CN113545280B - 一种基于植株萎蔫程度进行精准灌溉的系统及方法 - Google Patents
一种基于植株萎蔫程度进行精准灌溉的系统及方法 Download PDFInfo
- Publication number
- CN113545280B CN113545280B CN202110971230.2A CN202110971230A CN113545280B CN 113545280 B CN113545280 B CN 113545280B CN 202110971230 A CN202110971230 A CN 202110971230A CN 113545280 B CN113545280 B CN 113545280B
- Authority
- CN
- China
- Prior art keywords
- plant
- image
- information
- confidence
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
- A01G25/162—Sequential operation
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Image Analysis (AREA)
Abstract
本申请提出一种基于植株萎蔫程度进行精准灌溉的系统及方法,包括:图像采集模块,通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;图像预处理模块,所述图像预处理模块用于完成图像的预处理,包括图像裁剪、增强、色彩空间转化处理;需水量预测模块,将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;灌溉控制模块,根据预测出的所述植株的预测需水量形成控制指令,以进行定时定量的供水。本发明仅需识别叶片以及茎部的植株特征变能准确估算出缺水量,而且利用所提出的损失函数、池化方法以及激励函数,能提升模型训练的速度以及预测的精度。
Description
技术领域
本发明属于农业植物灌溉技术领域,尤其涉及一种基于植株萎蔫程度进行精准灌溉的系统及方法
背景技术
我国园艺设施面积已达2840万亩,其中,日光温室约占31%,种植蔬菜种类主要包含辣椒、番茄、黄瓜、茄子等。设施反季节栽培已成为人们日常蔬菜供应重要的组成部分。但是,在实际生产过程中,生产者多凭借经验进行粗放灌溉,造成水资源浪费,降低肥料资源利用效率和果实品质。因此,实现基于蔬菜水分需求规律和的外界环境精准灌溉对于节水提质变得尤为重要。
中国专利文献CN 109845625 A公开了一种基于神经网络的多维参量农作物智能灌溉控制方法,通过采集当前灌溉农田的雨量信息、土壤墒情信息、风速信息、温湿度信息、光照强度信息及流量信息等参量,基于神经网络建立以农作物需水信号为响应信息的农作物需水量模型,通过该模型对农作物多维环境参量进行计算处理,最终预测出当前农田农作物的需水量,控制器通过对需水量、降雨量及土壤墒情做出综合判决结果并根据判决结果控制电磁阀,实现对农作物的灌溉。该技术方案虽然考虑影响灌溉需水量的因素较全面,所构建的模型十分简单,需水量预测结果精度不高。
实际上,无论是降水量和/或供水量、土壤湿度等都会影响植株的水分需求量,但是植株缺水量的多少,最终直接体现在植株的叶片以及茎部上,因此将缺水量多少问题转化为对叶片以及茎部特征的识别问题,即可完成缺水量的预测问题。为解决上述问题,本发明提出利用所提出的深度神经网络进行智能水分精准灌溉控制,极大提高了需水量的预测精度,同时考虑多片叶子的缺水特征以及茎部的缺水特征,形成多个置信网络,对其进行融合判断,综合得出植株的需水量。
本申请的创造性贡献在于:
1.本申请利用一种基于植株萎蔫程度进行精准灌溉的系统及方法,实现了植株的精准灌溉控制,针对多个叶片和茎部缺水特征,形成多个置信度判断网络,综合得出植株需水量,防止个别叶片存在特殊病变等情况影响判断的准确性。
2.本申请为了提升需水量的预测精度和训练速度,在预处理、分割、池化层、激励函数、损失函数的使用上,都采用了新的算法,以整体上提高深度神经网络的训练的精度和速度。在灌溉控制领域,属于申请人首次提出,因此并非常规技术手段或公知常识。
3.在叶片的预处理上,针对绝大部分植株叶片都是绿色的特点,对于识别到的叶片,增强其G分量,相对抑制其R、B分量,有利于提升需求量预测判断的准确性。
发明内容
为更准确理解本发明,需先简要理解回顾下面的基本概念。
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像、声音和文本。同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同。例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
卷积神经网络(Convolutional Neural Networks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deeplearning)的代表算法之一。
深度卷积神经网络DCNN,则是具有多个CNN层的网络结构。
深度神经网络中经常采用的激励函数如下:sigmoid函数,tanh函数,ReLU函数。
sigmoid函数,该函数是将取值为(-∞,+∞)的数映射到(0,1)之间。sigmoid函数的公式如下:
sigmoid函数作为非线性激活函数,但是其并不被经常使用,它具有以下几个缺点:
(1)当z值非常大或者非常小时,sigmoid函数的导数g′(z)将接近0。这会导致权重W的梯度将接近0,使得梯度更新十分缓慢,即梯度消失。
tanh函数在0附近很短一段区域内可看做线性的。由于tanh函数均值为0,因此弥补了sigmoid函数均值为0.5的缺点。
ReLU函数,ReLU函数又称为修正线性单元(Rectified Linear Unit),是一种分段线性函数,其弥补了sigmoid函数以及tanh函数的梯度消失问题。ReLU函数的公式如下:
ReLU函数的优点:
(1)在输入为正数的时候(对于大多数输入z空间来说),不存在梯度消失问题。
(2)计算速度要快很多。ReLU函数只有线性关系,不管是前向传播还是反向传播,都比sigmod和tanh要快很多。
ReLU函数的缺点:
(1)当输入为负时,梯度为0,会产生梯度消失问题。
在本领域技术人员都能够理解上述基本概念及常规操作方式的基础上,本发明一种基于植株萎蔫程度进行精准灌溉的系统,所述系统包括:
图像采集模块,通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;
图像预处理模块,所述图像预处理模块用于完成图像的预处理,包括图像裁剪、分割、增强中的至少一项;
需水量预测模块,将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;
灌溉控制模块,根据预测出的所述植株的预测需水量形成控制指令,以进行定时定量的供水。
进一步,可选的,所述预处理还包括:图像信息的筛选,剔除不满足清晰度要求或未能包含至少一片完整叶片的图像;所述图像裁剪包括:将获得的图像信息进行裁剪,获得叶片信息及茎部信息,并建立叶片与该植株茎部之间的对应关系。
进一步,可选的,所述预处理还包括:将RGB空间中的R与B分量进行色彩抑制,将G通道分量进行增强。
进一步,可选的,所述深度神经网络具体包括多区域卷积神经网络模型,所述多区域卷积神经网络模型包括:深度卷积神经网络,用于生成原始叶片的映射特征;多区域置信网络模型,包括多个区域的置信网络模型,用于对所述植株的当前状态生成不同需水量的多个不同置信度值,对多个区域的不同置信度值进行拟合,确定出在不同区域中置信度值都相对较大的置信度值,将其对应的需水量确定为植株的需水量。
进一步,可选的,所述多区域置信网络模型包括多区域池化层和完全连接层,多区域池化层包括多个区域的池化层,池化层个数为1,池化层还可替换成完全连接层;所述池化层用于生成置信度。
对应的,本发明还提出了一种基于植株萎蔫程度进行精准灌溉的方法,所述方法包括:
通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;
利用图像预处理模块完成图像的预处理,包括图像裁剪、分割、增强中的至少一项;
将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;
根据预测出的所述植株的预测需水量形成控制指令,以进行定时定量的供水。
进一步,可选的,所述预处理还包括:图像信息的筛选,剔除不满足清晰度要求或未能包含至少一片完整叶片的图像;所述图像裁剪包括:将获得的图像信息进行裁剪,获得叶片信息及茎部信息,并建立叶片与该植株茎部之间的对应关系。
进一步,可选的,所述预处理还包括:将RGB空间中的R与B分量进行色彩抑制,将G通道分量进行增强。
进一步,可选的,所述深度神经网络具体包括多区域卷积神经网络模型,所述多区域卷积神经网络模型包括:深度卷积神经网络,用于生成原始叶片的映射特征;多区域置信网络模型,包括多个区域的置信网络模型,用于对所述植株的当前状态生成不同需水量的多个不同置信度值,对多个区域的不同置信度值进行拟合,确定出在不同区域中置信度值都相对较大的置信度值,将其对应的需水量确定为植株的需水量。
进一步,可选的,所述多区域置信网络模型包括多区域池化层和完全连接层,多区域池化层包括多个区域的池化层,池化层个数为1,池化层还可替换成完全连接层;所述池化层用于生成置信度。
本申请还对应提出了一种计算机存储介质,所述存储介质上存储有程序代码,所述代码用于实现上述任一种所述的方法。
本申请还对应提出了一种计算机设备,所述设备包括处理器、存储器,所述存储器上存储有计算机指令,所述指令用于实现上述任一种所述的方法。
再次陈述本申请的有益效果:
1.本申请利用一种基于植株萎蔫程度进行精准灌溉的系统及方法,实现了植株的精准灌溉控制,针对多个叶片和茎部缺水特征,形成多个置信度判断网络,综合得出植株需水量,防止个别叶片存在特殊病变等情况影响判断的准确性。
2.本申请为了提升需水量的预测精度和训练速度,在池化层、激励函数、损失函数的使用上,都采用了新的算法,以整体上提高深度神经网络的训练的精度和速度。在灌溉控制领域,属于申请人首次提出,因此并非常规技术手段或公知常识。
3.在叶片的预处理上,针对绝大部分植株叶片都是绿色的特点,对于识别到的叶片,增强其G分量,相对抑制其R、B分量,有利于提升需求量预测判断的准确性。
附图说明
图1表示本申请的基本实施例的结构示意图
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,本申请提出了一种本发明一种基于植株萎蔫程度进行精准灌溉的系统,所述系统包括:
图像采集模块,通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;
图像预处理模块,所述图像预处理模块用于完成图像的预处理,包括图像裁剪、分割、增强中的至少一项;
需水量预测模块,将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;
灌溉控制模块,根据预测出的所述植株的预测需水量形成控制指令,以进行定时定量的供水。
进一步,可选的,所述预处理还包括:图像信息的筛选,剔除不满足清晰度要求或未能包含至少一片完整叶片的图像;所述图像裁剪包括:将获得的图像信息进行裁剪,获得叶片信息及茎部信息,并建立叶片与该植株茎部之间的对应关系。
进一步,可选的,所述预处理还包括:将RGB空间中的R与B分量进行色彩抑制,将G通道分量进行增强。
进一步,可选的,所述深度神经网络具体包括多区域卷积神经网络模型,所述多区域卷积神经网络模型包括:深度卷积神经网络,用于生成原始叶片的映射特征;多区域置信网络模型,包括多个区域的置信网络模型,用于对所述植株的当前状态生成不同需水量的多个不同置信度值,对多个区域的不同置信度值进行拟合,确定出在不同区域中置信度值都相对较大的置信度值,将其对应的需水量确定为植株的需水量。
进一步,可选的,所述多区域置信网络模型包括多区域池化层和完全连接层,多区域池化层包括多个区域的池化层,池化层个数为1,池化层还可替换成完全连接层;所述池化层用于生成置信度。
利用调整后的GF逆向合成叶片图像;
其中各分量的分解及合成属于本领域的现有技术,但是上述调节方式是本发明人的首创,经过上述调整,能够充分利用叶片的绿色通道信息,使得后续的预测经过更加准确。
进一步,可选的,所述图像分割采用了改进的分水岭分割方式进行分割:
S=watershed(Gra)
进一步,可选的,所述深度神经网络包括深度卷积神经网络及多区域置信网络,所述深度卷积神经网络,用于生成分割出的各叶片及茎部特征;多区域置信网络为包括多个叶片区域以及茎部区域的置信网络模型,用于对多个不同叶片及茎部的缺水程度产生置信度值,当至少两个叶片区域的置信度值以及对应茎部区域的置信度值均满足预设的第一阈值等级范围(对应于叶片)、第二阈值等级范围(对应于茎部)时,则确定植株的需水量。
进一步,可选的,所述深度神经网络包括深度卷积神经网络及多区域置信网络,所述深度卷积神经网络能够接收输入植株的分割后叶片及茎部图像,并生成不同尺度的卷积多特征映射;所述多区域置信网络模型包括多区域池化层和完全连接层;其中,所述多区域池化层包括多个区域池化层;所述多个区域池化层用于生成植株图像需水量的置信度值,当至少两个叶片区域的置信度值以及对应茎部区域的置信度值均满足预设的第一阈值等级范围(对应于叶片)、第二阈值等级范围(对应于茎部)时,则确定植株的需水量;所述多区域池化层设置为最大池化层或平均池化层;所述完全连接层用于对识别到的叶片及茎部缺水程度进行分类。
进一步,可选的,所述深度神经网络为深度卷积神经网络,具体包括:输入层、嵌入层、池化层、全连接层;所述输入层用于接收输入植株的分割后叶片及茎部图像;所述嵌入层采用的卷积核大小为5*5;本发明的激励函数记为RL();经过全连接层处理后进一步得到需水量预测推荐结果;
所述池化层的池化方法如下:
Rl()表示激励函数,we表示当前层的权重,φ表示损失函数,xe-1表示上一层的输出;
激励函数RL为:
所述损失函数φ如下:
N表示正样本数据集的大小,i取值1~N,yi表示正样本xi对应的标签值;Wyi表示正样本特征向量xi在其标签yi处的权重,s为深度卷积神经网络的推荐参数;bj表示样本xi在其标签yi处的偏差。
对应的,本发明还提出了一种基于植株萎蔫程度进行精准灌溉的方法,所述方法包括:
通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;
利用图像预处理模块完成图像的预处理,包括图像裁剪、分割、增强中的至少一项;
将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;
根据预测出的所述植株的预测需水量形成控制指令,以进行定时定量的供水。
进一步,可选的,所述预处理还包括:图像信息的筛选,剔除不满足清晰度要求或未能包含至少一片完整叶片的图像;所述图像裁剪包括:将获得的图像信息进行裁剪,获得叶片信息及茎部信息,并建立叶片与该植株茎部之间的对应关系。
进一步,可选的,所述预处理还包括:将RGB空间中的R与B分量进行色彩抑制,将G通道分量进行增强。
进一步,可选的,所述深度神经网络具体包括多区域卷积神经网络模型,所述多区域卷积神经网络模型包括:深度卷积神经网络,用于生成原始叶片的映射特征;多区域置信网络模型,包括多个区域的置信网络模型,用于对所述植株的当前状态生成不同需水量的多个不同置信度值,对多个区域的不同置信度值进行拟合,确定出在不同区域中置信度值都相对较大的置信度值,将其对应的需水量确定为植株的需水量。
进一步,可选的,所述多区域置信网络模型包括多区域池化层和完全连接层,多区域池化层包括多个区域的池化层,池化层个数为1,池化层还可替换成完全连接层;所述池化层用于生成置信度。
利用调整后的GF逆向合成叶片图像;
其中各分量的分解及合成属于本领域的现有技术,但是上述调节方式是本发明人的首创,经过上述调整,能够充分利用叶片的绿色通道信息,使得后续的预测经过更加准确。
进一步,可选的,所述图像分割采用了改进的分水岭分割方式进行分割:
S=watershed(Gra)
进一步,可选的,所述深度神经网络包括深度卷积神经网络及多区域置信网络,所述深度卷积神经网络,用于生成分割出的各叶片及茎部特征;多区域置信网络为包括多个叶片区域以及茎部区域的置信网络模型,用于对多个不同叶片及茎部的缺水程度产生置信度值,当至少两个叶片区域的置信度值以及对应茎部区域的置信度值均满足预设的第一阈值等级范围(对应于叶片)、第二阈值等级范围(对应于茎部)时,则确定植株的需水量。
进一步,可选的,所述深度神经网络包括深度卷积神经网络及多区域置信网络,所述深度卷积神经网络能够接收输入植株的分割后叶片及茎部图像,并生成不同尺度的卷积多特征映射;所述多区域置信网络模型包括多区域池化层和完全连接层;其中,所述多区域池化层包括多个区域池化层;所述多个区域池化层用于生成植株图像需水量的置信度值,当至少两个叶片区域的置信度值以及对应茎部区域的置信度值均满足预设的第一阈值等级范围(对应于叶片)、第二阈值等级范围(对应于茎部)时,则确定植株的需水量;所述多区域池化层设置为最大池化层或平均池化层;所述完全连接层用于对识别到的叶片及茎部缺水程度进行分类。
进一步,可选的,所述深度神经网络为深度卷积神经网络,具体包括:输入层、嵌入层、池化层、全连接层;所述输入层用于接收输入植株的分割后叶片及茎部图像;所述嵌入层采用的卷积核大小为5*5;本发明的激励函数记为RL();经过全连接层处理后进一步得到需水量预测推荐结果;
所述池化层的池化方法如下:
Rl()表示激励函数,we表示当前层的权重,φ表示损失函数,xe-1表示上一层的输出;
激励函数RL为:
所述损失函数φ如下:
N表示正样本数据集的大小,i取值1~N,yi表示正样本xi对应的标签值;Wyi表示正样本特征向量xi在其标签yi处的权重,s为深度卷积神经网络的推荐参数;bj表示样本xi在其标签yi处的偏差。
本申请还对应提出了一种计算机存储介质,所述存储介质上存储有程序代码,所述代码用于实现上述任一种所述的方法。
本申请还对应提出了一种计算机设备,所述设备包括处理器、存储器,所述存储器上存储有计算机指令,所述指令用于实现上述任一种所述的方法。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
本申请还提出一种计算机可读介质,上面包含可实现上述系统的程序代码,所包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random AccessMemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
Claims (6)
1.一种基于植株萎蔫程度进行精准灌溉的系统,所述系统包括:
图像采集模块,通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;
图像预处理模块,所述图像预处理模块用于完成图像的预处理,包括图像裁剪、分割、增强中的至少一项;
需水量预测模块,将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;
灌溉控制模块,根据预测出的所述植株的需水量形成控制指令,以进行定时定量的供水;
所述深度神经网络具体包括多区域卷积神经网络模型,所述多区域卷积神经网络模型包括:深度卷积神经网络,用于生成原始叶片的映射特征;多区域置信网络模型,包括多个区域的置信网络模型,用于对所述植株的当前状态生成不同需水量的多个不同置信度值,对多个区域的不同置信度值进行拟合,确定出在不同区域中置信度值都相对较大的置信度值,将其对应的需水量确定为植株的需水量;
所述多区域置信网络模型包括多区域池化层和完全连接层,多区域池化层包括多个区域的池化层,池化层个数为1;所述池化层用于生成置信度。
2.根据权利要求1所述的一种基于植株萎蔫程度进行精准灌溉的系统,所述预处理还包括:图像信息的筛选,剔除不满足清晰度要求或未能包含至少一片完整叶片的图像;所述图像裁剪包括:将获得的图像信息进行裁剪,获得叶片信息及茎部信息,并建立叶片与该植株茎部之间的对应关系。
3.根据权利要求1所述的一种基于植株萎蔫程度进行精准灌溉的系统,所述预处理还包括:将RGB空间中的R与B分量进行色彩抑制,将G通道分量进行增强。
4.一种基于植株萎蔫程度进行精准灌溉的方法,所述方法包括:
通过图像传感器进行植株的图像信息采集,所采集的信息包括:叶片信息及茎部信息;
利用图像预处理模块完成图像的预处理,包括图像裁剪、分割、增强中的至少一项;
将所采集的图像信息输入至经训练的深度神经网络进行计算,预测出当前植株萎蔫程度状态下对应的预测需水量;
根据预测出的所述植株的需水量形成控制指令,以进行定时定量的供水;
所述深度神经网络具体包括多区域卷积神经网络模型,所述多区域卷积神经网络模型包括:深度卷积神经网络,用于生成原始叶片的映射特征;多区域置信网络模型,包括多个区域的置信网络模型,用于对所述植株的当前状态生成不同需水量的多个不同置信度值,对多个区域的不同置信度值进行拟合,确定出在不同区域中置信度值都相对较大的置信度值,将其对应的需水量确定为植株的需水量;
所述多区域置信网络模型包括多区域池化层和完全连接层,多区域池化层包括多个区域的池化层,池化层个数为1;所述池化层用于生成置信度。
5.根据权利要求4所述的一种基于植株萎蔫程度进行精准灌溉的方法,所述预处理还包括:图像信息的筛选,剔除不满足清晰度要求或未能包含至少一片完整叶片的图像;所述图像裁剪包括:将获得的图像信息进行裁剪,获得叶片信息及茎部信息,并建立叶片与该植株茎部之间的对应关系。
6.根据权利要求4所述的一种基于植株萎蔫程度进行精准灌溉的方法,所述预处理还包括:将RGB空间中的R与B分量进行色彩抑制,将G通道分量进行增强。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110971230.2A CN113545280B (zh) | 2021-08-23 | 2021-08-23 | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 |
PCT/CN2022/094812 WO2023024615A1 (zh) | 2021-08-23 | 2022-05-25 | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110971230.2A CN113545280B (zh) | 2021-08-23 | 2021-08-23 | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113545280A CN113545280A (zh) | 2021-10-26 |
CN113545280B true CN113545280B (zh) | 2022-01-25 |
Family
ID=78105981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110971230.2A Active CN113545280B (zh) | 2021-08-23 | 2021-08-23 | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113545280B (zh) |
WO (1) | WO2023024615A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113545280B (zh) * | 2021-08-23 | 2022-01-25 | 中国农业科学院蔬菜花卉研究所 | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 |
CN116784217A (zh) * | 2023-06-15 | 2023-09-22 | 四川省农业机械科学研究院 | 基于风能、太阳能和土壤湿度的智慧农业灌溉系统 |
CN117079060B (zh) * | 2023-10-13 | 2024-03-12 | 之江实验室 | 一种基于光合信号的叶片智能分类方法和系统 |
CN118470578B (zh) * | 2024-07-11 | 2024-09-10 | 泰安市园林绿化管理服务中心 | 一种园林精细化管理与自动检测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101411299A (zh) * | 2008-11-25 | 2009-04-22 | 浙江大学 | 植物叶片膨压感应节水灌溉自动控制方法 |
CN108199954A (zh) * | 2018-01-23 | 2018-06-22 | 南京万荣立体绿化工程有限公司 | 灌溉智能监测系统 |
CN110702882A (zh) * | 2019-10-28 | 2020-01-17 | 沈阳农业大学 | 一种基于作物水分分级预警的动态决策系统 |
CN112119887A (zh) * | 2020-10-27 | 2020-12-25 | 博尔塔拉蒙古自治州飒博尔农业科技有限公司 | 一种智能阀门灌溉的控制装置及其控制方法 |
CN112330694A (zh) * | 2020-11-16 | 2021-02-05 | 新疆农业科学院粮食作物研究所 | 一种植物萎蔫程度计算方法及系统 |
CN112514779A (zh) * | 2020-12-09 | 2021-03-19 | 广州大学华软软件学院 | 一种智能灌溉系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102524024B (zh) * | 2012-02-16 | 2013-04-03 | 四川农业大学 | 基于计算机视觉的作物灌溉系统 |
CN110178518B (zh) * | 2019-07-03 | 2021-09-28 | 鄄城县亿碧源节水设备科技有限公司 | 一种水肥灌溉系统 |
US20210204496A1 (en) * | 2020-01-08 | 2021-07-08 | The United States Of America, As Represented By The Secretary Of Agriculture | System and method of watering crops with a variable rate irrigation system |
CN113545280B (zh) * | 2021-08-23 | 2022-01-25 | 中国农业科学院蔬菜花卉研究所 | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 |
-
2021
- 2021-08-23 CN CN202110971230.2A patent/CN113545280B/zh active Active
-
2022
- 2022-05-25 WO PCT/CN2022/094812 patent/WO2023024615A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101411299A (zh) * | 2008-11-25 | 2009-04-22 | 浙江大学 | 植物叶片膨压感应节水灌溉自动控制方法 |
CN108199954A (zh) * | 2018-01-23 | 2018-06-22 | 南京万荣立体绿化工程有限公司 | 灌溉智能监测系统 |
CN110702882A (zh) * | 2019-10-28 | 2020-01-17 | 沈阳农业大学 | 一种基于作物水分分级预警的动态决策系统 |
CN112119887A (zh) * | 2020-10-27 | 2020-12-25 | 博尔塔拉蒙古自治州飒博尔农业科技有限公司 | 一种智能阀门灌溉的控制装置及其控制方法 |
CN112330694A (zh) * | 2020-11-16 | 2021-02-05 | 新疆农业科学院粮食作物研究所 | 一种植物萎蔫程度计算方法及系统 |
CN112514779A (zh) * | 2020-12-09 | 2021-03-19 | 广州大学华软软件学院 | 一种智能灌溉系统 |
Non-Patent Citations (2)
Title |
---|
基于模糊神经网络的节水灌溉模型的研究;乔雯雯 等;《计算机与数字工程》;20190720;第47卷(第7期);第1618-1621页 * |
植物生命需水状况实时在线智能检测方法研究;张新;《中国优秀博硕士学位论文全文数据库(博士)基础科学辑》;20200415(第4期);A006-108 * |
Also Published As
Publication number | Publication date |
---|---|
WO2023024615A1 (zh) | 2023-03-02 |
CN113545280A (zh) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113557890B (zh) | 一种用于日光温室果菜栽培的智能水分精准灌溉控制系统及方法 | |
CN113545280B (zh) | 一种基于植株萎蔫程度进行精准灌溉的系统及方法 | |
CN117036088A (zh) | 一种ai识别绿化植物生长态势的数据采集分析方法 | |
CN107219759B (zh) | 一种温室环境控制方法及装置 | |
CN113610035B (zh) | 一种基于改进编解码网络的水稻分蘖期杂草分割识别方法 | |
Veeragandham et al. | A review on the role of machine learning in agriculture | |
CN116612435B (zh) | 一种玉米高产栽培方法 | |
Hassan et al. | Advances in deep learning algorithms for agricultural monitoring and management | |
CN114297907A (zh) | 温室环境空间分布预测方法及装置 | |
CN117540908A (zh) | 基于大数据的农业资源整合方法和系统 | |
Anitha et al. | Cassava leaf disease identification and detection using deep learning approach | |
Ji et al. | Exploring the solutions via Retinex enhancements for fruit recognition impacts of outdoor sunlight: a case study of navel oranges | |
CN109828623B (zh) | 温室作物情景感知的生产管理方法及装置 | |
CN111832480A (zh) | 一种基于光谱特征的油菜种植区遥感识别方法 | |
CN116957141A (zh) | 一种基于Transformer模型的智能灌溉预测方法及系统 | |
CN116579873A (zh) | 基于高温干旱气象评估作物灾害减产情况的方法及系统 | |
Macabiog et al. | Soil moisture and rain prediction based irrigation controller for the strawberry farm of La Trinidad, Benguet | |
Wickramaarachchi et al. | Real-time greenhouse environmental conditions optimization using neural network and image processing | |
CN114663791A (zh) | 一种非结构化环境下面向剪枝机器人的枝条识别方法 | |
TWI703529B (zh) | 作物生長階段計算方法及電腦程式產品 | |
Vijaya et al. | Developing AI-powered Systems to Optimize Planting, Irrigation, and Harvest Processes for Increased Agricultural Productivity | |
Bhosale et al. | Tomato Plant Disease Identification via Deep Learning Technique | |
Vinod et al. | Mining intelligent patterns using svac for precision agriculture and optimizing irrigation (student abstract) | |
CN117764762B (zh) | 用于提高玉米种植中氮肥利用率的方法 | |
Qiu et al. | 3D Branch Point Cloud Completion for Robotic Pruning in Apple Orchards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |