CN113553729A - 基于系统动力学的自主式交通系统模型构建方法及装置 - Google Patents

基于系统动力学的自主式交通系统模型构建方法及装置 Download PDF

Info

Publication number
CN113553729A
CN113553729A CN202111097117.2A CN202111097117A CN113553729A CN 113553729 A CN113553729 A CN 113553729A CN 202111097117 A CN202111097117 A CN 202111097117A CN 113553729 A CN113553729 A CN 113553729A
Authority
CN
China
Prior art keywords
model
physical objects
flow
physical object
autonomous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111097117.2A
Other languages
English (en)
Other versions
CN113553729B (zh
Inventor
陈振武
梁晨
张稷
黄志军
周勇
高彦
冯相龙
林芷萱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Urban Transport Planning Center Co Ltd
Original Assignee
Shenzhen Urban Transport Planning Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Urban Transport Planning Center Co Ltd filed Critical Shenzhen Urban Transport Planning Center Co Ltd
Priority to CN202111097117.2A priority Critical patent/CN113553729B/zh
Publication of CN113553729A publication Critical patent/CN113553729A/zh
Application granted granted Critical
Publication of CN113553729B publication Critical patent/CN113553729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于系统动力学的自主式交通系统模型构建方法及装置,方法包括:从自主式交通系统架构中,获取自主式交通系统的物理对象、所有所述物理对象的级别、所述物理对象的相关参数化数据和基于物理对象间逻辑关系构建的流的基础数据;基于所述物理对象、所有所述物理对象的级别和所述物理对象的相关数据,构建物理对象参数化模型;基于所述流的基础数据构建流模型;使用流连接不同物理对象,构建拓扑网络,形成自主式交通系统运行架构模型,其中,所述自主式交通系统运行架构模型基于所述物理对象参数化模型和所述流模型推演实现运行。本发明通过分级的物理对象构建物理对象参数化模型,实现多层次模型构建方法。

Description

基于系统动力学的自主式交通系统模型构建方法及装置
技术领域
本发明涉及交通系统建模技术领域,具体涉及一种基于系统动力学的自主式交通系统模型构建方法及装置。
背景技术
自主式交通系统(英文简称ATS:Autonomous Transportation System)是智能交通系统的下一代系统,在智能交通系统基础上,实现交通系统在无人工干预下自主运行、自主优化、自主迭代。自主式交通系统作为未来交通系统的主要发展模式,对其架构设计的研究是一个非常重要的研究方向,而如何对设计出来的交通系统架构进行评价,是该方向的一个重要难题。因此,需要建立一套从宏观角度对系统架构进行仿真的方法,实现自主式交通系统架构的仿真与推演,进而获知其宏观运行态势,从而方便研究人员对该架构进行分析。
现有的仿真建模方法中,包含基于系统动力学理论的建模方法以及基于离散化事件驱动的系统建模方法。其中,基于系统动力学理论的建模方法,常用于人口增长模型、货物调配模型等,其技术优势在于,可以进行复杂系统的仿真,然而其缺乏对事件驱动的仿真,对各种实体(人、车辆、信息等)在复杂系统里流动使用比较简单的流速进行建模,如果流是一个事件驱动的复杂系统,则无法使用该简单模型实现。基于离散化事件驱动的系统建模方法,例如基于Petri网构建网络模型,实现网络下交通运行事件模拟,该方法的优势在于,通过计时的事件驱动的网络运行理论实现网络运行,然而其无法体现复杂系统的全貌,对系统各物理对象、功能的阐述不足,对于系统的连续变化表现力亦缺乏支持。
目前,上述两种方法在应用于自主式交通复杂系统这一特定场景时,存在各自的局限性且均存在适配性不足的问题。换言之,现有技术中尚无适合的自主式交通系统建模方法。
发明内容
本发明解决的问题是现有技术中尚无适合的自主式交通系统建模方法。
本发明提出一种基于系统动力学的自主式交通系统模型构建方法,包括:
从自主式交通系统架构中,获取自主式交通系统的物理对象、所有所述物理对象的级别、所述物理对象间的逻辑关系和所述物理对象的相关数据;
基于所述物理对象、所有所述物理对象的级别和所述物理对象的相关数据,构建物理对象参数化模型;
基于所述物理对象间的逻辑关系生成流的基础数据,基于所述流的基础数据构建流模型;
使用流连接不同所述物理对象,构建拓扑网络,形成自主式交通系统运行架构模型,其中,所述自主式交通系统运行架构模型基于所述物理对象参数化模型和所述流模型推演实现运行。
可选地,所述物理对象的相关数据包括最低级别物理对象的水平变量初始值、不同所述物理对象之间的包含关系、不同级别的所述物理对象之间的水平变量换算关系,其中,具有包含关系的两个所述物理对象之间不可建立流连接。
可选地,所述物理对象定义内容包括:物理对象ID、物理对象级别、流入该物理对象的流集合、该物理对象流出的流集合、高级交通物理对象列表、低级交通物理对象列表、水平变量、最大容量、最小水平变量及默认水平变量。
可选地,所述流的传递内容为实体信息,所述基于所述流的基础数据构建流模型包括:
根据不同类型的传递实体特征按类型构建实体模型;
基于所述实体模型,通过多实体的组合,获得组合特征;
根据所述组合特征构建事件,其中,所述事件包括合并事件、拆分事件、出发事件、实体传递事件中一个或多个;
基于所述事件的发生情况确定所述流的状态,其中,所述流的状态为运行、停止中的一个;
基于所述流的状态计算所述流的流量与流速。
可选地,所述流的定义包括:流ID、默认流速、来源物理对象、目标物理对象及流状态。
可选地,所述自主式交通系统运行架构模型包括至少一个服务系统,所述服务系统由多个所述物理对象及多个所述流组合而成,所述服务系统有整体的输入和输出。
可选地,所述拓扑网络包括:分等级物理对象集合、流集合及服务系统集合。
可选地,构建所述自主式交通系统运行架构模型需遵循的约束包括:
避免出现孤立物理对象;
流不得直接连接有上下级关系的不同级别物理对象;
上层物理对象的仿真结果基于最底层物理对象、流集合仿真计算而来;
流最多只能连接一对物理对象;
若用于构建所述自主式交通系统运行架构模型的系统动力学整体的起始是物理对象,则必须有资源输入所述自主式交通系统运行架构模型;若用于构建所述自主式交通系统运行架构模型的系统动力学整体的起始是流,则有资源输入所述自主式交通系统运行架构模型的时间占比大于或等于预设值。
本发明还提出一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器读取并运行时,实现如上所述的基于系统动力学的自主式交通系统模型构建方法。
本发明还提出一种基于系统动力学的自主式交通系统模型构建装置,包括存储有计算机程序的计算机可读存储介质和处理器,所述计算机程序被所述处理器读取并运行时,实现如上所述的基于系统动力学的自主式交通系统模型构建方法。
本发明针对复杂的自主式交通系统,建立了一套模型构建方法,为自主式交通系统的研究、分析、评估、问题溯源、优化等提供了模型基础。通过分级的物理对象构建物理对象参数化模型,实现多层次模型构建方法,进而实现多层次系统态势分析,以避免出现对物理对象整体态势展示不足的问题。
附图说明
图1为本发明实施例基于系统动力学的自主式交通系统模型构建方法的流程示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
在本发明一实施例中,如图1,基于系统动力学的自主式交通系统模型构建方法包括:
步骤S100,从自主式交通系统架构中,获取自主式交通系统的物理对象、所有所述物理对象的级别、所述物理对象间的逻辑关系和所述物理对象的相关数据。
具体地,物理对象分为多个层级,高级物理对象包含多个低级物理对象及其连结关系组成的源汇流。比如自动驾驶车辆,是一个高级物理对象,其包含:环境感知器、车载运算设备、车载服务端等三个低级物理对象,该三个低级物理对象之间的数据流转关系为:环境感知器(低级物理对象)-[环境数据传递(流)]->车载运算设备(低级物理对象)-[运算结果传递(流)]->车载服务端(低级物理对象)->外部,其中,-[]->表示流。
进一步地,所述物理对象的相关数据包括最低级别物理对象的水平变量初始值、不同所述物理对象之间的包含关系、不同级别的所述物理对象之间的水平变量换算关系,其中,具有包含关系的两个所述物理对象之间不可建立流连接。
具体地,从最低级别物理对象起,设置各物理对象的级别及水平变量初始值,对于高级别物理对象,其水平变量初始值根据换算关系获取,例如,高级物理对象A有3个次级物理对象x,y,z组成,换算关系可以是A=x+y+z,也可以是A=x,或者A=2x+3y-z等。换算关系作为独立的对象,与物理对象的级别、初始值、容量等一起,构成物理对象参数化模型。其中,物理对象的容量,实例而言,公交车容量为40人;交通大脑系统,容量为40GB信息等。
物理对象分为多个层级,根据所在的层级不同,其结构亦会呈叠层式。基本原则是,包含关系和连接关系仅能二选一,即物理对象如果与另一个物理对象有(多层地)包含关系时,两个物理对象之间不可再建立流连接。
进一步地,所述物理对象定义内容包括:物理对象ID、物理对象级别、流入该物理对象的流集合、该物理对象流出的流集合、高级交通物理对象列表、低级交通物理对象列表、水平变量、最大容量、最小水平变量及默认水平变量。
其中,高级交通物理对象列表指该物理对象的高级物理对象列表,即该物理对象的上级物理对象,与该物理对象具有包含关系的上级物理对象;低级交通物理对象列表指该物理对象的低级物理对象,与该物理对象具有包含关系的下级物理对象。
默认水平变量指水平变量初始值。
可根据物理对象传输的实体类型,将物理对象分为个体(如人、车辆等)、信息两个大类。个体型物理对象还可包括以下附加参数:个体类型、个体速率、个体尺寸。
步骤S200,基于所述物理对象、所有所述物理对象的级别和所述物理对象的相关数据,构建物理对象参数化模型。
水平变量也被称作状态变量,代表事物(包括物质和非物质的)的积累。其数值大小表示某一系统变量在某一特定时刻的状况,是系统过去累积的结果,它是流入率与流出率的净差额。
物理对象参数化模型,至少包含物理对象及其级别、物理对象之间的包含关系、高级物理对象与其低级物理对象之间的换算关系,以及最低级物理对象的水平变量初始值。
步骤S300,基于所述物理对象间的逻辑关系生成流的基础数据,基于所述流的基础数据构建流模型。
物理对象间的逻辑关系,包含物理对象之间传递实体的流转关系,具体包括具有连接关系的物理对象以及来源物理对象、目标物理对象。
流的基础数据,包括流的来源物理对象、目标物理对象、传递内容、流速及流率等基础数据。
具体地,在ATS的架构中,流传递的内容包括数据信息(周边交通拥堵情况等)、个体信息(车辆、行人、货物等),基于流传递的内容、流连接的物理对象以及流速等基础数据构建流模型。
需要注意的是,步骤S200和S300可以顺序执行,也可以同步执行。
步骤S400,使用流连接不同物理对象,构建拓扑网络,形成自主式交通系统运行架构模型,其中,所述自主式交通系统运行架构模型基于所述物理对象参数化模型和所述流模型推演实现运行。
具体地,基于物理对象参数化模型和流模型,使用流连接物理对象,构建拓扑网络,形成ATS运行架构模型,通过流实现数据信息和个体信息在ATS架构内的流动。
基于物理对象参数化模型和流模型推演实现ATS运行架构模型的运行,获取每个时间步系统运行态势。流量、流速等参数随时间变化,各物理对象水平变量随着流的入与出实现增减,ATS内各物理对象,例如车辆、道路等设施的负荷随着时间的推演呈现一定的变化曲线及趋势。其中,低级物理对象运行系统动力学仿真计算作为系统态势计算的基础,高级物理对象的水平变量、高级物理对象之间流的速率变量根据低级物理对象的运行态势计算结果获取。
通过上述模型构建方法获得的ATS运行架构模型,可获取ATS内各流连接的物理对象的态势,流的事件模型由于物理对象的数量不同,可实现运行态势的自动调整,例如交通信号物理对象根据物理对象的不同,自动调整放行效率,载具根据不同的物理对象态势,自行调整其运行效率等,实现交通的自主式调控。
本发明针对复杂的自主式交通系统,建立了一套模型构建方法,为自主式交通系统的研究、分析、评估、问题溯源、优化等提供了模型基础。通过分级的物理对象构建物理对象参数化模型,实现多层次模型构建方法,进而实现多层次系统态势分析,以避免出现对物理对象整体态势展示不足的问题。
进一步地,步骤S400包括:
使用流连接不同物理对象,构建拓扑网络;在所述拓扑网络的基础上,通过对物理对象的选择与集合,定义形成交通系统具体功能的服务系统并设置其输出,以形成系统运行态势指标集,为态势评估提供数据支撑。
具体地,根据信息的传递过程,划分服务系统,设计层级结构及相应的因果关系,形成一套多层拓扑网络,以实现多层次系统态势分析。其中,自主式交通系统运行架构模型包括至少一个服务系统,每个服务系统由多个所述物理对象及多个所述流组合而成,一个服务系统可实现特定功能,具有整体输入与输出,如交通流量监测服务系统实现交通流量监测功能,车辆监测服务系统实现车辆监测功能,交通事故监测服务系统实现交通事故监测功能。ATS架构可以由多个服务系统组成。
进一步地,拓扑网络结构设计可包括:分等级物理对象集合、流集合、物理对象服务系统集合。
进一步地,基于上述步骤形成自主式交通系统运行架构模型的过程中,遵循以下约束:避免出现孤立物理对象;服务系统有整体输入与输出;流不得直接连接有上下级关系的不同级别物理对象,即下层物理对象不得直接向上层物理对象输出数据,上级物理对象亦不可直接向下级物理对象下达数据,其中,上下级关系包含直接上下级关系,也包含间接上下级关系,例如,A是B的直接上级,B是C的直接上级,则A与C之间不能直接建立流连接;上层物理对象的运行结果基于下层物理对象,是下层物理对象仿真结果的反应,而非直接进行仿真,所有仿真结果由最底层物理对象、流集合仿真计算而来;流最多只能连接一对物理对象;系统动力学整体的起始如果是一个物理对象,则必须大于0,即必须有资源(个体、信息等)输入系统动力学模型运行;如果起始是一个流,该流必须有一定时间段非0,即必须有一定时间段有资源(个体、信息等)输入系统动力学模型;如果是循环型结构,必须指定系统动力学起始位置。
进一步地,根据流的传输特征构建基于事件驱动的流模型,通过确认并判断事件发生与否确定该时刻的流量与流速。流不区分级别。高级别物理对象间的信息传递的量与速率由相应低级别物理对象向外传递的流的总数量决定。
根据流的传输特征构建基于事件驱动的流模型,即所述基于所述流的基础数据构建流模型包括:
获取传递实体的特征分布,基于所述传递实体的特征分布构建相应的实体模型,其中,所述传递实体为流的传递内容,包括数据信息和个体信息。传递实体的特征分布,特征可包含车辆性能、运动能力和/或货物尺寸等。
基于所述实体模型,通过多实体的组合,获得组合特征。其中,多实体的组合,可以为多类型实体的组合,例如,可以为人与车辆的组合、多个人与一辆车的组合、多辆车的组合、货物与载具(车辆、飞机等)的组合、信息与信息载具的组合。组合特征可表示为多个实体数据的集合。
根据所述组合特征构建事件,其中,所述事件包括合并事件、拆分事件、出发事件、实体传递事件中一个或多个;其中,合并事件,例如人员拼车和/或货物装载,拆分事件,例如人员下车和/或货物卸载,出发事件,例如车辆启动,实体传递事件,例如车辆行驶。
基于所述事件的发生情况确定流的状态,其中,所述流的状态为运行、停止中的一个。
基于所述流的状态计算所述流的流量与流速。
通过构建基于事件驱动的流模型,升级了流的模型构建方法,实现了复杂系统的态势仿真推演,解决了流的流程过程体现不足的问题。
进一步地,所述流的定义包括:流ID、默认流速、来源物理对象、目标物理对象及流状态。
本发明一实施例中,计算机可读存储介质存储有计算机程序,所述计算机程序被处理器读取并运行时,实现如上所述的基于系统动力学的自主式交通系统模型构建方法。相关有益效果与上述基于系统动力学的自主式交通系统模型构建方法一致,此处不赘述。
本发明一实施例中,基于系统动力学的自主式交通系统模型构建装置包括存储有计算机程序的计算机可读存储介质和处理器,所述计算机程序被所述处理器读取并运行时,实现如上所述的基于系统动力学的自主式交通系统模型构建方法。基于系统动力学的自主式交通系统模型构建装置相对于现有技术所具有的有益效果与上述基于系统动力学的自主式交通系统模型构建方法一致,此处不赘述。
读者应理解,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种基于系统动力学的自主式交通系统模型构建方法,其特征在于,包括:
从自主式交通系统架构中,获取自主式交通系统的物理对象、所有所述物理对象的级别、所述物理对象间的逻辑关系和所述物理对象的相关数据;
基于所述物理对象、所有所述物理对象的级别和所述物理对象的相关数据,构建物理对象参数化模型;
基于所述物理对象间的逻辑关系生成流的基础数据,基于所述流的基础数据构建流模型;
使用流连接不同所述物理对象,构建拓扑网络,形成自主式交通系统运行架构模型,其中,所述自主式交通系统运行架构模型基于所述物理对象参数化模型和所述流模型推演实现运行。
2.如权利要求1所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,所述物理对象的相关数据包括最低级别物理对象的水平变量初始值、不同所述物理对象之间的包含关系、不同级别的所述物理对象之间的水平变量换算关系,其中,具有包含关系的两个所述物理对象之间不可建立流连接。
3.如权利要求2所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,所述物理对象的定义内容包括:物理对象ID、物理对象级别、流入该物理对象的流集合、该物理对象流出的流集合、高级交通物理对象列表、低级交通物理对象列表、水平变量、最大容量、最小水平变量及默认水平变量。
4.如权利要求1所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,所述基于所述流的基础数据构建流模型包括:
获取传递实体的特征分布,基于所述传递实体的特征分布构建相应的实体模型,其中,所述传递实体为所述流的传递内容;
基于所述实体模型,通过多实体的组合,获得组合特征;
根据所述组合特征构建事件,其中,所述事件包括合并事件、拆分事件、出发事件、实体传递事件中一个或多个;
基于所述事件的发生情况确定所述流的状态,其中,所述流的状态为运行、停止中的一个;
基于所述流的状态计算所述流的流量与流速。
5.如权利要求4所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,所述流的定义包括:流ID、默认流速、来源物理对象、目标物理对象及流状态。
6.如权利要求1所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,所述自主式交通系统运行架构模型包括至少一个服务系统,所述服务系统由多个所述物理对象及多个所述流组合而成,所述服务系统有整体的输入和输出。
7.如权利要求6所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,所述拓扑网络包括:分等级物理对象集合、流集合及服务系统集合。
8.如权利要求1至7中任一项所述的基于系统动力学的自主式交通系统模型构建方法,其特征在于,构建所述自主式交通系统运行架构模型需遵循的约束包括:
避免出现孤立物理对象;
流不得直接连接有上下级关系的不同级别物理对象;
上层物理对象的仿真结果基于最底层物理对象、流集合仿真计算而来;
流最多只能连接一对物理对象;
若用于构建所述自主式交通系统运行架构模型的系统动力学整体的起始是物理对象,则必须有资源输入所述自主式交通系统运行架构模型;若用于构建所述自主式交通系统运行架构模型的系统动力学整体的起始是流,则有资源输入所述自主式交通系统运行架构模型的时间占比大于或等于预设值。
9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器读取并运行时,实现如权利要求1-8任一项所述的基于系统动力学的自主式交通系统模型构建方法。
10.一种基于系统动力学的自主式交通系统模型构建装置,其特征在于,包括存储有计算机程序的计算机可读存储介质和处理器,所述计算机程序被所述处理器读取并运行时,实现如权利要求1-8任一项所述的基于系统动力学的自主式交通系统模型构建方法。
CN202111097117.2A 2021-09-18 2021-09-18 基于系统动力学的自主式交通系统模型构建方法及装置 Active CN113553729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111097117.2A CN113553729B (zh) 2021-09-18 2021-09-18 基于系统动力学的自主式交通系统模型构建方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111097117.2A CN113553729B (zh) 2021-09-18 2021-09-18 基于系统动力学的自主式交通系统模型构建方法及装置

Publications (2)

Publication Number Publication Date
CN113553729A true CN113553729A (zh) 2021-10-26
CN113553729B CN113553729B (zh) 2022-03-18

Family

ID=78106598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111097117.2A Active CN113553729B (zh) 2021-09-18 2021-09-18 基于系统动力学的自主式交通系统模型构建方法及装置

Country Status (1)

Country Link
CN (1) CN113553729B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115114805A (zh) * 2022-08-26 2022-09-27 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构的信息交互对离散仿真方法
CN115114806A (zh) * 2022-08-29 2022-09-27 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构自主演进仿真方法
CN115640709A (zh) * 2022-12-26 2023-01-24 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构离散模型转换方法、装置及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412975A (zh) * 2013-07-11 2013-11-27 吴建平 动态交通仿真平台及其仿真方法
CN103531024A (zh) * 2013-10-28 2014-01-22 武汉旭云科技有限公司 一种动态交通路网城市道路要素模型及其建模方法
US20150088406A1 (en) * 2013-09-26 2015-03-26 International Business Machines Corporation Method and system for optimizing road traffic control in the presence of incidents
CN104765924A (zh) * 2015-04-13 2015-07-08 清华大学 城市交通应急疏散仿真系统及控制方法
CN110300018A (zh) * 2019-05-30 2019-10-01 武汉大学 一种面向对象的电网信息物理系统层次化建模方法
US20200001868A1 (en) * 2019-08-05 2020-01-02 Lg Electronics Inc. Method and apparatus for updating application based on data in an autonomous driving system
CN112224211A (zh) * 2020-10-19 2021-01-15 中交第一公路勘察设计研究院有限公司 基于多自主体交通流的驾驶模拟仿真系统
CN113010967A (zh) * 2021-04-22 2021-06-22 吉林大学 一种基于混合交通流模型的智能汽车在环仿真测试方法
CN113268850A (zh) * 2021-04-08 2021-08-17 武汉理工大学 一种基于多智能体和元胞自动机的过坝船舶交通高精度仿真方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412975A (zh) * 2013-07-11 2013-11-27 吴建平 动态交通仿真平台及其仿真方法
US20150088406A1 (en) * 2013-09-26 2015-03-26 International Business Machines Corporation Method and system for optimizing road traffic control in the presence of incidents
CN103531024A (zh) * 2013-10-28 2014-01-22 武汉旭云科技有限公司 一种动态交通路网城市道路要素模型及其建模方法
CN104765924A (zh) * 2015-04-13 2015-07-08 清华大学 城市交通应急疏散仿真系统及控制方法
CN110300018A (zh) * 2019-05-30 2019-10-01 武汉大学 一种面向对象的电网信息物理系统层次化建模方法
US20200001868A1 (en) * 2019-08-05 2020-01-02 Lg Electronics Inc. Method and apparatus for updating application based on data in an autonomous driving system
CN112224211A (zh) * 2020-10-19 2021-01-15 中交第一公路勘察设计研究院有限公司 基于多自主体交通流的驾驶模拟仿真系统
CN113268850A (zh) * 2021-04-08 2021-08-17 武汉理工大学 一种基于多智能体和元胞自动机的过坝船舶交通高精度仿真方法
CN113010967A (zh) * 2021-04-22 2021-06-22 吉林大学 一种基于混合交通流模型的智能汽车在环仿真测试方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
吴若乾: "基于渗流理论的城市交通网络瓶颈识别研究", 《城市交通》 *
杜健航等: "基于Paramics的城市路网交通控制策略评价系统研究", 《广东公路交通》 *
陈玉: "基于面向对象技术的城市交通仿真模型研究", 《科技资讯》 *
雷旭等: "多车道交通流理论与应用研究综述", 《长安大学学报(自然科学版)》 *
马爽等: "基于集合论的电网信息物理系统模型构建方法", 《电力系统自动化》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115114805A (zh) * 2022-08-26 2022-09-27 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构的信息交互对离散仿真方法
CN115114806A (zh) * 2022-08-29 2022-09-27 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构自主演进仿真方法
CN115114806B (zh) * 2022-08-29 2023-02-03 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构自主演进仿真方法
CN115640709A (zh) * 2022-12-26 2023-01-24 深圳市城市交通规划设计研究中心股份有限公司 自主式交通系统架构离散模型转换方法、装置及存储介质

Also Published As

Publication number Publication date
CN113553729B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN113553729B (zh) 基于系统动力学的自主式交通系统模型构建方法及装置
Qadri et al. State-of-art review of traffic signal control methods: challenges and opportunities
Srinivasan et al. Neural networks for real-time traffic signal control
van Wageningen-Kessels et al. Genealogy of traffic flow models
CN104951425B (zh) 一种基于深度学习的云服务性能自适应动作类型选择方法
Zhang et al. Evaluation of on-ramp control algorithms
US8185298B2 (en) Hybrid heuristic national airspace flight path optimization
Tomforde et al. Incremental design of adaptive systems
US20220237345A1 (en) Computing system for implementing and operating model describing target system, and method of predicting behavior of target system using the same
Wang et al. Car-following models for human-driven vehicles and autonomous vehicles: A systematic review
Hart et al. Formulation and validation of a car-following model based on deep reinforcement learning
CN112381470B (zh) 基于智能体的交通流量分配方法、设备及存储介质
Wong et al. Graph neural network based surrogate model of physics simulations for geometry design
Hawas Calibrating simulation models for advanced traveler information systems/advanced traffic management systems applications
Lipovszki et al. Simulating complex systems and processes in LabVIEW
Mandjes et al. A diffusion-based analysis of a multiclass road traffic network
Hillston Challenges for quantitative analysis of collective adaptive systems
CN115514787A (zh) 用于车联网环境的智能无人机辅助决策规划方法及装置
Alecsandru A stochastic mesoscopic cell-transmission model for operational analysis of large-scale transportation networks
CN115600421A (zh) 基于改进型Petri网的自主式交通系统演化模型的构建方法及装置、介质
CN112329962B (zh) 数据处理方法、装置、电子设备和存储介质
Khelifi et al. Lagrangian discretization of generic second order models: Application to traffic control
Michailidis et al. Kinetic part-feeding models for assembly lines in automotive industries
Caligaris et al. Model predictive control for multiclass freeway traffic
Wright et al. On node and route choice models for high-dimensional road networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant