CN113530850B - 一种基于esa和堆叠胶囊自编码器的离心泵故障诊断方法 - Google Patents
一种基于esa和堆叠胶囊自编码器的离心泵故障诊断方法 Download PDFInfo
- Publication number
- CN113530850B CN113530850B CN202110990089.0A CN202110990089A CN113530850B CN 113530850 B CN113530850 B CN 113530850B CN 202110990089 A CN202110990089 A CN 202110990089A CN 113530850 B CN113530850 B CN 113530850B
- Authority
- CN
- China
- Prior art keywords
- capsule
- fault
- centrifugal pump
- encoder
- fault diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002775 capsule Substances 0.000 title claims abstract description 62
- 238000003745 diagnosis Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 238000000513 principal component analysis Methods 0.000 claims abstract description 10
- 238000011176 pooling Methods 0.000 claims abstract description 7
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- 238000012360 testing method Methods 0.000 claims abstract description 5
- 238000012549 training Methods 0.000 claims description 16
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 13
- 230000009466 transformation Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 238000005299 abrasion Methods 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 claims description 4
- 239000013049 sediment Substances 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 7
- 238000009434 installation Methods 0.000 abstract 1
- 238000013527 convolutional neural network Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/81—Modelling or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Mechanical Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110990089.0A CN113530850B (zh) | 2021-08-26 | 2021-08-26 | 一种基于esa和堆叠胶囊自编码器的离心泵故障诊断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110990089.0A CN113530850B (zh) | 2021-08-26 | 2021-08-26 | 一种基于esa和堆叠胶囊自编码器的离心泵故障诊断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113530850A CN113530850A (zh) | 2021-10-22 |
CN113530850B true CN113530850B (zh) | 2022-10-18 |
Family
ID=78092973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110990089.0A Active CN113530850B (zh) | 2021-08-26 | 2021-08-26 | 一种基于esa和堆叠胶囊自编码器的离心泵故障诊断方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113530850B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116992365B (zh) * | 2023-08-02 | 2024-03-08 | 广东海洋大学 | 一种在随机冲击干扰下的故障诊断方法及系统 |
CN117072460B (zh) * | 2023-10-16 | 2023-12-19 | 四川中测仪器科技有限公司 | 一种基于振动数据和专家经验的离心泵状态监测方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107702922A (zh) * | 2017-09-11 | 2018-02-16 | 南京信息工程大学 | 基于lcd与堆叠自动编码器的滚动轴承故障诊断方法 |
CN109751173A (zh) * | 2019-01-16 | 2019-05-14 | 哈尔滨理工大学 | 基于概率神经网络的水轮机运行故障诊断方法 |
CN110159554A (zh) * | 2019-05-24 | 2019-08-23 | 武汉工程大学 | 基于主元分析和序贯概率比检验的离心泵故障诊断方法 |
CN110242588A (zh) * | 2019-06-03 | 2019-09-17 | 电子科技大学 | 一种离心泵诊断信号采集系统及故障诊断方法 |
CN110991424A (zh) * | 2019-12-25 | 2020-04-10 | 安徽工业大学 | 基于最小熵解卷积和堆叠稀疏自编码器的故障诊断方法 |
CN111323220A (zh) * | 2020-03-02 | 2020-06-23 | 武汉大学 | 风力发电机齿轮箱故障诊断方法及系统 |
CN111459142A (zh) * | 2020-04-22 | 2020-07-28 | 北京航空航天大学 | 一种基于堆叠稀疏降噪自编码器的飞机液冷失效故障诊断方法 |
CN112001273A (zh) * | 2020-08-06 | 2020-11-27 | 清华大学 | 一种将卷积自编码器和逻辑回归相结合的故障诊断系统及方法 |
WO2020244134A1 (zh) * | 2019-06-05 | 2020-12-10 | 华南理工大学 | 一种基于多任务特征共享神经网络的智能故障诊断方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160245686A1 (en) * | 2015-02-23 | 2016-08-25 | Biplab Pal | Fault detection in rotor driven equipment using rotational invariant transform of sub-sampled 3-axis vibrational data |
-
2021
- 2021-08-26 CN CN202110990089.0A patent/CN113530850B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107702922A (zh) * | 2017-09-11 | 2018-02-16 | 南京信息工程大学 | 基于lcd与堆叠自动编码器的滚动轴承故障诊断方法 |
CN109751173A (zh) * | 2019-01-16 | 2019-05-14 | 哈尔滨理工大学 | 基于概率神经网络的水轮机运行故障诊断方法 |
CN110159554A (zh) * | 2019-05-24 | 2019-08-23 | 武汉工程大学 | 基于主元分析和序贯概率比检验的离心泵故障诊断方法 |
CN110242588A (zh) * | 2019-06-03 | 2019-09-17 | 电子科技大学 | 一种离心泵诊断信号采集系统及故障诊断方法 |
WO2020244134A1 (zh) * | 2019-06-05 | 2020-12-10 | 华南理工大学 | 一种基于多任务特征共享神经网络的智能故障诊断方法 |
CN110991424A (zh) * | 2019-12-25 | 2020-04-10 | 安徽工业大学 | 基于最小熵解卷积和堆叠稀疏自编码器的故障诊断方法 |
CN111323220A (zh) * | 2020-03-02 | 2020-06-23 | 武汉大学 | 风力发电机齿轮箱故障诊断方法及系统 |
CN111459142A (zh) * | 2020-04-22 | 2020-07-28 | 北京航空航天大学 | 一种基于堆叠稀疏降噪自编码器的飞机液冷失效故障诊断方法 |
CN112001273A (zh) * | 2020-08-06 | 2020-11-27 | 清华大学 | 一种将卷积自编码器和逻辑回归相结合的故障诊断系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113530850A (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111259990B (zh) | 基于多源信息融合的海水泵故障监测装置与诊断方法 | |
CN113530850B (zh) | 一种基于esa和堆叠胶囊自编码器的离心泵故障诊断方法 | |
Hasan et al. | A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning | |
CN112763214B (zh) | 基于多标签零样本学习的滚动轴承故障诊断方法 | |
Wang et al. | A non-contact fault diagnosis method for rolling bearings based on acoustic imaging and convolutional neural networks | |
CN114972213A (zh) | 一种基于机器视觉的两阶段主板图像缺陷检测及定位方法 | |
CN114818774A (zh) | 一种基于多通道自校准卷积神经网络的齿轮箱智能故障诊断方法 | |
CN116304820A (zh) | 一种基于多源域迁移学习的轴承故障类型预测方法及系统 | |
CN118011994A (zh) | 一种基于跨模态工业大模型的故障诊断系统及方法 | |
CN116842379A (zh) | 一种基于DRSN-CS和BiGRU+MLP模型的机械轴承剩余使用寿命预测方法 | |
Shahid et al. | Performance comparison of 1d and 2d convolutional neural networks for real-time classification of time series sensor data | |
CN116070126A (zh) | 基于对抗自监督的航空柱塞泵配油盘磨损检测方法及系统 | |
Jung et al. | Fault Diagnosis of Inter-turn Short Circuit in Permanent Magnet Synchronous Motors with Current Signal Imaging and Semi-Supervised Learning | |
Boudiaf et al. | Bearing fault diagnosis in induction motor using continuous wavelet transform and convolutional neural networks | |
CN117828423A (zh) | 一种基于统计特征的光伏组件异常识别方法及系统 | |
CN117077815A (zh) | 一种在有限样本下基于深度学习的轴承故障诊断方法 | |
Tang et al. | A deep learning based sensor fusion method to diagnose tightening errors | |
Hallaji et al. | Data augmentation for deep learning-based detection of pump anomalous conditions | |
Morgan et al. | Predicting future states with $ n $-dimensional Markov chains for fault diagnosis | |
Lyu et al. | GPSC-GAN: A Data Enhanced Model for Intelligent Fault Diagnosis | |
CN117516925B (zh) | 一种基于MSDC-Swin-T的齿轮箱故障诊断方法 | |
CN117909120B (zh) | 数字智能专家的语义理解与逻辑推理方法 | |
Wang et al. | Fault Diagnosis of Rolling Bearing Based on Variational Mode Decomposition and Improved Canberra Distance in Symmetrized Dot Pattern Image | |
CN114383846B (zh) | 基于故障标签信息向量的轴承复合故障诊断方法 | |
CN118731689B (zh) | 基于多参数校验的电机设备预防性维护诊断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230810 Address after: Baimao Lake Industrial Concentration Zone, Tianmen City, Hubei Province 431700 Patentee after: HUBEI TIANMEN YONGQIANG PUMP INDUSTRY CO.,LTD. Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Effective date of registration: 20230810 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: 212003, No. 2, Mengxi Road, Zhenjiang, Jiangsu Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY |