CN113552078A - Road traffic source pollution real-time quantitative remote measurement system - Google Patents

Road traffic source pollution real-time quantitative remote measurement system Download PDF

Info

Publication number
CN113552078A
CN113552078A CN202110667011.5A CN202110667011A CN113552078A CN 113552078 A CN113552078 A CN 113552078A CN 202110667011 A CN202110667011 A CN 202110667011A CN 113552078 A CN113552078 A CN 113552078A
Authority
CN
China
Prior art keywords
module
road traffic
road
observation
pollutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110667011.5A
Other languages
Chinese (zh)
Other versions
CN113552078B (en
Inventor
刘瀚洋
刘诚
李启华
邢成志
谈伟
季祥光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202110667011.5A priority Critical patent/CN113552078B/en
Publication of CN113552078A publication Critical patent/CN113552078A/en
Application granted granted Critical
Publication of CN113552078B publication Critical patent/CN113552078B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1789Time resolved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Traffic Control Systems (AREA)

Abstract

The invention belongs to the technical field of atmospheric pollution monitoring, and particularly relates to a real-time quantitative remote measuring system for road traffic source pollution. The system comprises a spectrum acquisition module, a cradle head module, a meteorological monitoring module, a road traffic information acquisition module and a system control module; the two observation azimuth angles are respectively in two directions of a parallel road direction and an oblique crossing road direction by controlling the rotation of two motors in the holder module; the remote measuring system also comprises a calculation analysis module which is deployed at the remote data processing terminal; the calculation analysis module calculates pollutant emission flux of road traffic sources and pollutant emission amount of single vehicles in real time by using the pollutant information obtained in the spectrum acquisition module, the meteorological information observed by the meteorological monitoring module and the vehicle information obtained by the road traffic information acquisition module; the invention realizes the real-time automatic remote measurement of the remote road traffic source, and has the advantages of simple observation mode, easy realization and convenient operation.

Description

Road traffic source pollution real-time quantitative remote measurement system
Technical Field
The invention belongs to the technical field of atmospheric pollution monitoring, and particularly relates to a remote measuring system for road traffic source (such as nitrogen dioxide) pollution.
Background
With the improvement of the living standard of people, the demand of people for healthy living environment is higher and higher. However, with the development and progress of industrial technology, the quantity of motor vehicles in China is increased year by year, and tail gas discharged by road traffic vehicles becomes the largest pollution source of atmospheric pollution in many cities, which is called road traffic source pollution; the urban pollution type is converted from soot type pollution to mixed type or motor vehicle type pollution, and the pollution harms the health of people. The pollutants in the automobile exhaust mainly include carbon monoxide, nitrogen oxides (such as nitrogen dioxide), PM2.5 and the like. People in the vicinity of both sides of the road inhale pollutants discharged by automobiles, which have serious influence on the lung or other physiology of the human body, wherein nitrogen oxides can increase the cancer risk of the human body. The pollutant emission of automobiles is affected by different measuring places, different driving conditions (such as the gradient of a highway section, allowable speed limit, road engineering and the like), so that quantitative measurement of the influence of the pollutant emission of the automobiles on the surrounding environment during actual driving is in urgent need.
At present, a fixed-point air pollution monitoring station frequently uses a chemical sampling method, a TD-LAS method of a tunable semiconductor laser and the like for monitoring road pollutants. The monitoring station based on the chemical sampling method cannot quantify the gaseous pollutant emission of the whole road, and the TD-LAS method based on the infrared laser cannot obtain the numerical value of the nitrogen oxide of the main pollutants of the motor vehicle in an inversion mode.
Disclosure of Invention
In order to overcome the existing problems, the invention aims to provide a telemetering system capable of carrying out real-time and quantitative calculation on the pollution of motor vehicles of road traffic sources.
According to the real-time and quantitative telemetering system for the pollution of the road traffic source, the pollution of nitrogen dioxide and the like brought by the road traffic source in a specific road area is quantitatively calculated through the measured difference value obtained by simultaneous observation in two directions. The remote measuring system comprises an observation system, wherein the observation system comprises a spectrum acquisition module, a holder module, a meteorological monitoring module, a road traffic information acquisition module and a system control module; wherein:
the main body of the spectrum acquisition module is a super-resolution spectrometer which is used for acquiring a spectrum of 300nm-400nm and obtaining the concentration value of pollutants such as nitrogen dioxide and the like by a hyper-spectral analysis technology based on the Lambert-beer law;
the holder module comprises an elevation motor and an azimuth motor; wherein, the rotation of the motor can be controlled by software, so as to change the observation azimuth angle and the elevation angles of the two observation directions;
the weather monitoring module comprises a DHT22 temperature and humidity sensor, a BMP085 atmospheric pressure sensor and a wind direction and wind speed sensor; the system comprises a DHT22 temperature and humidity sensor, a BMP085 sensor, a wind direction and wind speed sensor, a temperature and humidity sensor, a wind direction and wind speed sensor and a humidity sensor, wherein the DHT22 temperature and humidity sensor is used for measuring the temperature value and the relative humidity value of the atmosphere, the BMP085 sensor is used for measuring the atmospheric pressure value, and the wind direction and wind speed sensor is used for measuring the wind direction value and the wind speed value;
the road traffic information acquisition module comprises a telescopic frame rod, a traffic monitoring camera and a DSP image processor; the traffic monitoring camera is arranged on the telescopic frame rod and used for shooting and acquiring the quantity information and the type information of vehicles of an observed road traffic source, processing the information by the DSP image processor and synchronously sending the information to the remote data processing terminal;
the system control module comprises an STM32 controller and a data control terminal; the STM32 controller is used for controlling cloud platform module motor, and data control terminal is arranged in controlling sensor data acquisition among super resolution spectrometer and the meteorological monitoring module.
Because the total pollutant amount of the observation direction of the obliquely penetrated road is subtracted from the reference direction, the pollutant emission condition of a road traffic source can be effectively reflected, the telemetering system of the invention needs to be placed at one end of an upwind direction, and two observation azimuth angles can be respectively in two directions of a parallel road direction and an obliquely penetrated road direction by controlling the rotation of two motors in the holder module; and both directions are to ensure that there are no obstructions to the optical path within the effective optical path length L.
The telemetering system also comprises a calculation analysis module, wherein the calculation analysis module is deployed at a remote data processing terminal and is used for calculating the pollutant emission flux of the road traffic source in real time.
The calculation analysis module calculates pollutant emission flux of the road traffic source by using the pollutant information obtained in the spectrum acquisition module, the meteorological information observed by the meteorological monitoring module and the vehicle information obtained by the road traffic information acquisition module; the method specifically comprises the following steps:
(1) calculating the optical path length L of the observation direction, and determining the observation range of the direction;
(2) determining a road traffic source observation range M by utilizing a sine theorem according to real-time wind direction data provided by a wind direction and wind speed sensor in a meteorological monitoring module;
(3) and calculating the pollutant emission flux of the road by combining the total light path concentration of the pollutants in the observation direction and the reference direction obtained by the instrument with the wind direction and wind speed data obtained in the meteorological monitoring module.
(1) Calculation of effective light path length L:
under daily sunny weather conditions, by utilizing the relatively stable property of the oxygen dimer O4 in the proportion of the oxygen dimer in the atmosphere, the effective optical path L can be calculated by the temperature T, the relative humidity H and the pressure P, and the formula is as follows:
Figure BDA0003117792760000021
wherein the content of the first and second substances,
Figure BDA0003117792760000022
is the total concentration of the oxygen dimer light path obtained by the inversion of a super-resolution spectrometer, and the unit is molec (cm)-2The spectrum acquired by the spectrometer is obtained by inverting the spectrum by using an atmospheric environment nonlinear least square algorithm. Temperature T in Kelvin, pressureP is expressed in units of hectopa, NAThe AlVogalois constant is calculated as constant 6.02 × 1023, R is ideal gas constant and constant 8.3145 J.mol-1·K-1And L has units of kilometers.
(2) Calculating an observation range M of the road traffic source:
the specific calculation formula is as follows:
Figure BDA0003117792760000031
wherein, the unit of M is kilometer,
Figure BDA0003117792760000032
the included angle between the average wind direction and the road direction in the observation period is theta, and the included angle between the observation direction of the instrument and the road direction is theta.
(3) Calculating the road pollutant emission flux:
and (3) combining the total concentration of the light path with the wind direction and wind speed data to realize the calculation of the pollutant discharge flux of the traffic source in the road range:
calculating the concentration difference of pollutants in two observation directions:
dPTC=PTCtar–PTCref; (3)
the total concentration of the light path is defined as PTC, and the total concentration of the light path in the direction of the pollutant is defined as PTCtarThe total concentration of the range pollutant light path observed in the reference direction is set as PTCrefdPTC is total concentration of differential optical path in units of molec (cm)-2I.e. number of molecules per square centimeter;
calculating the total pollutant concentration VTC in the vertical direction:
and determining the obtained vertical wind speed as the diffusion speed of the total pollutant amount in the range of the observed road traffic source, wherein the obtained differential light path total concentration dPTC can be converted into the vertical total concentration VTC by a geometric approximation method:
VTC=dPTC·sin(α); (4)
the unit of the vertical total concentration VTC and the unit of the differential optical path total concentration dPTC are both molecular number/square centimeter, alpha is an observation elevation angle, and can be 30 degrees, because 30 degrees can well realize the conversion of the vertical total concentration and the optical path total concentration in actual use, and the emission of gaseous pollutants of a road close to the ground can be reasonably reflected while avoiding the shielding of a building;
③ pollutant discharge flux E of road traffic sources:
the wind speed perpendicular to the reference direction (i.e. the direction of travel of the road vehicle) is first calculated:
Figure BDA0003117792760000033
Vthe wind speed is indicated in a vertical reference direction,
Figure BDA0003117792760000034
in order to observe the average wind speed over the time frame,
Figure BDA0003117792760000035
and VThe units of (A) are meters per second;
the obtained VTC and the wind speed value VMultiplying, and then obtaining the pollutant discharge flux E of the road traffic source:
E=V·VTC; (6)
e is the discharge flux in units of molec (ms)-1
Fourthly, calculating the pollutant discharge amount of the bicycle:
obtaining a video signal according to a camera in a traffic parameter acquisition module, obtaining the number of observed motor vehicles and the running condition thereof by processing of a DSP signal processor, obtaining the passing number of different types of automobiles in a specific time period, calculating the pollutant emission influence of different types of single vehicles according to the pollutant emission flux in the time period, assuming that the throughput of a heavy-duty diesel vehicle is m and the throughput of a light-duty vehicle is n in the time period, and obtaining a single vehicle emission expression according to the heavy-duty diesel vehicle pollutant emission limit value and measurement method (the sixth stage in China) and the light-duty vehicle pollutant emission limit value and measurement method (the sixth stage in China) issued by the environmental protection department and the national quality control agency, wherein the ratio of the standard emission of the heavy-duty vehicle to the light-duty vehicle pollutant is k:
Figure BDA0003117792760000041
Figure BDA0003117792760000042
E1emission of light-duty vehicles in the target time period, E2The emission of the heavy-duty diesel vehicle in the target time period is shown, and E is the calculated total road emission flux.
The road traffic source pollution real-time and quantitative remote measuring system provided by the invention simultaneously obtains the main pollution gas flux of the motor vehicles such as nitrogen dioxide and the like based on a hyper-spectral analysis technology, realizes the remote measurement and quantitative calculation of the pollution flux of the motor vehicles on the road, and carries out the detailed calculation of the emission of each running vehicle on the road; the monitoring means of the road traffic source in the region are enriched, and the atmospheric pollution monitoring efficiency of the road traffic source is improved.
The invention has the advantages that:
(1) the requirement of observing pollution of road traffic sources in a specific time period is met, and the observation flexibility is strong;
(2) the method is simple and easy to operate, and the instrument is high in mobility;
(3) the whole process from data acquisition to the data processing terminal is formed by building the whole system from the observation equipment to the remote data processing terminal, and the acquisition of real-time observation results can be realized.
Drawings
FIG. 1 is an overall conceptual diagram of a telemetry system of the present invention.
FIG. 2 is a schematic diagram of the calculation of determining the road traffic source range M according to the present invention.
FIG. 3 is a schematic diagram of a telemetry system of the present invention.
FIG. 4 is a block diagram of a computational analysis module according to the present invention.
Figure 5 is a graph of the total daily nitrogen dioxide contaminant amount in an example of the invention.
Fig. 6 is a schematic view of the present invention in an example of the present invention when the vehicle is weighed.
Detailed Description
The technical solution of the present invention will be further described with reference to the accompanying drawings and examples. All other embodiments, which can be derived by a person skilled in the art from the embodiments of the present invention without making any creative effort, shall fall within the protection scope of the present invention.
The invention provides a real-time road traffic source pollution remote measuring system, which is shown in figure 1. The observation target is selected as a certain section of Jinzhai road in Hefei city, Anhui province. The instrument building site is positioned on the roof of the first teaching building in the east school district of the university of Chinese science and technology: the main body of the spectrograph is arranged at a proper position at the windward side of an observation target road, and the position selection principle is to ensure that no tall buildings or other shelters blocking the light path exist on the observation direction path (the effective observation range is about 3-4km under normal sunny weather) of a parallel road and an obliquely-penetrated road.
On the experimental day (11 months and 3 days 2020), the temperature T and the pressure P obtained by the meteorological monitoring module of the instrument and the total concentration PTC of the light path measured by the instrument are usedO4The daily average effective optical length L was calculated to be 3 km.
And adjusting parameters of the spectrometer module according to the observation task requirement, such as adjusting the observation elevation angle and the time resolution, to obtain a spectrum with a certain time scale and high time resolution, wherein the observation elevation angle is set to be 30 degrees and the time resolution is set to be 30s on the same day. Thereby obtaining the total concentration information of the pollutant optical path (taking nitrogen dioxide as an example) on the same day as that of fig. 5. The figure is shown with curves of different colors.
And the real-time meteorological data of the temperature value T, the relative humidity value H, the atmospheric pressure value P, the wind direction W and the wind speed S are obtained by utilizing the meteorological monitoring module, and the terminal wind direction and wind speed information and the included angle between the road and the observation direction are processed to calculate the length M of the road traffic source pollution observation range. Where M is in kilometers.
Target road side for current day observation28 degrees north, 104 degrees north and west, 4.2 m/s wind speed, 38 degrees observation direction theta,
Figure BDA0003117792760000051
is 48 deg..
Figure BDA0003117792760000052
The road distance length M observed on the day is 4.8 kilometers.
The vehicle data of the current traffic motor vehicle is shown in fig. 6, and it can be seen that the vehicle flow rate variation trend is the same as the time variation trend of the nitrogen dioxide concentration difference dPTC in the observation direction.
Figure BDA0003117792760000053
The wind speed in the vertical reference direction was calculated to be 3.1 m/s.
The calculation of the emission flux can then be done at the processing terminal according to the relevant calculation method. Namely nitrogen dioxide emissions to the surroundings in the target road traffic source range M and emissions to the surroundings of the individual vehicle during driving.
The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and different calculation methods of the relevant parameters are possible in different embodiments, but any modification, equivalent replacement, improvement, etc. made within the method system and principle of the present invention should be included in the protection scope of the present invention.

Claims (3)

1. A road traffic source pollution real-time quantitative remote measuring system is characterized in that nitrogen dioxide and other pollution brought by road traffic sources in a specific road area are quantitatively calculated through measurement difference values obtained by simultaneous observation in two directions; the remote measuring system comprises an observation system, wherein the observation system comprises a spectrum acquisition module, a holder module, a meteorological monitoring module, a road traffic information acquisition module and a system control module; wherein:
the main body of the spectrum acquisition module is a super-resolution spectrometer and is used for acquiring a spectrum of 300nm-400nm and obtaining a concentration value of a pollutant through a hyper-spectral analysis technology based on the Lambert-beer law;
the holder module comprises an elevation motor and an azimuth motor; wherein, the rotation of the motor is controlled by software, so as to change the observation azimuth angle and the elevation angles of the two observation directions;
the weather monitoring module comprises a DHT22 temperature and humidity sensor, a BMP085 atmospheric pressure sensor and a wind direction and wind speed sensor; the system comprises a DHT22 temperature and humidity sensor, a BMP085 sensor, a wind direction and wind speed sensor, a temperature and humidity sensor, a wind direction and wind speed sensor and a humidity sensor, wherein the DHT22 temperature and humidity sensor is used for measuring the temperature value and the relative humidity value of the atmosphere, the BMP085 sensor is used for measuring the atmospheric pressure value, and the wind direction and wind speed sensor is used for measuring the wind direction value and the wind speed value;
the road traffic information acquisition module comprises a telescopic frame rod, a traffic monitoring camera and a DSP image processor; the traffic monitoring camera is arranged on the telescopic frame rod and used for shooting and acquiring the quantity information and the type information of vehicles of an observed road traffic source, processing the information by the DSP image processor and synchronously sending the information to the remote data processing terminal;
the system control module comprises an STM32 controller and a data control terminal; the STM32 controller is used for controlling a cradle head module motor, and the data control terminal is used for controlling the data acquisition of the sensor in the super-resolution spectrometer and the meteorological monitoring module;
the remote measuring system is placed at one end of an upwind direction, and two observation azimuth angles are respectively in two directions of a parallel road direction and an oblique crossing road direction by controlling the rotation of two motors in the holder module; and both directions ensure that there are no obstructions obstructing the optical path within the effective optical path L.
2. The telemetry system of claim 1 further comprising a computational analysis module deployed at the remote data processing terminal; the calculation analysis module calculates pollutant emission flux of road traffic sources in real time by using the pollutant information obtained in the spectrum acquisition module, the meteorological information observed by the meteorological monitoring module and the vehicle information obtained by the road traffic information acquisition module; the method specifically comprises the following steps:
(1) calculating the optical path length L of the observation direction, and determining the observation range of the direction;
under daily sunny weather conditions, by utilizing the relatively stable property of the oxygen dimer O4 in the proportion of the oxygen dimer in the atmosphere, the effective optical path length L is calculated through the temperature T, the relative humidity H and the pressure P, and the formula is as follows:
Figure FDA0003117792750000011
wherein the content of the first and second substances,
Figure FDA0003117792750000012
is the total concentration of the oxygen dimer light path obtained by the inversion of a super-resolution spectrometer, and the unit is molec (cm)-2The spectrum acquired by the spectrometer is obtained by inverting the spectrum by using an atmospheric environment nonlinear least square algorithm; temperature T in Kelvin and pressure P in Pascal, NAIs an Avogastron constant, and is calculated to be constant 6.02 × 1023R is an ideal gas constant, and the unit of L is kilometer;
(2) according to real-time wind direction data provided by a wind direction and wind speed sensor in a meteorological monitoring module, determining a road traffic source observation range M by utilizing a sine theorem, wherein a specific calculation formula is as follows:
Figure FDA0003117792750000021
wherein, the unit of M is kilometer,
Figure FDA0003117792750000022
clip for observing average wind direction and road direction in periodThe angle theta is an included angle between the observation direction of the instrument and the road direction;
(3) calculating the pollutant emission flux of the road by combining the total light path concentration of the pollutants in the observation direction and the reference direction obtained by the instrument with the wind direction and wind speed data obtained in the meteorological monitoring module;
calculating the concentration difference of pollutants in two observation directions:
dPTC=PTCtar–PTCref; (3)
the total concentration of the light path is defined as PTC, PTCtarIs the total concentration of the light path in the direction of the pollutant, PTCrefThe total concentration of the range pollutant light path observed in the reference direction and dPTC are the total concentration of the differential light path, and the unit is molec (cm)-2I.e. number of molecules per square centimeter;
calculating the total pollutant concentration VTC in the vertical direction:
and determining the obtained vertical wind speed as the diffusion speed of the total pollutant amount in the range of the observed road traffic source, wherein the obtained differential light path total concentration dPTC can be converted into the vertical total concentration VTC by a geometric approximation method:
VTC=dPTC·sin(α); (4)
wherein, the unit of the vertical total concentration VTC and the unit of the differential optical path total concentration dPTC are both molecular number/square centimeter, and alpha is an observation elevation angle;
③ pollutant discharge flux E of road traffic sources:
firstly, calculating the wind speed perpendicular to the reference direction, namely the driving direction of the road motor vehicle:
Figure FDA0003117792750000023
Vthe wind speed is indicated in a vertical reference direction,
Figure FDA0003117792750000024
in order to observe the average wind speed over the time frame,
Figure FDA0003117792750000025
and VThe units of (A) are meters per second;
the obtained VTC and the wind speed value VMultiplying to obtain the pollutant emission flux E of the road traffic source:
E=V·VTC; (6)
e is the discharge flux in units of molec (ms)-1
3. The telemetry system of claim 2 wherein the computational analysis module further comprises a single vehicle pollutant emission: video signals obtained by a camera in the road traffic information acquisition module are processed by a DSP signal processor to obtain the number of observed motor vehicles and the running condition thereof, the passing number of different types of automobiles in a specific time period is obtained, and a single vehicle pollutant emission expression is obtained by combining the standard emission ratio of heavy vehicles and light vehicles as k:
Figure FDA0003117792750000031
Figure FDA0003117792750000032
E1emission of light-duty vehicles in the target time period, E2And E is the calculated total road emission flux, the throughput of the heavy diesel vehicle is m, and the throughput of the light diesel vehicle is n.
CN202110667011.5A 2021-06-16 2021-06-16 Road traffic source pollution real-time quantitative remote measurement system Active CN113552078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110667011.5A CN113552078B (en) 2021-06-16 2021-06-16 Road traffic source pollution real-time quantitative remote measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110667011.5A CN113552078B (en) 2021-06-16 2021-06-16 Road traffic source pollution real-time quantitative remote measurement system

Publications (2)

Publication Number Publication Date
CN113552078A true CN113552078A (en) 2021-10-26
CN113552078B CN113552078B (en) 2022-09-20

Family

ID=78130591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110667011.5A Active CN113552078B (en) 2021-06-16 2021-06-16 Road traffic source pollution real-time quantitative remote measurement system

Country Status (1)

Country Link
CN (1) CN113552078B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116448949A (en) * 2023-03-22 2023-07-18 宁波远亚车辆检测有限公司 Automobile pollutant detection method, system, intelligent terminal and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297117A (en) * 2014-10-23 2015-01-21 浙江省环境保护科学设计研究院 Scenic area road traffic pollution early-warning device based on remote sensing technique and scenic area road traffic pollution early-warning method based on remote sensing technique
CN106840260A (en) * 2017-01-24 2017-06-13 安徽庆宇光电科技有限公司 Automobile pollution source on-line monitoring system
CN108088953A (en) * 2017-11-13 2018-05-29 中电科华北网络信息安全有限公司 Road exhaust pollutant monitoring method and its monitoring device in a kind of traveling process
CN110411950A (en) * 2019-06-13 2019-11-05 中国科学院合肥物质科学研究院 The method that difference absorption spectrum instrument acquisition overhead point source gas chromatographic data is imaged
WO2019224545A2 (en) * 2018-05-24 2019-11-28 Vortex IoT Limited A system for detecting air pollution
CN210666071U (en) * 2019-09-20 2020-06-02 福建农林大学 Real-time intelligent road weather acquisition system
CN111356909A (en) * 2017-11-16 2020-06-30 多传感器科学公司 System and method for multispectral imaging and gas detection using scanning illuminator and optical sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297117A (en) * 2014-10-23 2015-01-21 浙江省环境保护科学设计研究院 Scenic area road traffic pollution early-warning device based on remote sensing technique and scenic area road traffic pollution early-warning method based on remote sensing technique
CN106840260A (en) * 2017-01-24 2017-06-13 安徽庆宇光电科技有限公司 Automobile pollution source on-line monitoring system
CN108088953A (en) * 2017-11-13 2018-05-29 中电科华北网络信息安全有限公司 Road exhaust pollutant monitoring method and its monitoring device in a kind of traveling process
CN111356909A (en) * 2017-11-16 2020-06-30 多传感器科学公司 System and method for multispectral imaging and gas detection using scanning illuminator and optical sensor
WO2019224545A2 (en) * 2018-05-24 2019-11-28 Vortex IoT Limited A system for detecting air pollution
CN110411950A (en) * 2019-06-13 2019-11-05 中国科学院合肥物质科学研究院 The method that difference absorption spectrum instrument acquisition overhead point source gas chromatographic data is imaged
CN210666071U (en) * 2019-09-20 2020-06-02 福建农林大学 Real-time intelligent road weather acquisition system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王珊珊 等: ""上海高架道路上空空气质量分析"", 《复旦学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116448949A (en) * 2023-03-22 2023-07-18 宁波远亚车辆检测有限公司 Automobile pollutant detection method, system, intelligent terminal and storage medium
CN116448949B (en) * 2023-03-22 2023-10-31 宁波远亚车辆检测有限公司 Automobile pollutant detection method, system, intelligent terminal and storage medium

Also Published As

Publication number Publication date
CN113552078B (en) 2022-09-20

Similar Documents

Publication Publication Date Title
Liu et al. Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment
Bukowiecki et al. A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution
WO2021088397A1 (en) Diesel vehicle gaseous exhaust pollutant remote sensing test system and method
Hitchins et al. Concentrations of submicrometre particles from vehicle emissions near a major road
Wehner et al. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004–2006
Cheung et al. Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China
WO2023207579A1 (en) Method for detecting traffic pollution source via horizontal distribution of trace gas on basis of hyperspectral remote sensing
Řimnáčová et al. Atmospheric aerosols in suburb of Prague: The dynamics of particle size distributions
CN113552078B (en) Road traffic source pollution real-time quantitative remote measurement system
Vogt et al. The relationship between 0.25–2.5 μm aerosol and CO 2 emissions over a city
Noll et al. A comparison of three highway line source dispersion models
You et al. Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto
Xu et al. Aerosol size distributions in urban Jinan: Seasonal characteristics and variations between weekdays and weekends in a heavily polluted atmosphere
CN115185292A (en) Air pollution intelligent monitoring method and platform based on ground-air integration
CN109061071A (en) Heavy-duty car exhaust emissions follow the bus test macro and test method
Molnar et al. Elemental composition of atmospheric aerosol particles under different conditions in Hungary
Corsmeier et al. BAB II: a project to evaluate the accuracy of real-world traffic emissions for a motorway
Nanzetta et al. Roadside particle number distributions and relationships between number concentrations, meteorology, and traffic along a northern California freeway
CN109406353B (en) Unmanned aerial vehicle, air pollution monitoring system and method
Schafer et al. Field measurements within a quarter of a city including a street canyon to produce a validation data set
Henninger et al. Methodology for mobile measurements of carbon dioxide within the urban canopy layer
CN111089846A (en) Pollution source emission flux measurement method for synchronous observation of airborne DOAS and vehicle-mounted DOAS
Hertel et al. Assessing the impacts of traffic air pollution on human exposure and health
Samad et al. Assessing the Effect of Traffic Density and Cold Airflows on the Urban Air Quality of a City with Complex Topography Using Continuous Measurements
Liu et al. A comprehensive research of atmospheric haze by optical remote sensing in Central China Region (CCR)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant