CN113560581B - 一种激光增材制造加氢反应器内壁耐高温损伤涂层方法 - Google Patents

一种激光增材制造加氢反应器内壁耐高温损伤涂层方法 Download PDF

Info

Publication number
CN113560581B
CN113560581B CN202110781299.9A CN202110781299A CN113560581B CN 113560581 B CN113560581 B CN 113560581B CN 202110781299 A CN202110781299 A CN 202110781299A CN 113560581 B CN113560581 B CN 113560581B
Authority
CN
China
Prior art keywords
hydrogenation reactor
wall
manufacturing
laser
laser additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110781299.9A
Other languages
English (en)
Other versions
CN113560581A (zh
Inventor
陆树华
王锋淮
谢浩平
汪斌
叶凌伟
项智
刘海云
克洛奇科夫·伊利亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barton Welding Research Institute Of National Academy Of Sciences Of Ukraine
Zhejiang Institute of Special Equipment Science
Original Assignee
Barton Welding Research Institute Of National Academy Of Sciences Of Ukraine
Zhejiang Institute of Special Equipment Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barton Welding Research Institute Of National Academy Of Sciences Of Ukraine, Zhejiang Institute of Special Equipment Science filed Critical Barton Welding Research Institute Of National Academy Of Sciences Of Ukraine
Priority to CN202110781299.9A priority Critical patent/CN113560581B/zh
Publication of CN113560581A publication Critical patent/CN113560581A/zh
Application granted granted Critical
Publication of CN113560581B publication Critical patent/CN113560581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及加氢反应器内壁涂层制造领域。目的是提供一种能够依据加氢反应器服役工况及结构特点,基于激光增材制造技术在反应器内壁进行制造抗高温损伤涂层的方法,该方法应能适应于不同类型的加氢反应器内壁,具有操作方便的特点。技术方案是:一种激光增材制造加氢反应器内壁耐高温损伤涂层方法,其特征在于包括如下步骤:S1)加氢反应器服役工况资料审查;S2)加氢反应器主要损伤模式判别;S3)加氢反应器内壁关键损伤区域的判定;S4)功能性激光增材制造材料的选取及工艺制定;S5)加氢反应器内壁耐高温损伤涂层激光增材制造;S6)加氢反应器内壁涂层后处理。

Description

一种激光增材制造加氢反应器内壁耐高温损伤涂层方法
技术领域
本发明涉及加氢反应器内壁涂层制造领域,具体涉及一种适用于能源化工行业加氢反应器内壁抗高温损伤涂层激光增材制造方法。
背景技术
我国每年由于零部件腐蚀、磨损等原因导致设备报废、停产所产生的相关损失高达千亿元。作为一种典型能源化工装置,加氢反应器是能源化工领域中关键设备,常常服役于高温、高压以及临氢等苛刻工况,氢腐蚀、回火脆化和蠕变脆化等主要损伤会严重制约成套装置的连续运行。由于加氢反应器技术要求高、制造工艺复杂、单台设备尺寸大、处于炼化装置关键环节,为此常常在加氢反应器内壁基材表面增加其他高性能材料防护层,目前主要是以堆焊方式进行制造。传统的堆焊方法包括焊条电弧焊、埋弧堆焊、气体保护电弧焊。
激光增材制造技术作为一种颠覆性新技术,能够快速、高效、柔性制造装备,具有热量输入集中、工件损伤小、加工速度快等特点,在大中型高性能复杂结构零部件的制造、修复、再制造等领域中有着极高的应用价值,已成功应用于航空、航天等领域,已被美国列为未来最关键的制造技术之一,也成为《中国制造2025》重点发展领域。激光制造产业成为推动制造业转型升级的新兴产业。2020年我国发布《加强“从0到1”基础研究工作方案》,对激光制造等关键核心技术中的重大科学问题给予长期支持。
发明内容
本发明的目的是提供一种能够依据加氢反应器服役工况及结构特点,基于激光增材制造技术在反应器内壁进行制造抗高温损伤涂层的方法,该方法应能适应于不同类型的加氢反应器内壁,具有操作方便的特点。
为了达到上述目的,本发明通过以下技术方案来实现:
一种激光增材制造加氢反应器内壁耐高温损伤涂层方法,其特征在于包括如下步骤:
S1)加氢反应器服役工况资料审查
不同类型加氢反应器服役工况差别较大,影响因素主要包括原料状态(如液体、固体、气相等)、原料(如重质油、苯、烯烃等)功能(油脂加氢、加氢裂解、加氢精制等等)、反应器类型(如管式、塔式、反应釜式等)、反应过程(如连续式、间歇式等)、反应条件(如温度、压力等)、制造材料(如CrMo、CrMoV等)等;通过查阅设计资料、制造资料相关资料,初步掌握拟进行内壁涂层制造的加氢反应器详细服役工况;
S2)加氢反应器主要损伤模式判别
基于专业文献查询或数值模拟或材料试验方法,针对拟制造的加氢反应器,判别该设备在运行过程中可能发生的损伤模式;
S3)加氢反应器内壁关键损伤区域的判定
针对该加氢反应器的基体材料、服役工况、结构设计、制造方法特点,基于文献查阅或者数值模拟方法,掌握该加氢反应器可能失效区域;
S4)功能性激光增材制造材料的选取及工艺制定
针对该加氢反应器特定损伤模式,选择与基体材料相容且具有优良的耐氢腐蚀或者抗蠕变或者抗回火脆性或者抗应力腐蚀开裂增材材料,以避免或者减缓损伤;依据基体材料与涂层材料增材制造试验的结果或者有限元模拟或者查阅文献,制定激光增材制造功率、激光移动速度、涂层材料填送率工艺参数;
S5)加氢反应器内壁耐高温损伤涂层激光增材制造
利用激光增材制造系统对选定区域进行激光增材制造,利用超声等无损检测技术检验涂层缺陷;
S6)加氢反应器内壁涂层后处理
利用专业车床或打磨机具等设备对涂层后处理,确保涂层厚度、表面粗糙度等参数符合预期工艺。
所述S2)步骤中的损伤模式包括氢腐蚀、蠕变、回火脆性、氢脆、应力腐蚀开裂。
本发明与现有技术相比,有益效果是:
本发明提供的激光增材制造加氢反应器内壁耐高温损伤涂层方法,可对不同类型加氢反应器内壁进行在线激光增材制造高性能涂层,操作方便,实时高效。
作为新一代制造技术,以激光增材技术为代表的金属3D打印工艺技术迅猛发展,具有不受零件结构复杂程度的限制的特点,能够实现任意复杂形状零件的快速、优质、高效、经济、全智能化和全柔性化制造,具有极佳的发展前景及重大的战略意义,对促进技术进步与装备性能提升有重要意义目的,目前成功应用于航空发动机、大飞机、汽轮机、核电阀门、盾构机等国家重大装备制造,取得了显著的经济效益、社会效益和行业影响。
附图说明
图1是本发明实施例的使用状态示意图。
具体实施方式
以下通过具体实施例对本发明的实施例作进一步详细的描述。
某热壁加氢反应器激光增材制造加氢反应器内壁耐高温损伤涂层,包括如下步骤:
S1)加氢反应器服役工况资料审查
经查阅资料,发现该加氢反应器筒体采用2.25Cr-1Mo钢制造,长期工作在高温(390-480℃)、高压(10-25MPa)环境中,反应器为锻焊结构,工作介质包括H2、H2S、油等。
S2)加氢反应器主要损伤模式判别
基于《中国知网》平台,查阅采用2.25Cr-1Mo钢制造的加氢反应器文献,了解该类型加氢反应器可能存在氢脆、氢腐蚀、回火脆化、蠕变脆化等损伤。
S3)加氢反应器内壁关键损伤区域的判定
基于《中国知网》平台,查阅采用该类型加氢反应器文献,判断该加氢反应器全部内壁面均需要进行附加涂层。
S4)功能性激光增材制造材料的选取及工艺制定
针对该加氢反应器的基体材料和服役工况,通过查阅文献,选择347不锈钢增材制造粉末材料,厚度为6.5mm,可选择激光增材制造功率为2200W,激光移动速度为150mm/min,激光光斑直径为3mm,单层涂层厚度为0.7mm,增材制造层数为10层。
S5)加氢反应器内壁耐高温损伤涂层激光增材制造
如图1所示,基于含有激光、增材材料填送、气体保护功能的激光增材制造系统主平台,通过制造系统可伸缩支撑臂和制造系统工作臂对加氢反应器选定区域进行激光增材制造。制造完成后,再经现有的超声波检测法对激光增材制造涂层进行无损检测,未发现缺陷。
S6)加氢反应器内壁涂层后处理
利用专业小型移动式打磨机具对激光增材制造涂层进行打磨处理直至涂层厚度为6.5mm,表面粗糙度为Ra3.2。
以上所述仅是本发明优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明保护范围内。

Claims (1)

1.一种激光增材制造加氢反应器内壁耐高温损伤涂层方法,其特征在于:该方法包括如下步骤:
S1)加氢反应器服役工况
加氢反应器筒体采用2.25Cr-1Mo钢制造,长期工作在390-480 ℃的高温环境和10-25MPa的高压环境中,反应器为锻焊结构,工作介质包括H2、H2S、油;
S2)加氢反应器主要损伤模式判别
采用2.25Cr-1Mo钢制造的加氢反应器可能存在氢脆、氢腐蚀、回火脆化、蠕变脆化损伤;
S3)加氢反应器内壁关键损伤区域的判定
加氢反应器全部内壁面均需要进行附加涂层;
S4)功能性激光增材制造材料的选取及工艺制定
选择347不锈钢增材制造粉末材料,厚度为6.5mm;选择激光增材制造功率为2200W,激光移动速度为150mm/min,激光光斑直径为3mm,单层涂层厚度为0.7mm,增材制造层数为10层;
S5)加氢反应器内壁耐高温损伤涂层激光增材制造
基于含有激光、增材材料填送、气体保护功能的激光增材制造系统主平台的可伸缩支撑臂和制造系统工作臂,对加氢反应器选定区域进行激光增材制造;制造完成后,再经超声波检测法对激光增材制造涂层进行无损检测;
S6)加氢反应器内壁涂层后处理
对激光增材制造涂层进行打磨处理直至涂层厚度为6.5mm,表面粗糙度为Ra3.2。
CN202110781299.9A 2021-07-10 2021-07-10 一种激光增材制造加氢反应器内壁耐高温损伤涂层方法 Active CN113560581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110781299.9A CN113560581B (zh) 2021-07-10 2021-07-10 一种激光增材制造加氢反应器内壁耐高温损伤涂层方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110781299.9A CN113560581B (zh) 2021-07-10 2021-07-10 一种激光增材制造加氢反应器内壁耐高温损伤涂层方法

Publications (2)

Publication Number Publication Date
CN113560581A CN113560581A (zh) 2021-10-29
CN113560581B true CN113560581B (zh) 2023-08-04

Family

ID=78164337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110781299.9A Active CN113560581B (zh) 2021-07-10 2021-07-10 一种激光增材制造加氢反应器内壁耐高温损伤涂层方法

Country Status (1)

Country Link
CN (1) CN113560581B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637199B (zh) * 2016-12-26 2019-02-22 江苏亚威创科源激光装备有限公司 基于激光增材制造技术的具有耐磨涂层的模具的制备方法
US11643566B2 (en) * 2019-09-09 2023-05-09 Xerox Corporation Particulate compositions comprising a metal precursor for additive manufacturing and methods associated therewith
CN111519072A (zh) * 2020-05-09 2020-08-11 苏州华碧微科检测技术有限公司 一种压力容器的制作工艺
CN112267113A (zh) * 2020-11-21 2021-01-26 浙江省特种设备科学研究院 一种管式加热炉炉管损伤在线修复系统及其方法

Also Published As

Publication number Publication date
CN113560581A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
Denkena et al. Engine blade regeneration: a literature review on common technologies in terms of machining
Kaya et al. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review
Bennett et al. Repairing automotive dies with directed energy deposition: industrial application and life cycle analysis
CN107723699B (zh) 一种修复耐热合金的方法
CN101629289A (zh) 一种水轮机组活动导叶轴颈激光防腐耐磨工艺
CN107190257A (zh) 一种模具损伤部位的激光熔覆与机械喷丸交错再制造方法
CN113560581B (zh) 一种激光增材制造加氢反应器内壁耐高温损伤涂层方法
CN108342727A (zh) 一种矫直辊的激光强化方法
Pasarkar et al. Development on fatigue testing of hardfaced components in sodium cooled fast reactors
Fedorova et al. Structure and microhardness of the tubing thread after finishing electromechanical surface quenching
Qian et al. Study on the failure mechanism of burn-through during in-service welding on gas pipelines
Pelaccia et al. Efficiency of conformal cooling channels inserts for extrusion dies
CN113373293B (zh) 大型化工装备加氢反应器内壁腐蚀区修复焊接热处理方法
CN110936098A (zh) 一种高中压缸缸体中分面缺陷修复工艺
Bilkhu et al. Machining distortion in asymmetrical residual stress profiles
CN103668181B (zh) 熔合率高的汽车模具的激光修复工艺
Ding et al. All-crack remanufacturability evaluation for blade with surface crack
CN101974773B (zh) 一种提高Inconel690合金传热管抗应力腐蚀能力的方法
CN113913722A (zh) 无缝钢管轧制用芯棒的表面复合涂层及其制备方法
Chung et al. A review on the ODSCC of steam generator tubes in Korean NPPs
CN108220563A (zh) 一种通过高速旋转丝实现金属表面晶粒细化装置及工艺
CN103898436B (zh) 水轮机导叶0Cr13Ni5Mo轴颈磨损现场修复方法
Cui et al. Experimental investigation of coolant jet design for creep feed grinding of gas turbine airfoils
Ni et al. Effect of tool temperature deviations on the stress distribution of hot die forging tool for gear blanks
CN111020567A (zh) 一种高速激光熔覆制作结晶器铜板工作面涂层的加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant