行求和,得到所述最终预测结果。The long-term spatiotemporal feature, the short-term spatiotemporal feature, and the initial prediction result are summed to obtain the final prediction result.
本发明提供的基于农业设施的热环境预测模型及热环境预测方法,通过热环境预测模型,得到热环境的预测结果,其中,热环境预测模型包括:第一记忆模块、第二记忆模块、自回归模块和输出模块。本发明通过第一记忆模块,对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,其中,时间序列信息包括:热环境的环境参数和目标参数,可见,本发明的热环境预测模型,有效的基于热环境的相关参数,得到了热环境的长期时空特征;第二记忆模块,基于热环境的长期时空特征,提取热环境的短期时空特征,可见,本发明得到了热环境的短期时空特征;自回归模块,用于基于目标参数的历史信息,确定初始预测结果;输出模块,用于基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果,可见,本发明充分考虑了热环境的长期时空特征和短期时空特征,以及长期时空特征与短期时空特征之间的空间关系,使本发明能够更好的适应农业设施的热环境预测,最终实现精准的农业设施的热环境预测。In the thermal environment prediction model and thermal environment prediction method based on agricultural facilities provided by the present invention, the thermal environment prediction result is obtained through the thermal environment prediction model, wherein the thermal environment prediction model includes: a first memory module, a second memory module, an automatic regression module and output module. The present invention uses the first memory module to perform feature extraction on the time series information corresponding to the thermal environment to obtain long-term spatiotemporal characteristics of the thermal environment, wherein the time series information includes: environmental parameters and target parameters of the thermal environment. It can be seen that the thermal environment of the present invention The environmental prediction model effectively obtains the long-term spatial-temporal characteristics of the thermal environment based on the relevant parameters of the thermal environment; the second memory module, based on the long-term spatial-temporal characteristics of the thermal environment, extracts the short-term spatial-temporal characteristics of the thermal environment. The short-term spatiotemporal characteristics of the environment; the autoregressive module is used to determine the initial prediction results based on the historical information of the target parameters; the output module is used to output the final prediction results of the thermal environment based on the long-term spatiotemporal characteristics, short-term spatiotemporal characteristics and the initial prediction results, It can be seen that the present invention fully considers the long-term space-time characteristics and short-term space-time characteristics of the thermal environment, as well as the spatial relationship between the long-term space-time characteristics and the short-term space-time characteristics, so that the present invention can better adapt to the thermal environment prediction of agricultural facilities, and finally achieve accurate Thermal environment prediction for agricultural facilities.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are the For some embodiments of the invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本发明提供的热环境预测模型的结构示意图之一;Fig. 1 is one of the structural representations of the thermal environment prediction model provided by the present invention;
图2是本发明提供的热环境预测模型的结构示意图之二;Fig. 2 is the second structural schematic diagram of the thermal environment prediction model provided by the present invention;
图3是本发明提供的热环境预测模型的结构示意图之三;Fig. 3 is the third structural schematic diagram of the thermal environment prediction model provided by the present invention;
图4是本发明提供的热环境预测方法的流程示意图;4 is a schematic flowchart of a thermal environment prediction method provided by the present invention;
图5是本发明提供的电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention. , not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
下面结合图1-图3描述本发明的基于农业设施的热环境预测模型。The thermal environment prediction model based on agricultural facilities of the present invention will be described below with reference to FIGS. 1 to 3 .
本发明实施例提供了一种基于农业设施的热环境预测模型,该模型的结构示意图如图1所示,该模型具体包括:The embodiment of the present invention provides a thermal environment prediction model based on agricultural facilities. The schematic diagram of the structure of the model is shown in FIG. 1 , and the model specifically includes:
第一记忆模块101,用于对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,时间序列信息包括:热环境的环境参数和目标参数。The
第二记忆模块102,用于基于长期时空特征,提取热环境的短期时空特征。The
自回归模块103,用于基于目标参数的历史信息,确定初始预测结果。The
输出模块104,用于基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果。The
其中,长期时空特征包括:热环境的季节性信息、变化趋势信息以及时空相关性等信息;短期时空特征包括:热环境的短期波动性等。Among them, the long-term spatiotemporal features include: seasonal information, change trend information, and spatiotemporal correlations of the thermal environment; short-term spatiotemporal features include: short-term volatility of the thermal environment.
具体的,本发明主要针对农业设施热环境的时间序列信息的预测任务。其中,环境参数包括:室外温度、室外湿度、土壤温度、土壤水分、大气压强、室内光照、室内二氧化碳(CO2)浓度、室内温度、室内湿度、循环水温等。其中,环境参数包括:外生变量和目标变量。目标变量与最终预测结果相对应。Specifically, the present invention is mainly aimed at the task of predicting the time series information of the thermal environment of agricultural facilities. The environmental parameters include: outdoor temperature, outdoor humidity, soil temperature, soil moisture, atmospheric pressure, indoor light, indoor carbon dioxide (CO 2 ) concentration, indoor temperature, indoor humidity, circulating water temperature, and the like. Among them, the environmental parameters include: exogenous variables and target variables. The target variable corresponds to the final prediction result.
下面,以室外温度、室外湿度、土壤温度、土壤水分、大气压强、室内光照、室内二氧化碳(CO2)浓度、室内温度、室内湿度、循环水温等作为外生变量,循环水温作为目标变量为例进行说明:Below, take outdoor temperature, outdoor humidity, soil temperature, soil moisture, atmospheric pressure, indoor light, indoor carbon dioxide (CO 2 ) concentration, indoor temperature, indoor humidity, circulating water temperature, etc. as exogenous variables, and circulating water temperature as the target variable as an example Be explained:
其中,对于外生变量和目标变量分别用ut∈RN和vt∈R来表示,二者共同组成模型的输入参数zt={ut;vt}。本发明的目标是利用历史T个时间步的环境参数,即时间序列信息,预测未来H个时间步的目标变量。即,该热环境预测模型建立外生变量与目标变量的映射函数f(·),见公式(1)Among them, the exogenous variables and target variables are represented by u t ∈ R N and v t ∈ R respectively, and the two together constitute the input parameters of the model z t ={u t ;v t }. The goal of the present invention is to predict the target variable of H time steps in the future by using the environmental parameters of the historical T time steps, that is, the time series information. That is, the thermal environment prediction model establishes the mapping function f(·) between the exogenous variable and the target variable, see formula (1)
即which is
Y=f(X) (1)Y=f(X) (1)
其中,输入变量为X,预测的目标变量为Y,Y={vT+1;vT+2;…;vT+H}∈RH,T为常量,H为常量where the input variable is X, The predicted target variable is Y, Y={v T+1 ; v T+2 ;…;v T+H }∈R H , T is a constant, H is a constant
一个具体实施例中,第一记忆模块101,包括至少两个第一记忆单元,第一记忆单元包括:时域卷积网络(Temporal Convolutional Network,简称TCN)。In a specific embodiment, the
具体的,由于设施农业热环境强耦合、大惯性和非线性等特点,在创建模型时需要综合考虑数据多变量和长时序性,因此,本发明的第一记忆模块采用TCN模型。其中,TCN模型通过因果卷积确保未来的信息不会泄露。此外,TCN模型可以通过更深层和扩张卷积来有效地获得任意长度的时空特征。Specifically, due to the characteristics of strong coupling, large inertia and nonlinearity of the thermal environment of facility agriculture, multivariate data and long-term time series need to be comprehensively considered when creating a model. Therefore, the first memory module of the present invention adopts the TCN model. Among them, the TCN model ensures that future information is not leaked through causal convolution. Furthermore, the TCN model can efficiently obtain spatiotemporal features of arbitrary length through deeper layers and dilated convolutions.
因此,本发明能够捕捉长期的时间序列信息,基于长期的时间序列信息,提取热环境的长期时空特征。Therefore, the present invention can capture long-term time series information, and extract long-term spatiotemporal features of the thermal environment based on the long-term time series information.
具体的,如图2所示,包含每个TCN模型包括2个因果卷积TCN子模块201,每个TCN子模块包括:扩展卷积层2011、权重归一化层2012、激活函数(Rectified Linear Units,简称ReLU)2013和Dropout层2014。因果卷积是指对于时间步为t的神经元,其只能利用前一层中第t个时间步之前信息进行卷积,这样可以有效的保证时序信息泄露。对于尺寸为1×k的卷积核f,在添加扩张卷积因子d后,特征图Z的感受野与一般的卷积模块相比呈现倍数增长,见公式(2)。进一步,通过权重归一化2012、ReLU激活函数2013和Dropout层2014,使模型具有很好的泛化性能。最后,通过1×1卷积202为模型部署残差连接。Specifically, as shown in FIG. 2, each TCN model includes two causal
其中,k为常量,t为常量,i为常量,d为扩张卷积因子,f为卷积核,Z为每一层卷积计算的结果。Among them, k is a constant, t is a constant, i is a constant, d is the dilated convolution factor, f is the convolution kernel, and Z is the result of each layer of convolution calculation.
本发明基于上述TCN模型,提取的热环境的长期时空特征,t时刻的长期时空特征用mi表示,TCN模型输出的长期时空特征为M={m1,m2,…,mT}∈RT×p。Based on the above-mentioned TCN model, the present invention extracts the long-term space-time features of the thermal environment, the long-term space-time features at time t are represented by m i , and the long-term space-time features output by the TCN model are M={m 1 ,m 2 ,...,m T }∈ RT ×p .
一个具体实施例中,第二记忆模块102包括:注意力单元和至少两个第二记忆单元;注意力单元,用于连接第一记忆模块101和第二记忆模块102,用于调整长期时空特征,并将调整后的长期时空特征,传输至第二记忆单元。In a specific embodiment, the
一个具体实施例中,第二记忆模块102为循环神经网络(Recurrent NeuralNetwork,简称RNN),第二记忆单元包括:长短期记忆网络LSTM。In a specific embodiment, the
本发明采用RNN网络能够有效的捕获热环境中的短期波动性。The invention adopts RNN network to effectively capture short-term volatility in thermal environment.
一个具体实施例中,注意力单元,具体用于当得到长期时空特征之后,基于长期时空特征和短期时空特征,计算每个第一记忆单元对应的注意力权重,基于注意力权重,调整长期时空特征,并将调整后的长期时空特征,传输至第二记忆单元。In a specific embodiment, the attention unit is specifically used to calculate the attention weight corresponding to each first memory unit based on the long-term space-time feature and the short-term space-time feature after obtaining the long-term space-time feature, and adjust the long-term space-time based on the attention weight. features, and transmits the adjusted long-term spatiotemporal features to the second memory unit.
具体的,本发明将长期时空特征和短期时空进行了有效的融合,使得RNN网络能够自适应的选择有价值的第一记忆单元进行推理。例如,在t时刻,将LSTM网络隐藏层单元的输出结果作为注意力单元的查询目标(Query),TCN模型的输出结果mi∈Rp作为注意力单元的查询键值(Key),进而,通过和mi计算注意力权重,见公式(3)和公式(4):Specifically, the present invention effectively fuses long-term spatiotemporal features and short-term spatiotemporal features, so that the RNN network can adaptively select a valuable first memory unit for reasoning. For example, at time t, the output result of the hidden layer unit of the LSTM network As the query target (Query) of the attention unit, the output result of the TCN model m i ∈ R p is used as the query key value (Key) of the attention unit, and then, through and m i to calculate the attention weights, see Equation (3) and Equation (4):
其中,LSTM网络的隐藏单元输出dt-1和st-1,通过将dt-1和st-1进行拼接,得到Wattn∈Rm×2q、Uattn∈Rm×p和vattn∈Rm是注意力单元的训练参数,作为注意力单元的查询目标,mi作为注意力单元的查询键值。公式(4)用于将计算出的对于每个查询键值的中间能量值转换为注意力权重 Among them, the hidden units of the LSTM network output d t-1 and s t-1 . By splicing d t-1 and s t-1 , we get W attn ∈ R m×2q , U attn ∈ R m×p and v attn ∈ R m are the training parameters of the attention unit, As the query target of the attention unit, mi is the query key value of the attention unit. Formula (4) is used to calculate the intermediate energy value for each query key value Convert to attention weights
其中,注意力权重可以反映出第i个第一记忆单元对模型预测目标的重要程度。模型在自适应的选择第一记忆单元之后,第t个时间步的LSTM网络上下文信息ct的计算,见公式(5):Among them, the attention weight can reflect the importance of the i-th first memory unit to the model's prediction target. After the model adaptively selects the first memory unit, the calculation of the LSTM network context information c t at the t-th time step is shown in formula (5):
其中,ct为LSTM网络的一个输入参数,T为常量。Among them, ct is an input parameter of the LSTM network, and T is a constant.
具体的,ct即为调整后的长期时空特征,将ct传输至LSTM网络。Specifically, ct is the adjusted long-term spatiotemporal feature, and ct is transmitted to the LSTM network.
一个具体实施例中,第二记忆模块102,具体用于基于调整后的长期时空特征和历史信息,确定短期时空特征。In a specific embodiment, the
具体的,将经过注意力单元处理后的长期记忆上下文信息ct-1,与目标变量短时间窗口的历史信息vt-1信息拼接,即可得到LSTM网络的输入信息,见公式(6)和公式(7):Specifically, the input information of the LSTM network can be obtained by splicing the long-term memory context information c t-1 processed by the attention unit with the historical information v t-1 information of the target variable short time window, see formula (6) and formula (7):
其中,和是训练参数,表示vt-1和ct-1的拼接结果,fLSTM表示LSTM网络的前向传播过程,并且用于表示LSTM网络的输出结果,即短期时空特征。in, and are the training parameters, represents the concatenation result of v t-1 and c t-1 , f LSTM represents the forward propagation process of the LSTM network, and Used to represent the output of the LSTM network, that is, short-term spatiotemporal features.
具体的,将输入至LSTM网络,输出 Specifically, will Input to LSTM network, output
一个具体实施例中,输出模块104,具体用于对长期时空特征、短期时空特征和初始预测结果进行求和,得到最终预测结果。In a specific embodiment, the
具体的,初始预测结果的获取方式具体见公式(8):Specifically, the acquisition method of the initial prediction result is shown in formula (8):
其中,和bar是训练参数,表示根据历史信息{vt-T+1,vt-T+2,…,vt}的单步初始预测结果。基于单步初始预测结果,得到初始预测结果 in, and bar are training parameters, Represents the single-step initial prediction result based on historical information {v t-T+1 ,v t-T+2 ,…,v t }. Based on the single-step initial prediction results, the initial prediction results are obtained
本发明的自回归模块,用于解决预测模型的泛化问题,在对预测模型对热环境预测具有较高精度的同事,提高了预测模型的泛化鲁棒性。The autoregressive module of the present invention is used to solve the generalization problem of the prediction model, and improves the generalization robustness of the prediction model when the prediction model has high accuracy for thermal environment prediction.
具体的,对于TCN模型和RNN模型输出的隐藏结果,通过一组仿射变换将TCN模型提取的长期时空特征和RNN模型输出的短期时空特征,投影到热环境预测任务所需的输出纬度,见公式(9)和公式(10):Specifically, for the hidden results output by the TCN model and the RNN model, the long-term spatiotemporal features extracted by the TCN model and the short-term spatiotemporal features output by the RNN model are projected to the output latitude required by the thermal environment prediction task through a set of affine transformations, see Equation (9) and Equation (10):
其中,Wtcn∈RH×T、Utcn∈Rp、btcn∈RH、Wrnn∈RH×2q和brnn∈RH是训练参数。M={m1,m2,…,mT}∈RT×p表示TCN模型输出的长期时空特征,表示LSTM单元在t时刻输出的短期时空特征。where W tcn ∈ R H×T , U tcn ∈ R p , b tcn ∈ R H , W rnn ∈ R H×2q and b rnn ∈ R H are training parameters. M={m 1 ,m 2 ,…,m T }∈R T×p represents the long-term spatiotemporal features output by the TCN model, Represents the short-term spatiotemporal features output by the LSTM unit at time t.
最终,将TCN模型、RNN模型和自回归模块103的局部输出进行加和,得到了热环境多步预测结果,见公式(11)。另外,由于模型是平滑且可微分的,所以可以通过反向传播算法来训练预测模型中的参数,见公式(12):Finally, the local outputs of the TCN model, the RNN model and the
其中,Θ表示模型中所有的训练参数,N是小批量梯度下降算法中的批量大小。||·||2表示模型预测的最终预测结果和真实热环境数据Y(i)之间的L2范数。where Θ represents all the training parameters in the model and N is the batch size in the mini-batch gradient descent algorithm. ||·|| 2 represents the final prediction result predicted by the model and the L2 norm between the real thermal environment data Y (i) .
另外,在预测模型训练完成之后,需要验证模型预测精确度,具体如下:In addition, after the training of the prediction model is completed, the prediction accuracy of the model needs to be verified, as follows:
在本发明中,从全局性能指标和局部性能指标两个方面,提出了不同的评价策略。其中,多个未来时间步骤的预测效果被认为是全局性能,侧重于模型的整体预测准确性,并用均方根误差(RMSE),平均绝对误差(MAE)和平均绝对百分误差(MAPE)评估,见公式(13)、公式(14)和公式(15):In the present invention, different evaluation strategies are proposed from two aspects of global performance index and local performance index. Among them, the prediction effect of multiple future time steps is considered as the global performance, focusing on the overall prediction accuracy of the model and evaluated with root mean square error (RMSE), mean absolute error (MAE) and mean absolute percent error (MAPE) , see Equation (13), Equation (14) and Equation (15):
其次,每个预测步的拟合程度(即,在多步预测结果中的单步评估)被认为是局部性能,有效地反映了预测结果与现实生产中的匹配程度。使用了相对平方根误差(RRSE)和经验相关系数(CORR)来衡量模型的局部性能,见公式(16)和公式(17):Second, the fit of each prediction step (i.e., single-step evaluation in multi-step prediction results) is considered as a local performance, effectively reflecting how well the prediction results match in real production. The relative square root error (RRSE) and empirical correlation coefficient (CORR) were used to measure the local performance of the model, see equations (16) and (17):
其中,是模型预测值,y是真实测量值,则以上指标的定义如下:in, is the model predicted value and y is the actual measured value, the above indicators are defined as follows:
全局性能指标:Global performance metrics:
局部性能指标:Local performance indicators:
其中,i为常量,表示任意个数据样本,h表示预测模型中时间序列多步预测的步长,N为常量,表示数据样本的总量,Ω表示数据样本和多步预测结果的集合。Among them, i is a constant representing any number of data samples, h represents the step size of multi-step forecasting of time series in the forecasting model, N is a constant representing the total number of data samples, and Ω represents the set of data samples and multi-step forecasting results.
其中,对于RMSE、MAE、MAPE和RRSE指标,越大越好;对于CORR指标,越小越好。Among them, for the RMSE, MAE, MAPE and RRSE indicators, the larger the better; for the CORR indicator, the smaller the better.
下面,通过图3对本发明的热环境预测模型进行详细的描述:Below, the thermal environment prediction model of the present invention is described in detail through FIG. 3:
首先,将外生变量u和目标变量v通过长历史信息时间窗口T连接并序列化,作为多层TCN模型的输入,得到的长期时空特征mi。First, the exogenous variable u and the target variable v are connected and serialized through the long historical information time window T as the input of the multi-layer TCN model, and the long-term spatiotemporal features mi are obtained.
然后,将[m1,m2,…,mT]和输入到注意力单元,得到注意力单元输出ct,其中,为LSTM网络的隐藏层输出,即,短期时空特征。Then, [m 1 ,m 2 ,...,m T ] and Input to the attention unit, and get the attention unit output c t , where, output for the hidden layer of the LSTM network, i.e., the short-term spatiotemporal features.
进而,将短时间窗口的历史信息vt-1和ct-1输入LSTM网络。Further, the historical information v t-1 and c t-1 of the short time window are input into the LSTM network.
再者,将长时间窗口的历史信息[v1,v2,…,vT]输入至自回归模块103,得到自回归模块103输出的初始预测结果。Furthermore, the historical information [v 1 , v 2 , .
最后,将长期时空特征、短期时空特征和初始预测结果分别输入至输出模块104,通过输出模块104得到最终预测结果。Finally, the long-term spatiotemporal features, the short-term spatiotemporal features and the initial prediction result are respectively input to the
另外,经过在鱼菜共生基地实际验证,本发明的热环境预测模型在循环水温的多步预测中实现了优异的结果。本发明在6小时、12小时、24小时时间跨度的预测任务中,RMSE指标分别取得了15.40%,13.93%,22.15%精度提升。特别是,在热环境的长期预测中的优势更为明显。本发明的多尺度记忆结构,赋予预测模型从粗粒度到细粒度的时序洞察力,可以完全学习到热环境时间序列数据中的规律。此外,本发明使用的不同组件可以有效挖掘热环境数据中的时空的相关特性,使预测模型可以获取到充分的时空模式,有效的提高了预测任务的准确性。In addition, after actual verification in an aquaponics base, the thermal environment prediction model of the present invention achieves excellent results in the multi-step prediction of circulating water temperature. The present invention achieves 15.40%, 13.93%, and 22.15% accuracy improvements in the RMSE indicators in the prediction tasks of 6 hours, 12 hours, and 24 hours, respectively. In particular, the advantages are more pronounced in the long-term prediction of thermal environments. The multi-scale memory structure of the present invention gives the prediction model time-series insight from coarse-grained to fine-grained, and can completely learn the laws in the thermal environment time series data. In addition, the different components used in the present invention can effectively mine the spatiotemporal correlation characteristics in the thermal environment data, so that the prediction model can obtain sufficient spatiotemporal patterns and effectively improve the accuracy of the prediction task.
本发明提供的基于农业设施的热环境预测模型及热环境预测方法,通过热环境预测模型,得到热环境的预测结果,其中,热环境预测模型包括:第一记忆模块、第二记忆模块、自回归模块和输出模块。本发明通过第一记忆模块,对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,其中,时间序列信息包括:热环境的环境参数和目标参数,可见,本发明的热环境预测模型,有效的基于热环境的相关参数,得到了热环境的长期时空特征;第二记忆模块,基于热环境的长期时空特征,提取热环境的短期时空特征,可见,本发明得到了热环境的短期时空特征;自回归模块,用于基于目标参数的历史信息,确定初始预测结果;输出模块,用于基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果,可见,本发明充分考虑了热环境的长期时空特征和短期时空特征,以及长期时空特征与短期时空特征之间的空间关系,使本发明能够更好的适应农业设施的热环境预测,最终实现精准的农业设施的热环境预测。In the thermal environment prediction model and thermal environment prediction method based on agricultural facilities provided by the present invention, the thermal environment prediction result is obtained through the thermal environment prediction model, wherein the thermal environment prediction model includes: a first memory module, a second memory module, an automatic regression module and output module. The present invention uses the first memory module to perform feature extraction on the time series information corresponding to the thermal environment to obtain long-term spatiotemporal characteristics of the thermal environment, wherein the time series information includes: environmental parameters and target parameters of the thermal environment. It can be seen that the thermal environment of the present invention The environmental prediction model effectively obtains the long-term spatial-temporal characteristics of the thermal environment based on the relevant parameters of the thermal environment; the second memory module, based on the long-term spatial-temporal characteristics of the thermal environment, extracts the short-term spatial-temporal characteristics of the thermal environment. The short-term spatiotemporal characteristics of the environment; the autoregressive module is used to determine the initial prediction results based on the historical information of the target parameters; the output module is used to output the final prediction results of the thermal environment based on the long-term spatiotemporal characteristics, short-term spatiotemporal characteristics and the initial prediction results, It can be seen that the present invention fully considers the long-term space-time characteristics and short-term space-time characteristics of the thermal environment, as well as the spatial relationship between the long-term space-time characteristics and the short-term space-time characteristics, so that the present invention can better adapt to the thermal environment prediction of agricultural facilities, and finally achieve accurate Thermal environment prediction for agricultural facilities.
本发明实施例,提供了一种基于农业设施的热环境预测模型的热环境预测方法,下文描述的热环境预测方法与上文描述的热环境预测模型相互对应参照,该方法的具体实现如图4所示:The embodiment of the present invention provides a thermal environment prediction method based on a thermal environment prediction model of agricultural facilities. The thermal environment prediction method described below and the thermal environment prediction model described above refer to each other correspondingly. The specific implementation of the method is shown in the figure 4 shows:
步骤401,对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征。Step 401 , perform feature extraction on the time series information corresponding to the thermal environment to obtain long-term spatiotemporal features of the thermal environment.
其中,时间序列信息包括:热环境的环境参数和目标参数。The time series information includes: environmental parameters and target parameters of the thermal environment.
步骤402,基于长期时空特征,提取热环境的短期时空特征。
一个具体实施例中,调整长期时空特征,基于调整后的长期时空特征和历史信息,确定短期时空特征。In a specific embodiment, the long-term spatiotemporal features are adjusted, and the short-term spatiotemporal features are determined based on the adjusted long-term spatiotemporal features and historical information.
步骤403,基于目标参数的历史信息,确定初始预测结果。Step 403: Determine an initial prediction result based on the historical information of the target parameter.
步骤404,基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果。
一个具体实施例中,对长期时空特征、短期时空特征和初始预测结果进行求和,得到最终预测结果。In a specific embodiment, the long-term spatiotemporal feature, the short-term spatiotemporal feature and the initial prediction result are summed to obtain the final prediction result.
图5示例了一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器(processor)501、通信接口(Communications Interface)502、存储器(memory)503和通信总线504,其中,处理器501,通信接口502,存储器503通过通信总线504完成相互间的通信。处理器501可以调用存储器503中的逻辑指令,以执行热环境预测方法,该方法包括:对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,其中,时间序列信息包括:热环境的环境参数和目标参数;基于长期时空特征,提取热环境的短期时空特征;基于目标参数的历史信息,确定初始预测结果;基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果。FIG. 5 illustrates a schematic diagram of the physical structure of an electronic device. As shown in FIG. 5 , the electronic device may include: a processor (processor) 501, a communication interface (Communications Interface) 502, a memory (memory) 503, and a
此外,上述的存储器503中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above-mentioned logic instructions in the
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的热环境预测方法,该方法包括:对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,其中,时间序列信息包括:热环境的环境参数和目标参数;基于长期时空特征,提取热环境的短期时空特征;基于目标参数的历史信息,确定初始预测结果;基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果。In another aspect, the present invention also provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer When executing, the computer can execute the thermal environment prediction method provided by the above methods. The method includes: performing feature extraction on time series information corresponding to the thermal environment to obtain long-term spatiotemporal characteristics of the thermal environment, wherein the time series information includes: the thermal environment based on the long-term spatiotemporal characteristics, extract the short-term spatiotemporal characteristics of the thermal environment; determine the initial prediction results based on the historical information of the target parameters; output the final thermal environment based on the long-term spatiotemporal characteristics, short-term spatiotemporal characteristics and initial prediction results forecast result.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的热环境预测方法,该方法包括:对热环境对应的时间序列信息进行特征提取,得到热环境的长期时空特征,其中,时间序列信息包括:热环境的环境参数和目标参数;基于长期时空特征,提取热环境的短期时空特征;基于目标参数的历史信息,确定初始预测结果;基于长期时空特征、短期时空特征和初始预测结果,输出热环境的最终预测结果。In another aspect, the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored, the computer program is implemented by a processor to execute the thermal environment prediction methods provided above, and the method includes: Feature extraction is performed on the time series information corresponding to the thermal environment to obtain the long-term spatiotemporal characteristics of the thermal environment, wherein the time series information includes: environmental parameters and target parameters of the thermal environment; The historical information of the target parameters determines the initial prediction result; based on the long-term spatiotemporal characteristics, short-term spatiotemporal characteristics and the initial prediction result, the final prediction result of the thermal environment is output.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware. Based on this understanding, the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be The technical solutions described in the foregoing embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110950819.4A CN113570156B (en) | 2021-08-18 | 2021-08-18 | Thermal environment prediction model and thermal environment prediction method based on agricultural facilities |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110950819.4A CN113570156B (en) | 2021-08-18 | 2021-08-18 | Thermal environment prediction model and thermal environment prediction method based on agricultural facilities |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113570156A true CN113570156A (en) | 2021-10-29 |
CN113570156B CN113570156B (en) | 2024-12-17 |
Family
ID=78172123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110950819.4A Active CN113570156B (en) | 2021-08-18 | 2021-08-18 | Thermal environment prediction model and thermal environment prediction method based on agricultural facilities |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113570156B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115062813A (en) * | 2022-04-28 | 2022-09-16 | 清远市智慧农业农村研究院 | Method and device for predicting hot and humid environment in livestock and poultry house |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109492830A (en) * | 2018-12-17 | 2019-03-19 | 杭州电子科技大学 | A kind of mobile pollution source concentration of emission prediction technique based on space-time deep learning |
CN111524535A (en) * | 2020-04-30 | 2020-08-11 | 杭州电子科技大学 | Feature fusion based on attention mechanism for speech emotion recognition |
CN111785301A (en) * | 2020-06-28 | 2020-10-16 | 重庆邮电大学 | A 3DACRNN speech emotion recognition method and storage medium based on residual network |
CN112365040A (en) * | 2020-11-03 | 2021-02-12 | 哈尔滨工业大学 | Short-term wind power prediction method based on multi-channel convolution neural network and time convolution network |
CN112988538A (en) * | 2021-03-12 | 2021-06-18 | 山东英信计算机技术有限公司 | Artificial intelligence development platform monitoring alarm data prediction method, device and medium |
-
2021
- 2021-08-18 CN CN202110950819.4A patent/CN113570156B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109492830A (en) * | 2018-12-17 | 2019-03-19 | 杭州电子科技大学 | A kind of mobile pollution source concentration of emission prediction technique based on space-time deep learning |
CN111524535A (en) * | 2020-04-30 | 2020-08-11 | 杭州电子科技大学 | Feature fusion based on attention mechanism for speech emotion recognition |
CN111785301A (en) * | 2020-06-28 | 2020-10-16 | 重庆邮电大学 | A 3DACRNN speech emotion recognition method and storage medium based on residual network |
CN112365040A (en) * | 2020-11-03 | 2021-02-12 | 哈尔滨工业大学 | Short-term wind power prediction method based on multi-channel convolution neural network and time convolution network |
CN112988538A (en) * | 2021-03-12 | 2021-06-18 | 山东英信计算机技术有限公司 | Artificial intelligence development platform monitoring alarm data prediction method, device and medium |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115062813A (en) * | 2022-04-28 | 2022-09-16 | 清远市智慧农业农村研究院 | Method and device for predicting hot and humid environment in livestock and poultry house |
Also Published As
Publication number | Publication date |
---|---|
CN113570156B (en) | 2024-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110766212B (en) | Ultra-short-term photovoltaic power prediction method for historical data missing electric field | |
CN113094357B (en) | A traffic-missing data completion method based on spatiotemporal attention mechanism | |
Jiang et al. | Prediction of house price based on the back propagation neural network in the keras deep learning framework | |
CN113283588B (en) | Near-shore single-point wave height forecasting method based on deep learning | |
CN113065013B (en) | Image annotation model training and image annotation method, system, equipment and medium | |
Jiang et al. | Day‐ahead renewable scenario forecasts based on generative adversarial networks | |
Adam et al. | Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process | |
CN114462718A (en) | CNN-GRU wind power prediction method based on time sliding window | |
Chen et al. | House price prediction based on machine learning and deep learning methods | |
CN115545334B (en) | Land utilization type prediction method and device, electronic equipment and storage medium | |
CN116975645A (en) | Industrial process soft measurement modeling method based on VAE-MRCNN | |
CN115984653A (en) | A method for constructing a dynamic intelligent container commodity recognition model | |
CN117494573A (en) | A wind speed prediction method, system and electronic equipment | |
CN117877189A (en) | Overhead line channel mountain fire hidden danger identification method based on semi-supervised learning | |
CN116979506A (en) | HGL-GTCN-based short-term power load prediction method | |
CN113570156A (en) | Thermal environment prediction model and thermal environment prediction method based on agricultural facilities | |
CN119250848A (en) | A real estate valuation method based on Bayesian optimization and machine learning | |
CN118798742A (en) | A quality assessment method, system, device and medium for equipment spare parts | |
CN119272897A (en) | Parameter updating method, device, equipment and storage medium based on low-rank decomposition | |
CN117371594B (en) | A wind farm wind condition prediction method based on neural network | |
CN118199061A (en) | A short-term power prediction method and system for renewable energy | |
Chen et al. | A spatial transfer-based hybrid model for wind speed forecasting | |
CN118070951A (en) | Large-area self-adaptive crop yield prediction method and system based on attention mechanism | |
CN116681467A (en) | Sales predicting method based on improved WOA algorithm and related equipment thereof | |
CN116975123A (en) | Multidimensional time sequence anomaly detection method combining graph structure learning and graph annotation force network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |