CN1135657C - Fast-wave oscillation type antenna with multi-layer grounding surface - Google Patents

Fast-wave oscillation type antenna with multi-layer grounding surface Download PDF

Info

Publication number
CN1135657C
CN1135657C CNB981233872A CN98123387A CN1135657C CN 1135657 C CN1135657 C CN 1135657C CN B981233872 A CNB981233872 A CN B981233872A CN 98123387 A CN98123387 A CN 98123387A CN 1135657 C CN1135657 C CN 1135657C
Authority
CN
China
Prior art keywords
microstrip line
antenna
shape
fast
fast wave
Prior art date
Application number
CNB981233872A
Other languages
Chinese (zh)
Other versions
CN1257323A (en
Inventor
庄晴光
林赞西
Original Assignee
庄晴光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 庄晴光 filed Critical 庄晴光
Priority to CNB981233872A priority Critical patent/CN1135657C/en
Publication of CN1257323A publication Critical patent/CN1257323A/en
Application granted granted Critical
Publication of CN1135657C publication Critical patent/CN1135657C/en

Links

Abstract

本发明利用快波泄漏波模(fast-wave leaky mode)的共振现象来设计天线,所设计的天线具有以下优点:1、具有较小的体积;2、可利用表面粘着技术(SMT)安装在印刷电路板上;3、可使用相对介电常数值在2至5的一般介质。 The present invention utilizes fast wave leakage wave mode (fast-wave leaky mode) designing the antenna resonance phenomenon, the designed antenna has the following advantages: 1, having a smaller volume; 2, may utilize surface mount technology (SMT) mounted a printed circuit board; 3, the relative dielectric constant values ​​may be used in a normal medium 2-5.

Description

具有多层接地面的快波振荡型天线 The multilayer ground plane having a fast wave oscillation type antenna

技术领域 FIELD

本发明涉及一种具有多层接地面的快波振荡型天线,特别是涉及一种可利用表面粘着技术安装的具有多层接地面的微小型快波振荡型天线。 The present invention relates to a multilayer ground plane wave oscillation fast antenna, particularly to a surface mount technology available miniature mounting fast wave oscillation type antenna having a multilayer ground plane.

常见的隐藏式天线采用金属贴片状的微带线。 Common metal hidden patch-like antenna microstrip line. 图1是一种金属贴片微带天线(patch antenna),其中,介质基板11位于接地面12之上,在介质基板11的中间位置有一金属贴片13,且信号的输入可通过馈线14来进行。 FIG 1 is a metal patch microstrip antenna (patch antenna), wherein the dielectric substrate 11 located above the ground plane 12, a metallic patch 13 at an intermediate position of the dielectric substrate 11, and the input signal through the feeder line 14 may be get on. 这种方式常见许多主动天线的设计。 In this way many common active antenna design.

图2是另一种金属贴片微带天线,其结构大部分类似于图1,其与图1不同之处是将馈线15沿介质基板11的表面延伸,再利用陶瓷基板的通路孔(via hole)沿边缘下行。 FIG 2 is a microstrip patch antenna of another metal, the structure most similar to Figure 1, which differs from the FIG. 1 is a feed line 15 extending along the surface of the dielectric substrate 11, and then the ceramic substrate via hole (Via hole) downstream along the edge. 采用此种输入方式可制成表面粘着式的天线。 Such input mode can be made using surface mount type antenna.

图3是又另一种广为人知的金属贴片微带天线,其结构大部分类似于图1,但其与图1不同之处是采用探针或同轴线16来输入信号。 Figure 3 is yet another well-known metal patch antenna, which is most similar to the structure of FIG. 1, but differs from FIG. 1 is a probe or a coaxial line 16 to the input signal. 该方式很明显地不适合以表面粘着方式与其他微波电路衔接,因为同轴电线需要使用微波接头。 This embodiment clearly not appropriate in a surface mount manner other interface with the microwave circuit, as required wire coaxial microwave connector.

研究表明:微带天线的共振频率大约反比于 Studies have shown that: the resonant frequency of the microstrip antenna is approximately inversely proportional to (εr为相对介电常数)。 (Relative permittivity ∈ r). 由于此条件的限制,图1至图3所示的微带天线通常需要利用介电常数高于20的介质基板,以达到微小化的目的。 Since this condition limits, FIGS. 1 to 3 shown in FIG microstrip antenna typically requires the use of higher dielectric constant than the dielectric substrate 20 to achieve the purpose of miniaturization. 此外,研究亦表明:有限大小的接地面对微带天线有很大的影响。 In addition, the study also showed that: the limited size of the face of the ground microstrip antenna has a great impact. 因此,接地面必须大于金属贴片的面积,微带线才能正常工作;如果接地面积太小,则影响到天线的性能。 Thus, the ground plane must be larger than the area of ​​the metal patches, the microstrip line to work properly; if the ground contact area is too small, affect the performance of the antenna.

另外,利用介质材料共振现象,配合微带线或开槽线耦合能量至介质共振器,也可以设计应用于一般体积电路中的隐藏式天线。 Further, a resonance phenomenon by using a dielectric material, with a microstrip line or a slot line coupling energy to the dielectric resonator, may be applied to the general design of the circuit volume of the embedded antenna. 但其尺寸也大致和 But also its size and substantially 成反比,故此类天线亦通常需要利用高介电常数的介质材料。 Inversely, it is also generally require the use of such an antenna dielectric material having a high dielectric constant.

再观察用于手机的单极天线的简化模型,如图4(a)所示,手机外壳41上的单极天线42长度约为自由空间波长的四分之一。 Then observe the simplified model of the monopole antenna for the mobile phone, FIG. 4 (a), the monopole antenna in the mobile phone casing length 41 42 approximately one quarter of the free space wavelength. 图4(b)表示手机的另一种螺旋型天线的简化模型,此种螺旋型天线43的总长度也接近自由空间波长λ0,因此这两种天线显然不适合作为隐藏式微小型手机天线来使用。 FIG. 4 (b) shows a simplified model of the helical type antenna of another mobile phone, this helical antenna 43 is close to the overall length of the free space wavelength λ0, thus clearly not suitable for the two antenna hide small micro phone is used as an antenna .

此外,此两种天线均利用机壳作接地面,其接地面的面积通常相当大,在一般的设计中约为2λ02(λ0为自由空间波长),随着这类手机愈来愈小,相对地天线的接地面也愈来愈小,于是天线的性能就受到影响。 In addition, these two antenna utilize housing as a ground plane ground plane area is usually quite large, the general design is about 2λ02 (λ0 is the free space wavelength), such as mobile phones ever smaller, relatively ground antenna ground plane is also getting smaller, so the performance of the antenna is affected.

此天线包括一快波振荡装置和一多层接地装置,其中,该快波振荡装置包含两部分,第一部分为形状呈长方体的介质;第二部分为攀延在该长方体介质表面上的微带线,其攀延方式视所需要的辐射场型而调整,且密集在很小的介质表面范围内,该微带线的一端用于输入信号,另一端为断路。 This antenna includes a fast-wave oscillating means, and a multi-layer grounding, wherein, the fast wave oscillating means comprises two parts, a first part in the shape of a rectangular parallelepiped as a dielectric; the second part is cast onto a climbing surface of the rectangular parallelepiped dielectric microstrip line, depending on which way the extension of climbing required radiation pattern is adjusted, in a small and dense medium range surface, one end of the microstrip line for an input signal, and the other end is open circuit.

该多层接地装置位于该快波振荡装置的下方,其主要部分是位于介质下方的多数个平行层,及多数个通路孔(via hole),且该等平行层所形成的凹槽的所有内表面与外表面、该等通路孔的所有内表面及介质下方的其他表面皆为金属接地面。 All within the multilayer grounding means located below the fast wave oscillating means, which main portion is located below a plurality of parallel layers of dielectric, and a plurality of via holes (via hole), and these grooves are formed parallel layers surface and an outer surface, an inner surface and all other surfaces of the lower dielectric via holes are all those metal ground plane.

由于快波振荡装置中的微带线密集地分布在很小的介质表面范围内,且多层接地装置使有限空间中的接地面积大为增加,因此天线的尺寸可大幅度缩小。 Because of the fast wave oscillation means microstrip line densely distributed in a small range of the surface of the medium, and the multi-layer grounding means grounding area greatly increased in a limited space, so the size of the antenna can be greatly reduced. 而且,此天线能利用表面粘着技术直接安装在印刷电路板上。 Furthermore, this antenna can be mounted using surface mount technology directly to the printed circuit board. 更特别地,本发明的天线不需要使用高介电常数的介质材料,只要相对介电常数值在2至5之间的一般介质材料即可。 More particularly, the present invention does not require the use of an antenna dielectric material having a high dielectric constant, the dielectric material is generally as long as the relative dielectric constant value between 2 to 5.

图4(b)表示另一种众所周知的手机的螺旋型天线的简化模型;图5(a)表示悬空式的理想微带线结构的横切面图;图5(b)为悬空微带线的不辐射波模式和快波泄漏波模式的传播常数;图6(a)为不辐射波模式和快波泄漏波模式在横方向的电流分布;图6(b)不辐射波模式和快波泄漏波模式在纵方向的电流分布;图7为悬空微带线在不同位置(高度)时泄漏波模式的模式方向电场场形;图8表示悬空式的理想微带线结构;图9(a)为具有多层接地面的小型快波振荡型天线的一个实施例;图9(b)为图9(a)的局部放大图;图9(c)为图9(a)的示意图;图10(a)显示本发明实施的天线安装于外接电路基板的情形;图10(b)显示外接电路基板上对应于本发明实施的天线部分的线路;图11为本发明实施例的天线的等效电路; FIG. 4 (b) shows another simplified model of a well-known helical antenna of the mobile phone; FIG. 5 (a) represents a cross sectional view of suspended over the microstrip line type configuration; FIG. 5 (b) is a suspended microstrip line non radiative wave mode and a propagation constant of the fast wave leakage wave mode; FIG. 6 (a) is a non radiative wave mode and the fast wave leakage wave modes distributed in the current horizontal direction; FIG. 6 (b) non radiative wave mode and the fast wave leakage wave mode in the current distribution in the longitudinal direction; FIG. 7 is a suspended microstrip line direction of the leaky mode wave mode at different positions (heights) electric field configuration; FIG. 8 shows a suspended microstrip line structure over the formula; FIG. 9 (a) FIG. 9 (a) is a partial enlarged view of FIG. 9 (b) is;; schematic diagram 9 (a) of FIG. 9 (c) of; embodiment having a multilayer ground plane of the small oscillating fast wave antenna 10 embodiment of FIG. (a) shows an antenna of the embodiment of the present invention mounted on the external case of the circuit board; FIG. 10 (b) show the corresponding line antenna portion of the embodiment of the present invention, an external circuit board; FIG. 11 according to an embodiment of the present invention an antenna equivalent circuit;

图12为本发明实施例的单端口史密斯图(one port SmithChart)的测量结果;图13为本发明实施例的单端口散射参数(one port scatteringparameter)的测量结果;图14(a)为本发明实施例的天线当共振频率为260MHz时其微带线(即图9(a)中的A区)的上方表层的电流分布图;图14(b)为本发明实施例的天线当共振频率为260MHz时其微带线(即图9(a)中的A区)的下方表层的电流分布图;图15为本发明实施例的天线当共振频率为260MHz时其在YZ平面的辐射场形。 Measurement results of single-port scattering parameter in FIG. 13 (one port scatteringparameter) embodiment of the present invention;; Smith chart single-port (one port SmithChart) of FIG. 12 embodiment of the invention the measurement result of FIG. 14 (a) of the present invention, Example embodiment when the antenna resonance frequency of 260MHz when it is a microstrip line (i.e., FIG. 9 (a) in zone a) of the current profile of the upper surface; FIG. 14 (b) of the present embodiment when the antenna resonance frequency of invention FIG surface current distribution in its downward 260MHz microstrip line (i.e., FIG. 9 (a) a region); Figure 15 embodiment when the antenna resonance frequency of 260MHz which is shaped radiation field of the present invention in YZ plane.

符号说明11:介质基板12:接地面13:金属贴片14:馈线15:连接至通路孔的馈线16:探针(或同轴线)输入41:手机外壳42:单极天线 Description of Symbols 11: dielectric substrate 12: ground 13: metal patch 14: feeder 15: via hole connected to the feed line 16: a probe (or coaxial lines) 41 Input: Mobile housing 42: a monopole antenna

43:螺旋型天线A:快波振荡装置A0、A1、A2、A3:微带B:多层接地装置B1-B9:平行层B10-B17、69:通路孔1、2、3、4:凹槽C:中空地区51:天线输入/输出端55、57:天线接地端61:外接电路基板的输入/输出端65、67:外接电路基板的接地端70:金属接地81:金属线82:介质基板83:空气带 43: helical antenna A: fast wave oscillation means A0, A1, A2, A3: Microstrip B: multi-layer grounding device B1-B9: B10-B17,69 parallel layers: 1,2,3,4 viahole: Recess groove C: 51 hollow Region: antenna input / output terminal 55, 57: antenna ground terminal 61: external input circuit substrate / output terminal 65, 67: external ground terminal of the circuit board 70: ground metal 81: metal wire 82: media substrate 83: airstrip

84:接地面101:本发明的天线103:外接电路基板105:外接电路基板的接地面此二种模式在横方向和纵方向的电流分布如图6(a)和图6(b)所示,其模电流(modal currents)在微带线的纵方向及横方向非常相似。 84: contact surface 101: antenna 103 according to the invention: the external circuit substrate 105: an external circuit board ground plane for this two modes in the lateral direction and the current distribution in the vertical direction in FIG. 6 (a) and 6 (b) shown in FIG. which mode current (modal currents) are very similar in longitudinal and transverse direction of the microstrip line. 换言之,如果其中一个模式被激发,另一个亦会被激发。 In other words, if one mode is excited, another will be excited.

除了模电流相似之外,两者的横向电场/磁场在接近微带线范围内也非常相似。 In addition to the current mode is similar to both the transverse electric field / magnetic field is very similar to the microstrip line within close range. 图7表示在不同位置的悬空微带线的泄漏波模式的模式方向电场场形,其中各参数为(1)xb1=299mm,xt1=303mm,(2)Xb2=408mm,Xt2=412mm,(3)Xb3=677mm,xt3=681mm;y1=208.3mm,y2=213.3mm。 7 shows the leakage electric field formed in wave mode suspended microstrip line pattern direction different positions, wherein each of the parameters (1) xb1 = 299mm, xt1 = 303mm, (2) Xb2 = 408mm, Xt2 = 412mm, (3 ) Xb3 = 677mm, xt3 = 681mm; y1 = 208.3mm, y2 = 213.3mm. 由图7可知,泄漏波模式有非零的衰减常数。 7 shows that leakage wave mode attenuation constant non-zero.

详细的分析显示此两种互相耦合,即其波导截面积积分∫ E(m)× H*(l)ds和∫ E(l)× H*(m)ds皆不为零, E(m)、 E(l)分别为不辐射波模式与泄漏波模式的横截面的电场强度, H(m)、 H(l)分别为不辐射波模式与泄漏波模式的横截面的磁场强度。 Detailed analysis of these two display coupled to each other, i.e. the cross-sectional area of ​​the waveguide which is integral ∫ E (m) × H * (l) ds and ∫ E (l) × H * (m) ds neither zero, E (m) the cross section of the electric field strength, E (l) are not leaking radiation pattern and wave mode, H (m), H (l) are the magnetic field strength does not leak radiation pattern of the cross-section of the wave mode. 换言之,如果激发众所周知的微带模式,此微带模式在传播过程中会将部分能量转换成泄漏波模式,而此泄漏波模式在传播、过程中会将能量送至大气中。 In other words, if the known excitation microstrip mode, this mode will microstrip conversion portion during the propagation energy to leak wave mode, and this mode is leaky wave propagation, the energy will be fed to the process atmosphere. 相反地,传播中的泄漏波模式亦会将部分能量转换成微带模式。 Conversely, wave propagation modes will leak energy into the microstrip mode conversion section.

如图8所示,悬空式的理想微带线结构由金属线81、介质基板82、空气83及接地面84所形成。 As shown, the floating-type structure over the microstrip line 81 made of a metal wire, dielectric substrate 82, the air 83 and the ground plane 848 is formed. 金属线81的上方也为空气所充满。 Over the metal wire 81 is also filled with air.

依据以上工作原理和悬空式的理想微带线结构来设计本发明的天线。 Based on the above principle and suspended over the microstrip line type design of the antenna structure of the present invention. 它由两大部分组成:一部分是快波振荡装置,另一部分是由多层接地面及导通孔所形成的接地装置。 It consists of two parts: one fast wave oscillation means, the other is a multi-layer device to the ground surface and via hole formation.

图9(a)表示本发明的天线的一个优选实施例,其中A部分表示快波振荡装置,B部分表示多层接地装置。 FIG. 9 (a) shows an embodiment of an antenna of the present invention is preferably, wherein A represents a part of the fast wave oscillation means, a multi-layer part B indicates grounding. 并且,为了更清楚地显示快波振荡装置的电路,A部分中将快波振荡装置电路中的介质抽走。 Further, in order to show more clearly the fast wave oscillation circuit means fast wave oscillation circuit device, A in the portion of the pumped medium. 另外,为了方便后面的说明,设定三维空间的X、Y及Z轴方向分别为天线的长、宽及高的方向。 Further, for convenience of the later explanation, set three-dimensional space X, Y and Z-axis directions, respectively of the antenna length, width and height direction. 图9(b)是图9(a)的局部放大图。 FIG. 9 (b) are diagrams 9 (a) is a partial enlarged view.

图8在介质基板及地面之间所形成的空气带83,对应于图9(b)的中空地区C,可采用挖槽或铸造的方式来形成。 8 between the air and the surface of the dielectric substrate formed with FIG. 83, corresponding to the hollow region C in FIG. 9 (b), the trenching can be formed or cast manner.

图9(b)中,快波振荡装置A由一个长方体介质和微带A1、A2、A3等图绕着长方体介质表面的螺旋形金属微带线所构成。 FIG. 9 (b), the fast wave oscillation means A consists of a rectangular microstrip medium and A1, A2, A3, etc. FIG surface of the medium around the rectangular spiral microstrip line composed of metal. 此螺旋形金属微带线的尾端形成共振所需的断路。 This trailing end of the metal spiral microstrip line formed desired resonant circuit. 衔接微带A1的微带线另一端A0用于天线的信号输入/输出端。 Cohesion microstrip microstrip line A1-A0 to the other end of the antenna signal input / output terminal. 利用印刷电路板技术或利用铸造配合蚀刻的技术,可制成此类快波振荡装置。 Using printed circuit board technology or by casting with the etching technique, it can be made of such fast-wave oscillating means.

图9(b)中,多层接地装置B位于该快波振荡装置的长方体介质的下方,该装置的主要部分是在介质下方形成的多数个平行层B1-B9。 FIG. 9 (b), the multilayer rectangular grounding device B located below the fast medium wave oscillation means, a main part of the device is a plurality of parallel layers B1-B9 formed below the medium. 在这些平面层下方,为了增加接地面的表面积,同时考虑天线的机械强度,制作了多数个通路孔B10-B17,并且使所有由平行层所形成凹槽1-4之内表面和所有通路孔B10-B17的内表面和相关介质部分的所有外表面皆为金属接地面,从而形成多层接地装置B。 Below the plane of these layers, in order to increase the surface area of ​​the ground, taking into account the mechanical strength of the antenna, a plurality of via holes made B10-B17, and all layers are formed of parallel grooves 1-4 and all inner surfaces of the via hole an inner surface and an outer surface of all associated media portion B10-B17 are all the metal ground plane, to form a multilayer grounding device B. 其制作可利用印刷电路板的穿孔技术,或利用铸造配合镀金的技术来完成。 Which is made available to the printed circuit board perforation techniques, or by casting with gold plating techniques.

图9(b)中,微带线的输入/输出端A0沿介质表面延伸至51,且与多层接地装置B接地端55、57形成共平面波导的输入/输出方式。 In FIG. 9 (b), the microstrip line input / output terminals A0 to extend along a surface of the medium 51, and the ground terminal 55, 57. The multilayer ground means B formed coplanar waveguide input / output mode.

图10(a)示意表示本发明的天线101安装于一个外接电路基板103的情形。 FIG. 10 (a) is a schematic showing an antenna according to the present invention is mounted to the case 103 of an external circuit board 101. 参考图10(b),本发明中天线和外电路的连接方式为:外电路基板103的相应位置也形成共平面波导的输入/输出端61、65、67,其中61为信号的输入/输出端,65、67都是接地端。 With reference to FIG. 10 (b), the antenna connector of the present invention and an external circuit as follows: a position corresponding to an external circuit board 103 is also formed coplanar waveguide input / output terminals 61,65,67, 61 of the input signal / output end, 65, 67 are ground. 采用表面粘着技术,51、55、57分别连接至61、65、67;并且,同样采用表面粘着技术,多层接地装置以具有接地端和信号输入/输出端的侧面,通过外电路基板对应位置的许多通路孔69及其周边70的金属,和外电路基板103的接地面105相连接。 Using surface mount technology, 51,55,57 61,65,67 respectively connected to; and, likewise using surface mount technology, having a multi-layer grounding to a ground side terminal and the signal input / output terminal, through an external circuit board corresponding to the position many metal ground plane surrounding the via hole 69 and 70, the external circuit substrate 103 and 105 is connected.

图9(c)是图9(a)的示意图,参考图9(c),本发明中天线的一组设计参数是:微带域的宽度及间隔分别为0.39×10-3λ0与0.17×10-3λ0(即w=0.39×10-3λ0,s=0.17×10-3λ0),长方形介质10的长约为0.039λ0(即d=0.039λ0,g=6.9×10-3λ0),边长约为4.3×10-3λ0与1.47×10-3λ0(即e=4.3×10-3λ0,f=1.47×10-3λ0),即εr=3.25,螺旋型微带线的圈数N=57。 FIG. 9 (c) are diagrams 9 (a) is a schematic diagram, with reference to FIG. 9 (c), a set of design parameters of an antenna in the present invention are: the width and the spacing of the microstrip domains were 0.39 × 10-3λ0 and 0.17 × 10 -3λ0 (i.e., w = 0.39 × 10-3λ0, s = 0.17 × 10-3λ0), medium 10 is a rectangle about 0.039λ0 (i.e., d = 0.039λ0, g = 6.9 × 10-3λ0), side length of about 4.3 × 10-3λ0 and 1.47 × 10-3λ0 (i.e., e = 4.3 × 10-3λ0, f = 1.47 × 10-3λ0), i.e., εr = 3.25, the number of turns of the spiral microstrip line N = 57.

依据以上参数,可计算本发明的天线的体积约为0.25×10-6λ03,平均边长约为0.63×10-2λ0。 According to the above parameters, the antenna of the present invention may calculate a volume of about 0.25 × 10-6λ03, an average side length of about 0.63 × 10-2λ0. 达到天线微小型集成电路化的目的。 The antenna of the integrated circuit to achieve the micro purpose.

另外,螺旋型微带线的长度约为:5.8×10-3λ0×57×2+0.17×10-3λ0×57=0.667λ0螺旋型微带线的总面积约为:0.667λ0×3.9×10-4λ0=260×10-6λ20当微带线形成共振时,电流强度大致依余弦函数的形状分布在微带线上(此部分后面再详细说明),而1/4的余弦函数所包围的面积为2/π,故螺旋型微带线的平均有效面积为:260×10-6λ20×2π=166×10-6λ20]]>相当于电荷平均分布在有效面积166×10-6λ20的微带线之上。 Further, the length of the spiral microstrip line is about: 5.8 × 10-3λ0 × 57 × 2 + 0.17 × 10-3λ0 × 57 = 0.667λ0 spiral microstrip line total area of ​​about: 0.667λ0 × 3.9 × 10- 4λ0 = 260 × 10-6λ20 microstrip line is formed when the resonant current intensity according to the shape of substantially a cosine distribution function microstrip line (again described in detail later in this section), and a quarter of a cosine function area enclosed 2 / π, an average effective area so that the spiral microstrip line is: 260 & times; 10-6 & lambda; 20 & times; 2 & pi; = 166 & times; 10-6 & lambda; 20]]> is equivalent to charge evenly distributed in the effective area of ​​166 × 10-6λ20 microstrip line above.

而多层接地装置的接地面积估算约有90.6×10-6λ20。 Multilayer grounded grounding area estimated that about 90.6 × 10-6λ20. 当共同振时,图9(b)中有正Q电荷(Q为电荷量)流入输入端51,再经A0进入螺旋型微带线,然后充满微带线金属面;同时有一部分负Q电荷流入接地端55、57,然后充满在多层接地装置的所有金属表面。 When co-vibration, in FIG. 9 (b) has a positive electric charge Q (Q is an electric charge amount) flowing into the input terminal 51, and then enters A0 spiral microstrip line, microstrip line and then filled with a metal surface; while a portion is negatively charged Q flows to the ground terminal 55, 57, and fills all the metal surfaces of the multilayer grounding device. 另有一部分负Q电荷则流入外电路板接地端65、67及与其衔接的接地面。 Another part of the negative charges Q flowing into the external circuit board ground terminal 65, 67 and their convergence ground. 因此,共振时螺旋型微带线和多层接地装置及其输入的接地端附近得以维持电荷的平衡。 Thus, the charge balance is maintained in the vicinity of the ground resonance helical multilayer microstrip line and grounding its input. 可见,在本发明的天线中,接地面无需做到与现有手机接地面的面积一样大,但仍然足够使用。 Visible, the antenna of the present invention, the ground plane ground without having to do with the existing mobile phone area as big, but still enough to use.

而且,不需使用高介电常数的介质材料,使用相对介电常数值相当低如εr在2至5之间的介质材料即可。 Moreover, without the use of dielectric material having a high dielectric constant, relatively low values ​​of relative permittivity εr as a material in the medium between 2 to 5.

快波泄漏波模式在本发明的天线中的重要作用可由下面的计算和推断得知。 An important role in the fast mode wave leakage wave antenna of the present invention by the following calculation and inference known.

根据众所周知的微波线路理论,若一个单模元件的传输的断路端没有任何边缘场效应(fringing field effect),而是纯粹的断路,则只要 According to well known theory of the microwave line, if the end of the transmission of a single-mode disconnection element without any fringe field effects (fringing field effect), but purely interruption, as long as (λg为单模的传播波长)对应频率的奇数倍频率即可形成一个共振电路。 ([Lambda] g is a single mode propagation wavelength) corresponding to the frequency of an odd multiple of the frequency of a resonant circuit can be formed. 并且,对应第一个共振频率,其共振方程式为:l=14×λ0β^=14λg----(1)]]>其中,l为微带线的长度, And, corresponding to the first resonance frequency, the resonance equation is: l = 14 & times; & lambda; 0 & beta; ^ = 14 & lambda; g ---- (1)]]> where, l is the length of the microstrip line, 为归一化的相位常数(normalizedphase constant),β^=βK0;]]>K0=2πλ0;]]>β=2πλg,]]>而k0为自由空间波数。 Is the normalized phase constant (normalizedphase constant), & beta; ^ = & beta; K0;]]> K0 = 2 & pi; & lambda; 0;]]> & beta; = 2 & pi; & lambda; g,]]> and k0 is a free space wave number.

图11显示本发明的天线的等效电路,由断路31、悬空式的微带线32、接地系统33及电源34所组成。 Figure 11 shows an equivalent circuit of the antenna of the present invention, the open circuit 31, the floating-type microstrip line 32, ground 33 and power system 34 components. 应用以上的微波线路理论,若图11代表对应第一个共振频率的共振电路,则微带线32的长度应是 Application of the above microwave line theory, if FIG. 11 represents the first resonance frequency corresponding to the resonant circuit, the length of the microstrip line 32 should be 本发明人以上述的天线设计参数,利用三维空间的全波电磁场论计算共振频率为260MHz。 The present invention is an antenna design parameters described above, three-dimensional electromagnetic field on the calculated full-wave resonance frequency 260MHz. 另一方面,将由上述的设计参数所制成的天线作单埠S11参数(即散射参数)的测量,可以得到史密斯图及相对应的S11输入端反射系数图,分别如图12及图13所示。 On the other hand, by a single antenna port for the parameter S11 (i.e., scattering parameters) the design parameters of the measurements made possible to obtain a Smith chart and input reflection coefficient S11 of FIG corresponding, respectively, in FIG. 12 and FIG. 13 shows.

在图12中,向量分析仪从240MHz扫瞄至300MHz。 In Figure 12, the vector analyzer scans from 240MHz to 300MHz. 于低频时,可以得知史密斯图从其最右端即断路端点的附近开始,依顺时针方向由接近断路端点处旋转至左方的接近短路点,然后停止于对应300MHz的位于史密斯图右上方的点。 At low frequencies, that can be started from the vicinity of the Smith chart disconnection i.e. rightmost endpoint, clockwise rotation of the trip end by the proximity to the left near the short-circuit point, and then stopped at the corresponding point is located in the upper right smith chart of 300MHz . 经详细分析,可知最接近短路端的频率是位于相角为180°处的工作频率259MHz,此频率即为第一共振频率。 After detailed analysis, it was found that the frequency of short-circuited end located closest to the phase angle of 180 ° at the operating frequency of 259MHz, this frequency is the first resonant frequency. 与理论计算值相差仅为1MHz。 With the calculated difference is only 1MHz.

第一共振频率可以由图13更清楚地证实。 The first resonant frequency may be more clearly demonstrated in Figure 13. 参考图13,共振时S11的数值在259MHz最小,约为-2.8dB,其相角为180°。 Referring to FIG 13, in S11, when the value of the resonance minimum 259MHz, about -2.8dB, relative angle of 180 °. 图11所示的四分之一波长( Quarter wavelength shown in FIG. 11 ( )共振器在共振时,其输入端的反射系数必须为负数,即相角必须为180°。 ) Resonator at resonance, the reflection coefficient of the input must be negative, i.e., the phase angle must be 180 °. 由于此快波泄漏波模式呈现损耗,因此S11的绝对值将小于1,即小于0dB。 Because of this fast mode wave leakage wave losses presented, thus an absolute value of S11 will be less than 1, i.e. less than 0dB.

因此,对应第一个共振频率,将本发明所采用的微带线长度l即0.667λ0代入(1)中,得知 Thus, corresponding to a first resonant frequency, the present invention is used in the microstrip line length l 0.667λ0 i.e., into (1), that 为0.375。 0.375. 相对于此 On the other hand 值的泄漏波模式的相位速度为:c/β^=2.66c----(2)]]>其中,c为光速,(2)式表示此泄漏波模式的相位速度为光速的2.66倍,所以它必然是一个快波(fast wave)。 Leaky wave mode phase velocity values ​​is: c / & beta; ^ = 2.66c ---- (2)]]> where, c is the speed of light, (2) represents the leak wave mode phase velocity is the velocity of light 2.66 times, so it must be a fast wave (fast wave).

更进一步地,利用三维空间的全波电磁场论可计算在共振频率260MHz时的微带线(即图9(a)中的A区)的上方表层和下方表层的电流分布,分别如图14(a)与图14(b)所示。 Still further, the use of three-dimensional space can be calculated on the full-wave electromagnetic field distribution of the surface current above and below the surface of the resonance frequency of the microstrip line at 260MHz (i.e., FIG. 9 A region (a) in) in, respectively, FIG. 14 ( ) as shown in a) and 14 (b. 图14(a)与图14(b)显示在共振频率260MHz时,微带线的电流在输入端最大,然后其电流强度逐渐变小,但方向维持一直不变,一直朝着断路端点(即天线共振器的终点),至断路端点其电流强度变为零。 FIG 14 (a) and FIG. 14 (b) show the resonant frequency 260MHz, the maximum current in the microstrip line input terminal, and its current intensity becomes gradually smaller, but has maintained the same direction, toward the disconnection has been endpoint (i.e. resonator antenna end), to which end the current breaking strength becomes zero. 换言之,模电流的大小在微带线上的变化就像一个介于0至(π/2)相角的余弦函数。 In other words, a change in the magnitude of the current mode microstrip line as a cosine function from 0 to (π / 2) phase angle. 由此分析可见,这种共振方式必须是泄漏波才能形成。 This analysis can be seen, this resonance is to be made to form a leak wave.

综合以上测量数据及理论计算的结果,可得到以下结论:本发明的新型天线主要依靠快波泄漏波模式传导。 Based on the above measured data and theoretical results, the following conclusions can be obtained: novel antenna of the invention mainly depends on the fast mode wave leakage wave conduction.

再利用众所周知的全波积分方程求得本发明实施例的天线当共振频率为260MHz时在YZ平面的辐射场形,如图15所示,其中θ角表示在YZ平面上的某一点至原点的连线与Z轴之间的角度。 And then using well-known full-wave antenna integral equation is obtained when the embodiment of the present invention, when the resonance frequency is 260MHz YZ plane-shaped radiation field, shown in Figure 15, where θ represents the angle to a point of origin on the YZ plane the angle between the line connecting the Z-axis. 参考图15,此辐射场与在无穷大的水平导体接地面上的单极天线的辐射场型非常相似。 Referring to Figure 15, the radiation field with the radiation pattern of the monopole antenna in an infinite ground plane conductor levels are very similar.

上述为本发明的一个具体实施例,然而,本发明并非局限于该实施例。 A specific embodiment of the present invention, the above-described embodiment, however, the present invention is not limited to this embodiment. 例如,观察图9(b)的天线结构,实际上,在快波振荡装置的微带线和多层接地装置的外表面之间充满空气,同样类似图8的空气带83,因此这个中空地区C并不是必要的。 For example, 9 (b) viewed in FIG antenna structure, in fact, full of air between the outer surface of the microstrip line and the fast wave oscillation means multilayer grounding device, similar to Figure 8 of the same air belt 83, so that a hollow area C is not necessary. 相应地,有另一种不具有中空地区C的天线,此情况下,快波振荡装置A和多层接地装置B中的介质直接衔接在一起。 Accordingly, there is another area that does not have a hollow C of the antenna, in this case, a direct engagement with the fast-wave oscillating means A and B in a multilayer grounding medium.

微带线的形状也不限于螺旋型,可以视所要求的辐射场型,在快波振荡装置中应用不同的微带线形状。 The shape of the microstrip line is not limited to a spiral type, may be required depending on the radiation pattern in the fast wave oscillation means for applying different microstrip line shape. 例如为多数个平行且闭合的环状金属微带线,其设计方法类似于上述的具体实施例。 For example, a plurality of parallel metal closed circular microstrip line design method similar to the above embodiments.

再者,本发明的天线也可以使用馈线直接输入/输出的形式。 Further, the antenna of the present invention may be used in the form of feeder direct input / output. 在此情况下,外电路基板的相应位置也形成对应直接输入/输出信号的形式。 In this case, the respective position of the outer form of the circuit board is also formed corresponding to the direct input / output signals. 然后,快波振荡装置的微带线用以输入/输出信号的一端,采用表面粘着方式连接到外电路基板对应的输入/输出端。 Then, the fast wave microstrip line to one end of the oscillating device input / output signals, using surface mount connected to the corresponding external circuit board input / output terminal. 并且,该多层接地装置以具有信号输入/输出端的侧面并且采用表面粘着方式,通过外电路基板对应位置的多个通路孔及其周边的金属,和外电路基板的接地面相连接。 Further, the multilayer side grounding means has a signal input / output terminal, and using surface mount manner, a plurality of via holes through the metal and its outer peripheral positions corresponding to the circuit board, and the ground surface is connected to an external circuit board.

所以在不超出本发明之精神及以下权利要求范围的情况,可实施多种变化。 Therefore, without departing from the spirit of the following claims and the scope of the claims of the present invention, various changes may be implemented.

Claims (3)

1.一种具有多层接地面的快波振荡型天线,包含:一快波振荡装置,由第一和第二部分所组成,该第一部分为形状呈长方体的介质基板,该第二部分为缠绕在该介质基板表面的金属微带线,该金属微带线的缠绕形式视所需要的辐射场型而调整,且密集在很小的该介质表面范围内,该金属微带线的一端用于提供信号,另一端为断路;一接地装置,位于该快波振荡装置下方,该接地装置的形状呈长方体,且设置有多数个通路孔,该通路孔的形状为长方形,其中该形状为长方形的通路孔的数目与大小依据所需要的接地面积而决定,以提供一预定的结构强度,且籍此该接地装置可在有限空间中提供相当大的接地面积。 A multilayer ground plane having a fast wave oscillation type antenna, comprising: a fast wave oscillating means, the first and second portions consisting of the first portion is a rectangular parallelepiped shape is the dielectric substrate, the second part metal microstrip line is wound around the surface of the dielectric substrate, the metal is wound in the form of microstrip line is required depending on the radiation pattern is adjusted, and concentrated in a small range of the surface of the medium, one end of the microstrip line with the metal to provide a signal, and the other end is open circuit; a grounding means located below the fast wave oscillating means, the shape of the grounding device of the cuboid, and is provided with a plurality of via holes, the shape of the via hole is rectangular, wherein the shape is rectangular the required number of via holes and the ground area is determined based on the size, to provide a predetermined structural strength, and whereby the grounding means may provide substantial ground contact area in a limited space.
2.根据权利要求1所述的具有多层接地面的快波振荡型天线,其中该快波振荡装置的介质基板是由相对介电常数值在2至5之间的介质材料所构成。 According to claim 2 having a multilayer ground plane fast wave oscillation type antenna of claim 1, wherein the dielectric substrate is fast wave oscillating means by the relative permittivity of the dielectric material constituting the value between 2-5.
3.一种具有多层接地面的快波振荡型天线,包含:一快波振荡装置,由第一和第二部分所组成,该第一部分为形状呈长方体的介质基板,该第二部分为缠绕在该介质基板表面的金属微带线,该金属微带线的缠绕形式视所需要的辐射场型而调整,且密集在很小的该介质表面范围内,该金属微带线的一端用于提供信号,另一端为断路;一接地装置,位于该快波振荡装置下方,该接地装置的形状呈长方体,且设置有多数个通路孔,该通路孔的形状一部分为长方形,一部分为圆形,其中该形状为长方形的通路孔的数目与大小和该形状为圆形的通路孔的数目与大小依据所需要的接地面积而决定,以提供一预定的结构强度,且籍此该接地装置可在有限空间中提供相当大的接地面积。 A multilayer ground plane having a fast wave oscillation type antenna, comprising: a fast wave oscillating means, the first and second portions consisting of the first portion to form the shape of a rectangular parallelepiped dielectric substrate, the second part metal microstrip line is wound around the surface of the dielectric substrate, the metal is wound in the form of microstrip line is required depending on the radiation pattern is adjusted, and concentrated in a small range of the surface of the medium, one end of the microstrip line with the metal to provide a signal, and the other end is open circuit; a grounding means located below the fast wave oscillating means, the shape of the grounding device cuboid, and is provided with a plurality of via holes, the shape of the via hole part is rectangular, circular part wherein the shape of the desired number and size of via holes and the rectangular shape of a circular passage hole is the number of the ground area based on the size determined to provide a predetermined structural strength, and whereby the grounding means may provide considerable ground area in a limited space.
CNB981233872A 1998-12-14 1998-12-14 Fast-wave oscillation type antenna with multi-layer grounding surface CN1135657C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB981233872A CN1135657C (en) 1998-12-14 1998-12-14 Fast-wave oscillation type antenna with multi-layer grounding surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB981233872A CN1135657C (en) 1998-12-14 1998-12-14 Fast-wave oscillation type antenna with multi-layer grounding surface

Publications (2)

Publication Number Publication Date
CN1257323A CN1257323A (en) 2000-06-21
CN1135657C true CN1135657C (en) 2004-01-21

Family

ID=5228185

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981233872A CN1135657C (en) 1998-12-14 1998-12-14 Fast-wave oscillation type antenna with multi-layer grounding surface

Country Status (1)

Country Link
CN (1) CN1135657C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870505B2 (en) * 2002-07-01 2005-03-22 Integral Technologies, Inc. Multi-segmented planar antenna with built-in ground plane
CN1893175B (en) * 2005-07-07 2011-09-21 哗裕实业股份有限公司 Method for making antenna module of wireless electronic apparatus
WO2015094177A1 (en) * 2013-12-17 2015-06-25 Waveconnex Inc. Waveguides for capturing close-proximity electromagnetic radiation transmitted by wireless chips during testing on automated test equipment (ate)
US9588173B2 (en) 2013-12-17 2017-03-07 Keyssa, Inc. Waveguides for capturing close-proximity electromagnetic radiation transmitted by wireless chips during testing on automated test equipment (ATE)

Also Published As

Publication number Publication date
CN1257323A (en) 2000-06-21

Similar Documents

Publication Publication Date Title
US9653767B2 (en) Antenna and printed-circuit board using waveguide structure
JP5361966B2 (en) Antenna having conductive layer and dual-band transmitter including antenna
US8890761B2 (en) Structure, printed circuit board, antenna, transmission line to waveguide converter, array antenna, and electronic device
US6307451B1 (en) Dielectric waveguide comprising connected dielectric strips
US6856131B2 (en) Magnetic sensor, side-opened TEM cell, and apparatus using such magnetic sensor and side-opened TEM cell
DE60203663T2 (en) Antenna and communication device with this antenna
US6222429B1 (en) Dielectric resonator, dielectric notch filter, and dielectric filter with optimized resonator and cavity dimensions
Jackson et al. Microstrip patch designs that do not excite surface waves
FI90808B (en) The resonator structure
Mariani et al. Slot line characteristics
CN1274056C (en) Adapting of waveguide to strip line
US9559398B2 (en) Multi-mode filter
US8649832B2 (en) Cellular wireless unit
EP1592082B1 (en) Contact-free element of transition between a waveguide and a microstrip line
EP0807988B1 (en) Coupling element for a radio telephone antenna
US7414201B2 (en) Transmission line pair
US6346867B2 (en) Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
DE69826223T2 (en) Microstrip line antenna and antenna containing device
US9406988B2 (en) Multi-mode filter
TWI223910B (en) Miniaturized directional antenna
JP4128265B2 (en) Multi-band slot antenna structure and method
CN1127171C (en) Short circuit microstrip antenna and device including that antenna
JP4098818B2 (en) Slotted cylindrical antenna
JP6133884B2 (en) Printed circuit board with embedded electrical passive element for high frequency transmission
US6157819A (en) Coupling element for realizing electromagnetic coupling and apparatus for coupling a radio telephone to an external antenna

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C06 Publication
C14 Grant of patent or utility model
C17 Cessation of patent right