CN113569186A - 一种冷却水阀开度计算方法 - Google Patents

一种冷却水阀开度计算方法 Download PDF

Info

Publication number
CN113569186A
CN113569186A CN202110858333.8A CN202110858333A CN113569186A CN 113569186 A CN113569186 A CN 113569186A CN 202110858333 A CN202110858333 A CN 202110858333A CN 113569186 A CN113569186 A CN 113569186A
Authority
CN
China
Prior art keywords
cooling water
water valve
opening
hydrogen
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110858333.8A
Other languages
English (en)
Other versions
CN113569186B (zh
Inventor
罗显莅
倪海雁
王勇
刘雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Electric Machinery Co Ltd DEC
Original Assignee
Dongfang Electric Machinery Co Ltd DEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Machinery Co Ltd DEC filed Critical Dongfang Electric Machinery Co Ltd DEC
Priority to CN202110858333.8A priority Critical patent/CN113569186B/zh
Publication of CN113569186A publication Critical patent/CN113569186A/zh
Application granted granted Critical
Publication of CN113569186B publication Critical patent/CN113569186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Computing Systems (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本发明公开了一种冷却水阀开度计算方法,属于发电机技术领域,其特征在于,包括以下步骤:a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS;b、再根据冷却水质量流量‑开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1。本发明通过结合当前的工况数据,能够实时计算冷却水阀开度,进行前馈控制,最大程度减小扰动,提高冷氢温度的控制精度。

Description

一种冷却水阀开度计算方法
技术领域
本发明涉及到发电机技术领域,尤其涉及一种冷却水阀开度计算方法。
背景技术
近年来,火电市场从传统的基负荷稳定运行逐渐转变为频繁调峰、深度进相的灵活性运行,机组的安全稳定运行面临新的挑战。发电机灵活性运行时,机组负荷不断调节,发电机定子线棒、定子铁芯及转子温度必然随负荷大幅波动,这就要求发电机冷却系统适应这种变化,使发电机内部部件保持在合理的温度范围,确保机组运行安全,尽量延长机组寿命。
大型汽轮发电机通常采用水-氢-氢冷却方式,即定子线圈采用水内冷,定子铁芯和转子绕组由氢气密闭循环系统进行冷却,冷却气体由安装在转子两端的风扇驱动。冷却氢气将吸收的热量通过氢气冷却器传递给冷却器中的冷却水,带出发电机外。通过冷却水的循环,对经过冷却器的热氢进行冷却,确保发电机内部冷氢温度在合适的范围内。冷氢温度太高不利于发电机的散热,并且太高若高于定子冷却水的温度,可能导致氢气结露。
公开号为CN 103811085A,公开日为2014年05月21日的中国专利文献公开了一种核电站发电机氢气冷却系统的冷氢温度监控和调整方法,所述核电站发电机氢气冷却系统包括进水干路、出水干路、至少两个支路、温控阀门、至少两个氢气冷却器以及至少两个隔离阀;所述至少两个支路并联于所述进水干路及所述出水干路之间,所述至少两个氢气冷却器以及所述至少两个隔离阀均分别设置于所述至少两个支路中,所述至少两个隔离阀分别用于调节所述至少两个支路中的冷却水的流量;所述温控阀门设置于该出水干路,其具有自动控制及手动控制两种控制模式,在自动控制模式中,所述温控阀门根据所述至少两个氢气冷却器中的一个氢气冷却器出口处的冷氢的温度自动调节冷却水的总流量;其特征在于,所述冷氢温度监控和调整方法包括如下步骤:(A)分别检测上述至少两个氢气冷却器出口处的冷氢温度;以及(B)手动开大温控阀门,对所述至少两个氢气冷却器的流量分配状态进行扰动,尽量使其平均,并增加总流量。
该专利文献公开的核电站发电机氢气冷却系统的冷氢温度监控和调整方法,在不改变电站机组的运行状态的情况下,能够实现对部分氢气冷却器流量的节流和再分配,降低氢气的温度偏差。但是,不能实时精确的计算冷却水阀开度,不能最大程度的减小扰动,影响冷氢温度的控制精度。
发明内容
本发明为了克服上述现有技术的缺陷,提供一种冷却水阀开度计算方法,本发明通过结合当前的工况数据,能够实时计算冷却水阀开度,进行前馈控制,最大程度减小扰动,提高冷氢温度的控制精度。
本发明通过下述技术方案实现:
一种冷却水阀开度计算方法,其特征在于,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
所述步骤a中,利用热平衡方程计算出冷却水质量流量WS具体是指进入氢气冷却器的热氢通过冷却器后,热量被冷却水交换,热氢变成冷氢,根据热平衡方程有:
Cq*(Tqr-Tql)*Wq=η*Cs*(Tsr-Tsl)*Ws 式1
根据式1,得到冷却水质量流量WS
Figure BDA0003184982600000021
其中,WS为冷却水质量流量;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃。
所述步骤b中,拟合为线性分段函数具体是指冷却水质量流量WS与冷却水阀开度P1之间的函数关系为式3;
P1=a*WS+b 式3
其中,P1为冷却水阀开度;a为系数;WS为冷却水质量流量;b为系数。
所述步骤b中,冷却水阀开度P1根据式2和式3计算获得;
Figure BDA0003184982600000022
其中,P1为冷却水阀开度;a为系数;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃;b为系数。
所述系数a和系数b是根据冷却水阀的阀门特性行程-流量曲线,经过换算得到开度与流量的曲线确定得出。
还包括冷却水阀开度打开步骤,具体是指将计算求得的冷却水阀开度P1作为冷却水阀开度指令,冷却水阀开度指令通过伺服控制卡输出到伺服阀,经伺服阀转换后输出至执行机构,执行机构驱动冷却水阀打开到目标开度。
本发明的有益效果主要表现在以下方面:
1、本发明,“a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS;b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1”,作为一个完整的技术方案,较现有技术而言,通过结合当前的工况数据,能够实时计算冷却水阀开度,进行前馈控制,最大程度减小扰动,提高冷氢温度的控制精度。
2、本发明,较现有技术在不同的季节,冷却水的温度差异较大,导致冷却器换热结果差异较大,实际运行过程中,需要运行人员根据热氢温度及冷却水温度不断手动调节冷却水阀开度而言,通过实时计算冷却水阀开度,从而能够满足发电机灵活性运行,工况多变的需求,减轻运行人员的工作强度。
3、本发明,基于发电机不同负荷下其发热量不同,通过计算冷却水质量流量,实现了氢气冷却器冷氢温度的精确控制,这样既能够将发电机内部部件温度控制在合理的范围内,又能够维持轴系标高的稳定,从而避免发电机局部过热以及由于冷氢温度波动较大带来的轴系振动。
附图说明
下面将结合说明书附图和具体实施方式对本发明作进一步的具体说明:
图1为本发明冷却水阀打开控制原理图。
具体实施方式
实施例1
一种冷却水阀开度计算方法,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
“a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS;b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1”,作为一个完整的技术方案,较现有技术而言,通过结合当前的工况数据,能够实时计算冷却水阀开度,进行前馈控制,最大程度减小扰动,提高冷氢温度的控制精度。
实施例2
一种冷却水阀开度计算方法,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
所述步骤a中,利用热平衡方程计算出冷却水质量流量WS具体是指进入氢气冷却器的热氢通过冷却器后,热量被冷却水交换,热氢变成冷氢,根据热平衡方程有:
Cq*(Tqr-Tql)*Wq=η*Cs*(Tsr-Tsl)*Ws 式1
根据式1,得到冷却水质量流量WS
Figure BDA0003184982600000041
其中,WS为冷却水质量流量;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃。
实施例3
一种冷却水阀开度计算方法,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
所述步骤a中,利用热平衡方程计算出冷却水质量流量WS具体是指进入氢气冷却器的热氢通过冷却器后,热量被冷却水交换,热氢变成冷氢,根据热平衡方程有:
Cq*(Tqr-Tql)*Wq=η*Cs*(Tsr-Tsl)*Ws 式1
根据式1,得到冷却水质量流量WS
Figure BDA0003184982600000042
其中,WS为冷却水质量流量;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃。
所述步骤b中,拟合为线性分段函数具体是指冷却水质量流量WS与冷却水阀开度P1之间的函数关系为式3;
P1=a*WS+b 式3
其中,P1为冷却水阀开度;a为系数;WS为冷却水质量流量;b为系数。
所述步骤b中,冷却水阀开度P1根据式2和式3计算获得;
Figure BDA0003184982600000051
其中,P1为冷却水阀开度;a为系数;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃;b为系数。
实施例4
一种冷却水阀开度计算方法,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
所述步骤a中,利用热平衡方程计算出冷却水质量流量WS具体是指进入氢气冷却器的热氢通过冷却器后,热量被冷却水交换,热氢变成冷氢,根据热平衡方程有:
Cq*(Tqr-Tql)*Wq=η*Cs*(Tsr-Tsl)*Ws 式1
根据式1,得到冷却水质量流量WS
Figure BDA0003184982600000052
其中,WS为冷却水质量流量;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃。
所述步骤b中,拟合为线性分段函数具体是指冷却水质量流量WS与冷却水阀开度P1之间的函数关系为式3;
P1=a*WS+b 式3
其中,P1为冷却水阀开度;a为系数;WS为冷却水质量流量;b为系数。
所述步骤b中,冷却水阀开度P1根据式2和式3计算获得;
Figure BDA0003184982600000061
其中,P1为冷却水阀开度;a为系数;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃;b为系数。
所述系数a和系数b是根据冷却水阀的阀门特性行程-流量曲线,经过换算得到开度与流量的曲线确定得出。
较现有技术在不同的季节,冷却水的温度差异较大,导致冷却器换热结果差异较大,实际运行过程中,需要运行人员根据热氢温度及冷却水温度不断手动调节冷却水阀开度而言,通过实时计算冷却水阀开度,从而能够满足发电机灵活性运行,工况多变的需求,减轻运行人员的工作强度。
实施例5
参见图1,一种冷却水阀开度计算方法,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
所述步骤a中,利用热平衡方程计算出冷却水质量流量WS具体是指进入氢气冷却器的热氢通过冷却器后,热量被冷却水交换,热氢变成冷氢,根据热平衡方程有:
Cq*(Tqr-Tql)*Wq=η*Cs*(Tsr-Tsl)*Ws 式1
根据式1,得到冷却水质量流量WS
Figure BDA0003184982600000062
其中,WS为冷却水质量流量;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃。
所述步骤b中,拟合为线性分段函数具体是指冷却水质量流量WS与冷却水阀开度P1之间的函数关系为式3;
P1=a*WS+b 式3
其中,P1为冷却水阀开度;a为系数;WS为冷却水质量流量;b为系数。
所述步骤b中,冷却水阀开度P1根据式2和式3计算获得;
Figure BDA0003184982600000071
其中,P1为冷却水阀开度;a为系数;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃;b为系数。
所述系数a和系数b是根据冷却水阀的阀门特性行程-流量曲线,经过换算得到开度与流量的曲线确定得出。
还包括冷却水阀开度打开步骤,具体是指将计算求得的冷却水阀开度P1作为冷却水阀开度指令,冷却水阀开度指令通过伺服控制卡输出到伺服阀,经伺服阀转换后输出至执行机构,执行机构驱动冷却水阀打开到目标开度。
基于发电机不同负荷下其发热量不同,通过计算冷却水质量流量,实现了氢气冷却器冷氢温度的精确控制,这样既能够将发电机内部部件温度控制在合理的范围内,又能够维持轴系标高的稳定,从而避免发电机局部过热以及由于冷氢温度波动较大带来的轴系振动。

Claims (6)

1.一种冷却水阀开度计算方法,其特征在于,包括以下步骤:
a、将工况参数中测量得到的热氢温度和冷却水温度作为扰动量,利用热平衡方程计算出冷却水质量流量WS
b、再根据冷却水质量流量-开度曲线,拟合为线性分段函数,得到冷却水阀开度与工况参数的函数关系,计算求得冷却水阀开度P1
2.根据权利要求1所述的一种冷却水阀开度计算方法,其特征在于:所述步骤a中,利用热平衡方程计算出冷却水质量流量WS具体是指进入氢气冷却器的热氢通过冷却器后,热量被冷却水交换,热氢变成冷氢,根据热平衡方程有:
Cq*(Tqr-Tql)*Wq=η*Cs*(Tsr-Tsl)*Ws 式1
根据式1,得到冷却水质量流量WS
Figure FDA0003184982590000011
其中,WS为冷却水质量流量;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃。
3.根据权利要求1所述的一种冷却水阀开度计算方法,其特征在于:所述步骤b中,拟合为线性分段函数具体是指冷却水质量流量WS与冷却水阀开度P1之间的函数关系为式3;
P1=a*WS+b 式3
其中,P1为冷却水阀开度;a为系数;WS为冷却水质量流量;b为系数。
4.根据权利要求3所述的一种冷却水阀开度计算方法,其特征在于:所述步骤b中,冷却水阀开度P1根据式2和式3计算获得;
Figure FDA0003184982590000012
其中,P1为冷却水阀开度;a为系数;Cq为氢的比热,kcal/kg℃;Tqr为热氢温度,℃;Tql为冷氢温度,℃;Wq为氢的质量流量,kg/h;η为冷却器的换热效率;CS为水的比热,kcal/kg℃;TSr为冷却水出口温度,℃;TSl为冷却水入口温度,℃;b为系数。
5.根据权利要求4所述的一种冷却水阀开度计算方法,其特征在于:所述系数a和系数b是根据冷却水阀的阀门特性行程-流量曲线,经过换算得到开度与流量的曲线确定得出。
6.根据权利要求1所述的一种冷却水阀开度计算方法,其特征在于:还包括冷却水阀开度打开步骤,具体是指将计算求得的冷却水阀开度P1作为冷却水阀开度指令,冷却水阀开度指令通过伺服控制卡输出到伺服阀,经伺服阀转换后输出至执行机构,执行机构驱动冷却水阀打开到目标开度。
CN202110858333.8A 2021-07-28 2021-07-28 一种冷却水阀开度计算方法 Active CN113569186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110858333.8A CN113569186B (zh) 2021-07-28 2021-07-28 一种冷却水阀开度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110858333.8A CN113569186B (zh) 2021-07-28 2021-07-28 一种冷却水阀开度计算方法

Publications (2)

Publication Number Publication Date
CN113569186A true CN113569186A (zh) 2021-10-29
CN113569186B CN113569186B (zh) 2023-09-29

Family

ID=78168530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110858333.8A Active CN113569186B (zh) 2021-07-28 2021-07-28 一种冷却水阀开度计算方法

Country Status (1)

Country Link
CN (1) CN113569186B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909126A (zh) * 2023-07-07 2023-10-20 华北电力大学 一种基于飞轮散热模型的水冷流量pid控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130180272A1 (en) * 2011-03-28 2013-07-18 Mitsubishi Heavy Industries, Ltd. Expansion-valve control device, heat-source unit, and expansion-valve control method
CN103491749A (zh) * 2013-09-22 2014-01-01 东方电机控制设备有限公司 一种闭式冷却系统的冷却方法及构造
CN104820727A (zh) * 2015-01-30 2015-08-05 广东电网有限责任公司电力科学研究院 发电机氢气冷却系统的仿真方法与装置
CN106450388A (zh) * 2016-09-26 2017-02-22 中国计量大学 一种水冷型燃料电池温度优化与控制方法
CN108240239A (zh) * 2017-12-22 2018-07-03 东方电气集团东方汽轮机有限公司 一种汽轮机润滑油温度调节装置及调节方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130180272A1 (en) * 2011-03-28 2013-07-18 Mitsubishi Heavy Industries, Ltd. Expansion-valve control device, heat-source unit, and expansion-valve control method
CN103491749A (zh) * 2013-09-22 2014-01-01 东方电机控制设备有限公司 一种闭式冷却系统的冷却方法及构造
CN104820727A (zh) * 2015-01-30 2015-08-05 广东电网有限责任公司电力科学研究院 发电机氢气冷却系统的仿真方法与装置
CN106450388A (zh) * 2016-09-26 2017-02-22 中国计量大学 一种水冷型燃料电池温度优化与控制方法
CN108240239A (zh) * 2017-12-22 2018-07-03 东方电气集团东方汽轮机有限公司 一种汽轮机润滑油温度调节装置及调节方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENDA WISTA SINURAYA等: "Designing a Fuzzy Controller of Crude Oil Dilution in Palm Oil Mills" *
王哲 等: "液氦/超流氦制冷系统负压换热器仿真及优化设计" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909126A (zh) * 2023-07-07 2023-10-20 华北电力大学 一种基于飞轮散热模型的水冷流量pid控制方法
CN116909126B (zh) * 2023-07-07 2024-03-12 华北电力大学 一种基于飞轮散热模型的水冷流量pid控制方法

Also Published As

Publication number Publication date
CN113569186B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
KR100857982B1 (ko) 핵 발전 플랜트 및 그 동력 발생 회로를 조절하는 방법
CN103328825B (zh) 液体-空气冷却系统
CN204212847U (zh) 发动机增压中冷恒温装置
CN113569186B (zh) 一种冷却水阀开度计算方法
CN110162870A (zh) 一种基于季节的节流调节汽轮机最优滑压曲线确定方法
CN109654887A (zh) 一种循环水冷却系统及其自动控制方法
US8320750B2 (en) Method for improving cooling capacity of a power station direct air-cooling system and the cooling system thereof
US5097669A (en) Control of hydrogen cooler employed in power generators
CN106900166B (zh) 一种液气双通道共用自然冷源的散热系统及其控制方法
CN113847824B (zh) 一种适应给水泵小汽轮机独立凝汽器冷却水量调整方法
CN113589863B (zh) 一种适用于发电机氢气冷却系统的冷氢温度控制方法
CN115263565A (zh) 一种燃气轮机宽负荷节能控制方法
CN114017862B (zh) 一种空调冷却水热回收系统的控制方法
CN111005776A (zh) 基于低压缸光轴供热技术的供热方法及供热系统
CN209655821U (zh) 一种循环水冷却系统
CN212057859U (zh) 一种闭冷水温度自动控制系统
CN205784826U (zh) 双循环两段式高精度冰水控温系统
RU2273793C1 (ru) Способ регулируемого охлаждения масла и аппарат воздушного охлаждения для осуществления этого способа (варианты)
CN114843548B (zh) 一种一体化的气-气加热器及气-气冷却装置
CN110805948A (zh) 一种热电联产控制系统
CN216217629U (zh) 冷轧钢筋感应加热设备冷却水控制系统
CN117906719A (zh) 一种环道式气体流量测试装置的温度控制系统及方法
CN112882512A (zh) 基于dcs控制的汽缸冷却装置及方法
CN113532899A (zh) 小功率散热性能试验进口油、水温度稳定装置
CN117386511A (zh) 一种tca冷却水控制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant