CN113530510A - Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method - Google Patents

Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method Download PDF

Info

Publication number
CN113530510A
CN113530510A CN202010301378.0A CN202010301378A CN113530510A CN 113530510 A CN113530510 A CN 113530510A CN 202010301378 A CN202010301378 A CN 202010301378A CN 113530510 A CN113530510 A CN 113530510A
Authority
CN
China
Prior art keywords
nano
micron
particle composition
particle
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010301378.0A
Other languages
Chinese (zh)
Other versions
CN113530510B (en
Inventor
林厉军
黄降水
斯蒂芬妮·于
刘付臣
尹丛彬
龚蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huamei Shiji International Technology Co ltd
China National Petroleum Corp
Beijing Petroleum Machinery Co Ltd
Original Assignee
Beijing Huamei Shiji International Technology Co ltd
China National Petroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huamei Shiji International Technology Co ltd, China National Petroleum Corp filed Critical Beijing Huamei Shiji International Technology Co ltd
Priority to CN202010301378.0A priority Critical patent/CN113530510B/en
Publication of CN113530510A publication Critical patent/CN113530510A/en
Application granted granted Critical
Publication of CN113530510B publication Critical patent/CN113530510B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Abstract

The invention provides a nano-micron support particle composition, nano-micron support particles and a hydraulic fracturing method. The nano-micron supported particle composition comprises a liquid solvent, at least one surfactant, a particle forming compound, at least one curing agent and a pH control agent, wherein the pH value of the nano-micron supported particle composition is more than 11.5. The pH value of the nano-micron support particle composition is over 11.5 by controlling the addition amount of the pH control agent, so that nano-micron support particles from a nano level to a micron level can be obtained, the D50 is 50 nm-100 mu m, and the nano particles in the obtained nano-micron support particles can play a role in reducing the fluid loss of the fracturing fluid; the micron particles can enter or form cracks with various sizes including micro cracks, so that the micro cracks and other cracks are fully supported, and the micro crack flow conductivity is remarkably improved under the combined action of the two particles, so that the crude oil yield is improved.

Description

Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method
Technical Field
The invention relates to the technical field of hydraulic fracturing, in particular to a nano-micron support particle composition, nano-micron support particles and a hydraulic fracturing method.
Background
Hydraulic fracturing has been an important technique for increasing the production of hydrocarbons in hydrocarbon-bearing formations. In a typical hydraulic fracturing treatment, a hydraulic fracturing fluid containing a solid proppant (e.g., a linear gel and slickwater) is injected into a subterranean formation at a pressure high enough to initiate or enlarge a fracture in the reservoir. When the hydraulic fracturing fluid is removed, the packed proppant may hold the fracture open, allowing fluid to flow from the formation through the proppant to the production wellbore. It can thus be seen that the proppant is very important because it provides long-term conductivity of the fracture.
Chinese patent application publication No. CN 107109203 a discloses a hydraulic fracturing fluid for oilfield applications, the hydraulic fracturing fluid comprising a spherical bead-forming liquid composition characterized by a primary liquid precursor and a secondary liquid precursor, the primary liquid precursor characterized by a micelle-forming surfactant, a bead-forming compound, and a solid-free liquid solvent; and the secondary liquid precursor is characterized by one or more curing agents and one or more co-curing agents. The obtained spherical beads have a particle size of 0.1mm to 30mm, and thus cannot support microcracks.
Disclosure of Invention
The invention mainly aims to provide a nano-micron support particle composition, nano-micron support particles and a hydraulic fracturing method, so as to solve the problem that a liquid composition for forming spherical beads in the prior art cannot support microcracks.
To achieve the above object, according to one aspect of the present invention, there is provided a nano-micro supported particle composition comprising a liquid solvent, at least one surfactant, a particle forming compound, at least one curing agent, and a pH controlling agent, the pH of the nano-micro supported particle composition being above 11.5.
Further, the pH controller is sodium hydroxide and/or potassium hydroxide.
Further, the particle-forming compound is selected from a resin body selected from any one of the group consisting of an aliphatic epoxy, an epoxy functional resin, a polyurethane resin, an acrylic resin, a phenol resin and an ether aldehyde resin, and a diluent selected from any one or more of the group consisting of a glycidyl amine epoxy, a cycloaliphatic epoxy, an acid anhydride, a bisphenol a diglycidyl ether, a polyglycidyl ether, a glycidyl ether, a bisphenol F diglycidyl ether.
Further, the surfactant is any one or combination of more of an anionic surfactant, a cationic surfactant, a nonionic surfactant and an amphoteric surfactant.
Further, the liquid solvent is selected from water, seawater, saline solution and alcohol solvent, and the alcohol solvent is selected from any one or more of ethanol, propanol and butanol.
Further, the curing agent is selected from any one of isophorone diamine, boron trifluoride derivatives, imidazoline, thiol, hydrazide, polyamide, monoethanolamine, benzyldimethylamine, lewis acid, tertiary amine, isophorone, imidazole, sulfide, amide, or derivatives thereof.
Further, in the nano-micron supported particle composition, the mass content of the particle forming compound and the curing agent is 10-75%, the mass content of the surfactant is 0.5-20%, preferably, the mass content of the particle forming compound and the curing agent is 45-65%, and the mass content of the surfactant is 2-10%.
Further, the nano-micron supported particle composition also comprises a tackifier, preferably the tackifier is selected from calcium carbonate nanoparticles, silicate nanoparticles or a water-soluble polymer containing polyacrylamide or polyvinyl alcohol, and the viscosity of the nano-micron supported particle composition is preferably 10-60 cPs.
According to another aspect of the present invention, there is provided a nano-micro supported particle formed by curing a nano-micro supported particle composition, the nano-micro supported particle composition being any one of the nano-micro supported particle compositions described above, the nano-micro supported particle having a D50 of 50nm to 100 μm.
Furthermore, the D50 of the nano-micron support particles is 10-95 μm.
Further, the density of the nano-micron support particles is less than or equal to 1.50 g/ml.
According to a further aspect of the present invention, there is provided a hydraulic fracturing method comprising injecting a hydraulic fracturing fluid into a subterranean formation for fracturing, the hydraulic fracturing fluid comprising an emulsion formed from any one of the compositions of nano-micron support particles or any one of the nano-micron support particles described above.
By applying the solution of the present invention, the particle-forming compound and the curing agent in the above composition are mixed together to form the oil phase in an oil/water emulsion, and the "oil" droplets become nano-micro particles with deformability that effectively prevents the nano-micro particles from being crushed when the cracks try to close after the injection is stopped. Because the nano-micron particle supporting composition contains the pH control agent, the pH value of the nano-micron particle supporting composition is over 11.5 by controlling the adding amount of the pH control agent, nano-micron supporting particles from a nano level to a micron level can be obtained, and the D50 is 50 nm-100 mu m, the nano particles in the obtained nano-micron supporting particles can play a role in reducing the fluid loss of fracturing fluid; the micron particles can enter cracks with various sizes including micro cracks or be formed in the cracks with various sizes including the micro cracks, so that the micro cracks and other cracks are fully supported, and the micro crack flow conductivity is remarkably improved under the combined action of the two particles, so that the crude oil yield is improved.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the invention and not to limit the invention. In the drawings:
FIG. 1 is a schematic diagram showing a mixed primary proppant of nano-micron proppant particles;
FIG. 2 shows an image of the nano-micron support particles obtained in example 1;
FIG. 3 shows a graph of the size distribution of the nano-micron support particles obtained in example 1;
FIG. 4 shows an image of the nano-micron support particles obtained in example 2;
fig. 5 shows the size distribution diagrams of the spherical particles obtained in comparative examples 1 to 4.
Detailed Description
It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict. The present invention will be described in detail below with reference to the embodiments with reference to the attached drawings.
As analyzed in the background of the present application, the present application provides a nano-micro proppant particle composition, a nano-micro proppant particle, and a hydraulic fracturing method, in order to solve the problem that a liquid composition for forming spherical beads in the prior art is difficult to form spherical beads in situ in a fracture or that previously formed spherical beads are difficult to reach a micro fracture, and thus the liquid composition is difficult to exert a sufficient propping effect on the fracture.
In an exemplary embodiment of the present application, a nano-micro supported particle composition is provided, the nano-micro supported particle composition comprising a liquid solvent, at least one surfactant, a particle forming compound, at least one curing agent, and a pH control agent, the pH of the nano-micro supported particle composition being above 11.5.
The particle-forming compound and the curing agent in the above composition are mixed together to form an oil phase in an oil/water emulsion, and the "oil" droplets become nano-micro particles with deformability that effectively prevents the nano-micro particles from being crushed when the cracks attempt to close after the injection is stopped. Because the nano-micron particle supporting composition contains the pH control agent, the pH value of the nano-micron particle supporting composition is over 11.5 by controlling the adding amount of the pH control agent, nano-micron supporting particles from a nano level to a micron level can be obtained, and the D50 is 50 nm-100 mu m, the nano particles in the obtained nano-micron supporting particles can play a role in reducing the fluid loss of fracturing fluid; the micron particles can enter cracks with various sizes including micro cracks or be formed in the cracks with various sizes including the micro cracks, so that the micro cracks and other cracks are fully supported, and the micro crack flow conductivity is remarkably improved under the combined action of the two particles, so that the crude oil yield is improved.
The pH controlling agent used in the present application is mainly for adjusting the pH of the nano-micro support particle composition, and any base capable of pH adjustment may be considered as applicable to the present application as long as it does not affect the particle formation, and in order to simplify the composition system of the nano-micro support particle composition of the present application to make it more stable and save the cost, it is preferable that the pH controlling agent is sodium hydroxide and/or potassium hydroxide.
The components of the particle-forming compounds of the present application can be cured under certain conditions to form deformable particles, and therefore, in the prior art, any of the components of resins, diluents, and the like that are capable of curing at the above pH values are contemplated for use herein, and preferably the particle-forming compounds are selected from the group consisting of resin entities selected from any of the group consisting of aliphatic epoxies, epoxy-functional resins, polyurethane resins, acrylic resins, phenolic resins, and etheraldehyde resins, and diluents selected from any of the group consisting of glycidyl amine epoxies, cycloaliphatic epoxies, anhydrides, bisphenol a diglycidyl ether, polyglycidyl ethers, glycidyl ethers, bisphenol F diglycidyl ether, and combinations thereof.
The surfactant of the present application will distribute at the oil-water interface to stabilize the oil-water emulsion, and the preferred surfactant or combination of surfactants will have chemical properties and HLB values matched to the oil-water system to stabilize the emulsion to form nano-micro particles, and the preferred surfactant may be any one or combination of anionic, cationic, nonionic and amphoteric surfactants.
The liquid solvent used in the present application is mainly for dispersing the particle-forming compound and the curing agent mixture (oil phase) and performing a curing reaction to form particles, and therefore any liquid solvent capable of performing the above-mentioned functions may be considered to be applied to the present application, and preferably, the above-mentioned liquid solvent is selected from water, seawater, a brine solution, an alcohol solvent selected from any one or more of ethanol, propanol and butanol, in order to reduce the cost and improve the compatibility of the system with the fracturing fluid after the composition is cured.
The curing agent functions to accelerate the curing reaction of the particle-forming compound, and therefore, one skilled in the art can select an appropriate curing agent selected from any one of isophorone diamine, boron trifluoride derivatives, imidazoline, thiol, hydrazide, polyamide, monoethanolamine, benzyl dimethylamine, lewis acid, tertiary amine, isophorone, imidazole, sulfide, amide, or derivatives thereof, depending on the composition of the particle-forming compound.
In order to further improve the mechanical strength of the particles formed by the nano-micron supported particle composition, the nano-micron supported particle composition preferably contains 10 to 75% by mass of the particle forming compound and the curing agent and 0.5 to 20% by mass of the surfactant, and the nano-micron supported particle composition preferably contains 45 to 65% by mass of the particle forming compound and the curing agent and 2 to 10% by mass of the surfactant.
In order to further control the particle size formed, the nano-micron supported particle composition preferably further comprises an adhesion promoter, preferably the adhesion promoter is selected from calcium carbonate nanoparticles, silicate nanoparticles or a water-soluble polymer containing polyacrylamide or polyvinyl alcohol, and the viscosity of the nano-micron supported particle composition is preferably 10 to 60 cPs. The viscosity of the composition is adjusted by the tackifier to reduce the collision probability of oil droplet particles, thereby reducing the size of generated particles.
In another exemplary embodiment of the present application, there is provided a nano-micro supported particle formed by curing a nano-micro supported particle composition, the nano-micro supported particle composition being any one of the nano-micro supported particle compositions described above, the nano-micro supported particle having a D50 of 50nm to 100 μm.
The particle-forming compound and the curing agent in the above composition are mixed together to form an oil phase in an oil/water emulsion, and the "oil" droplets become nano-micro particles after curing. Because the nano-micron particle supporting composition contains the pH control agent, the pH value of the nano-micron particle supporting composition is over 11.5 by controlling the adding amount of the pH control agent, nano-micron supporting particles from a nano level to a micron level can be obtained, and D50 is 50 nm-100 mu m, the nano-particles in the obtained nano-micron supporting particles can play a role in reducing the fluid loss of fracturing fluid; the micron particles can enter cracks with various sizes including micro cracks or be formed in the cracks with various sizes including the micro cracks, so that the micro cracks and other cracks are fully supported, and the micro crack flow conductivity is remarkably improved under the combined action of the two particles, so that the crude oil yield is improved.
The nano-micron particle composition can be used as a fracturing fluid component to form nano-micron support particles in situ in a fracture, and the prepared nano-micron support particles can be added into the fracturing fluid to increase the conductivity of nano-sized and micro-sized fractures, be used for keeping the micro-fractures open to supplement the function of a main proppant (shown in figure 1) and be used as a fluid loss additive.
Curing as understood in the art, the components of the composition are mixed, for example, for 3 to 15 minutes, to form an oil/water emulsion which is then left undisturbed in a water bath at 30 to 150 ℃ for 5 to 200 minutes to form the nano-micron support particles.
In one embodiment, they are mixed together for about 10 minutes. In one embodiment, the temperature is 60 ℃. In one embodiment, the emulsion is allowed to stand in the water bath for 60 minutes.
In order to improve the transportability of the nano-micron support particles in hydraulic fracturing application so as to reach a predetermined position and have high support force, the D50 of the nano-micron support particles is preferably 10-95 μm, and the density of the nano-micron support particles is preferably less than or equal to 1.50 g/ml. Optimization of the diameter of the nano-micron support particles reduces the resistance that may be encountered in their transport, while the low density allows the nano-micron support particles to be transported far in hydraulic fracturing at low settling rates.
In another exemplary embodiment of the present application, a hydraulic fracturing method is provided, the hydraulic fracturing method comprising injecting a hydraulic fracturing fluid into a subterranean formation for fracturing, the hydraulic fracturing fluid comprising an emulsion formed from a composition of nano-micron support particles of any of the above or nano-micron support particles of any of the above.
The particle-forming compound and the curing agent in the above composition are mixed together to form an oil phase in an oil/water emulsion, and the "oil" droplets become nano-micro particles with deformability that effectively prevents the nano-micro particles from being crushed when the cracks attempt to close after the injection is stopped. Because the nano-micron particle supporting composition contains the pH control agent, the pH value of the nano-micron particle supporting composition is over 11.5 by controlling the adding amount of the pH control agent, nano-micron supporting particles from a nano level to a micron level can be obtained, and the D50 is 50 nm-100 mu m, the nano particles in the obtained nano-micron supporting particles can play a role in reducing the fluid loss of fracturing fluid; the micron particles can enter cracks with various sizes including micro cracks or be formed in the cracks with various sizes including the micro cracks, so that the micro cracks and other cracks are fully supported, and the micro crack flow conductivity is remarkably improved under the combined action of the two particles, so that the crude oil yield is improved.
The nano-micron particle composition forms emulsion which is added into fracturing fluid and/or filler, so that nano-micron support particles are formed in situ in the fracture, or the nano-micron support particles are added into the filler and/or the fracturing fluid, so that the conductivity of nano and micron fractures is increased, the micro fractures are kept open to supplement the function of a main proppant, and the nano support particles can also play the role of a fluid loss reducer. Thus, the above-described nanoparticle composition or nanoparticle may be used as at least part of a fluid loss additive and at least part of a proppant.
The advantageous effects of the present application will be further described below with reference to examples and comparative examples.
The composition of the composition used to prepare the oil/water emulsion to form the particles is shown in table 1. The components were mixed for 10 minutes to form an emulsion, the pH value thereof was measured, and then allowed to stand in a water bath at 60 ℃ for 1 hour to react to form spherical particles (i.e., nano-micron support particles), the density (absolute density) of which was 1.09 g/ml.
TABLE 1
Figure BDA0002454109410000051
Figure BDA0002454109410000061
Wherein the Tween isTMIs a registered trademark of Croda International plc, Tween TM20 contains an alkoxy ester and is used as a surfactant.
Hostafrac SF14413 is a product of Clariant Corporation, and includes 10 to 20% by weight of a proprietary component 6615, 10 to 20% by weight of ethoxylated isotridecanol, 1 to 10% by weight of a proprietary component 6715, 1 to 5% by weight of solvent naphtha, and 0.1 to 1% by weight of naphthalene, and is used as a surfactant.
Max CLRTMIs a trademark of Polymer Composites Corporation. Max CLRTMA is a modified bisphenol A epoxy resin formulation comprising 90-100% by weight phenol, 4- (1-methylethylidene) bis, a polymer and (methyl chloride) ethylene oxide, 1-5% epoxidized diluent, 0-10% epoxidized modified methyl glyceryl ether, and 0.1-0.5% non-silicone additive.
Max CLRTMB is an amine modified curing agent comprising about 5 to 15 weight percent benzyl alcohol, 15 to 35 weight percent isophorone associative adduct and 50 to 60 weight percentThe aliphatic amine adduct of (1).
The nano-micron support particles formed in example 1 are shown in fig. 2, and the nano-micron support particles formed in example 2 are shown in fig. 4. The particle size distribution was measured by a Mastersizer 3000 laser particle size analyzer and the results are shown in figure 3. The diameter of the nano-micron support particles formed in example 1 was predominantly distributed between 0.5 μm and 250 μm, and the D50 was 80 μm, as specified in Table 2.
Comparative example 1 resulted in a particle size distribution as shown in figure 5 (pH 9.78), with a particle diameter distribution of predominantly between 40 mesh and 7 mesh (particle size 0.400mm to 2.83mm) and a D50 of about 1.7 mm.
Comparative example 2 gave a particle size distribution as shown in figure 5 (pH 7.84) with a particle diameter distribution of between 40 mesh and 8 mesh (particle size 0.400mm to 2.38mm) and a D50 of about 1.2 mm.
The particle size distributions obtained for comparative examples 3 and 4 are also recorded in figure 5.
The diameter distributions, D50 and density data are shown in table 2.
TABLE 2
Figure BDA0002454109410000062
Figure BDA0002454109410000071
From the comparison of the above data, it can be found that the emulsion of the composition forms particles having a larger particle size under acidic conditions, and the particle size decreases as the pH increases, but the particle size increases again after entering the alkaline range; and when the pH value is less than 11.5, D50 increases with the increase of the pH value, but when the pH value exceeds 11.5, D50 does not increase, but decreases to 1mm or less and less than 0.1 mm.
From the above description, it can be seen that the above-described embodiments of the present invention achieve the following technical effects:
the particle-forming compound and the curing agent in the above composition are mixed together to form an oil phase in an oil/water emulsion, and the "oil" droplets become nano-micro particles with deformability that effectively prevents the nano-micro particles from being crushed when the cracks attempt to close after the injection is stopped. Because the nano-micron particle supporting composition contains the pH control agent, the pH value of the nano-micron particle supporting composition is over 11.5 by controlling the adding amount of the pH control agent, nano-micron supporting particles from a nano level to a micron level can be obtained, and the D50 is 50 nm-100 mu m, the nano particles in the obtained nano-micron supporting particles can play a role in reducing the fluid loss of fracturing fluid; the micron particles can enter or form cracks with various sizes including micro cracks, so that the micro cracks and other cracks are fully supported, and the micro crack flow conductivity is remarkably improved under the combined action of the two particles, so that the crude oil yield is improved.
All of the compositions and methods claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps without departing from the concept, spirit and scope of the disclosure. More specifically, it will be apparent that certain agents which are chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the scope as defined by the appended claims.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (10)

1. A nano-micron supported particle composition, wherein the nano-micron supported particle composition comprises a liquid solvent, at least one surfactant, a particle forming compound, at least one curing agent, and a pH controlling agent, and wherein the pH of the nano-micron supported particle composition is above 11.5.
2. The nano-micron supported particle composition of claim 1, wherein the pH control agent is sodium hydroxide and/or potassium hydroxide.
3. The nano-micron supported particle composition of claim 1, wherein the particle forming compound is selected from the group consisting of a resin entity selected from any one of the group consisting of aliphatic epoxies, epoxy functional resins, polyurethane resins, acrylic resins, phenolic resins, and ether-aldehyde resins, and a diluent selected from any one or more of the group consisting of glycidyl amine epoxies, cycloaliphatic epoxies, anhydrides, bisphenol a diglycidyl ethers, polyglycidyl ethers, glycidyl ethers, bisphenol F diglycidyl ethers.
4. The nano-micron supported particle composition of claim 1, wherein the surfactant is any one or a combination of anionic, cationic, nonionic and amphoteric surfactants.
5. The nano-micron supported particle composition of claim 1, wherein the liquid solvent is selected from the group consisting of water, seawater, brine solution, alcohol solvent selected from any one or more of ethanol, propanol, and butanol.
6. The nano-micron supported particle composition of claim 1, wherein the curing agent is selected from any one of isophorone diamine, boron trifluoride derivatives, imidazolines, thiols, hydrazides, polyamides, monoethanolamine, benzyldimethylamine, lewis acids, tertiary amines, isophorone, imidazole, sulfides, amides, or derivatives thereof.
7. The nano-micron supported particle composition according to any one of claims 1 to 6, wherein the mass content of the particle forming compound and the curing agent in the nano-micron supported particle composition is 10 to 75%, and the mass content of the surfactant is 0.5 to 20%, preferably the mass content of the particle forming compound and the curing agent is 45 to 65%, and the mass content of the surfactant is 2 to 10%.
8. The nano-micron supported particle composition of claim 1, further comprising an adhesion promoter, preferably said adhesion promoter is selected from calcium carbonate nanoparticles, silicate nanoparticles, or a water soluble polymer comprising polyacrylamide or polyvinyl alcohol, preferably said nano-micron supported particle composition has a viscosity of 10 to 60 cPs.
9. A nano-micron support particle formed by curing a nano-micron support particle composition, wherein the nano-micron support particle composition is the nano-micron support particle composition as defined in any one of claims 1 to 8, the D50 of the nano-micron support particle is 50nm to 100 μm, preferably the D50 of the nano-micron support particle is 10 to 95 μm, and preferably the density of the nano-micron support particle is 1.50g/ml or less.
10. A hydraulic fracturing method comprising injecting a hydraulic fracturing fluid into a subterranean formation for fracturing, wherein the hydraulic fracturing fluid comprises an emulsion formed from the nano-micron support particle composition of any one of claims 1 to 8 or the nano-micron support particles of claim 9.
CN202010301378.0A 2020-04-16 2020-04-16 Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method Active CN113530510B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010301378.0A CN113530510B (en) 2020-04-16 2020-04-16 Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010301378.0A CN113530510B (en) 2020-04-16 2020-04-16 Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method

Publications (2)

Publication Number Publication Date
CN113530510A true CN113530510A (en) 2021-10-22
CN113530510B CN113530510B (en) 2023-02-28

Family

ID=78120286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010301378.0A Active CN113530510B (en) 2020-04-16 2020-04-16 Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method

Country Status (1)

Country Link
CN (1) CN113530510B (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390276A (en) * 1999-11-12 2003-01-08 M-I有限责任公司 Method and composition for the triggered release of polymer-degrading agents for oil field use
CN1839034A (en) * 2003-04-15 2006-09-27 氦克逊特种化学品公司 Particulate material containing thermoplastic elastomer and methods for making and using same
CN104039917A (en) * 2011-11-11 2014-09-10 普拉德研究及开发股份有限公司 Hydrolyzable particle compositions, treatment fluids and methods
CA2852199A1 (en) * 2014-04-04 2015-10-04 Oil Chem Technologies, Inc. Method for in-situ solid particles formation and applications thereof
CN105793385A (en) * 2013-08-30 2016-07-20 优选技术有限责任公司 Proppant with composite coating
US20160215205A1 (en) * 2013-09-23 2016-07-28 Halliburton Energy Services, Inc. Enhancing Fracturing and Complex Fracturing Networks in Tight Formations
US20160289543A1 (en) * 2014-11-19 2016-10-06 Saudi Arabian Oil Company Compositions of and methods for using hydraulic fracturing fluid for petroleum production
US20160304770A1 (en) * 2014-01-02 2016-10-20 Halliburton Energy Services, Inc. Generating and enhancing microfracture conductivity
CN106833586A (en) * 2016-12-28 2017-06-13 浙江海洋大学 One kind receives micron polymer particle and surfactant combination flooding method
CN107109203A (en) * 2014-11-19 2017-08-29 沙特阿拉伯石油公司 The composition and method of oil are produced using hydrofrac fluid
CN107614657A (en) * 2015-03-27 2018-01-19 卡博陶粒有限公司 For carrying out the method and composition of consolidated proppants particulate using proppant surface chemistry and interior porosity
CN107987821A (en) * 2016-10-26 2018-05-04 科思创有限公司 Antibacterial proppant
CN108587595A (en) * 2018-03-02 2018-09-28 中国石油集团川庆钻探工程有限公司 A kind of pressure break phase transformation support preparation method of granules
CN109072056A (en) * 2015-07-13 2018-12-21 沙特阿拉伯石油公司 Polysaccharide-coated nanoparticle compositions comprising ion
US20190143289A1 (en) * 2016-05-05 2019-05-16 Nfluids Inc. Phase transfer for the preparation of stable nano-scale organosols
CN110573592A (en) * 2017-02-09 2019-12-13 沙特阿拉伯石油公司 nanoparticle reinforced resin coated frac sand compositions
US20200216750A1 (en) * 2019-01-04 2020-07-09 Cnpc Usa Corporation Method for making nano- and micro-particles for use as a proppant and fluid-loss-control additive

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390276A (en) * 1999-11-12 2003-01-08 M-I有限责任公司 Method and composition for the triggered release of polymer-degrading agents for oil field use
CN1839034A (en) * 2003-04-15 2006-09-27 氦克逊特种化学品公司 Particulate material containing thermoplastic elastomer and methods for making and using same
CN104039917A (en) * 2011-11-11 2014-09-10 普拉德研究及开发股份有限公司 Hydrolyzable particle compositions, treatment fluids and methods
CN105793385A (en) * 2013-08-30 2016-07-20 优选技术有限责任公司 Proppant with composite coating
US20160215205A1 (en) * 2013-09-23 2016-07-28 Halliburton Energy Services, Inc. Enhancing Fracturing and Complex Fracturing Networks in Tight Formations
US20160304770A1 (en) * 2014-01-02 2016-10-20 Halliburton Energy Services, Inc. Generating and enhancing microfracture conductivity
CA2852199A1 (en) * 2014-04-04 2015-10-04 Oil Chem Technologies, Inc. Method for in-situ solid particles formation and applications thereof
US20160289543A1 (en) * 2014-11-19 2016-10-06 Saudi Arabian Oil Company Compositions of and methods for using hydraulic fracturing fluid for petroleum production
CN107109203A (en) * 2014-11-19 2017-08-29 沙特阿拉伯石油公司 The composition and method of oil are produced using hydrofrac fluid
CN107614657A (en) * 2015-03-27 2018-01-19 卡博陶粒有限公司 For carrying out the method and composition of consolidated proppants particulate using proppant surface chemistry and interior porosity
CN109072056A (en) * 2015-07-13 2018-12-21 沙特阿拉伯石油公司 Polysaccharide-coated nanoparticle compositions comprising ion
US20190143289A1 (en) * 2016-05-05 2019-05-16 Nfluids Inc. Phase transfer for the preparation of stable nano-scale organosols
CN107987821A (en) * 2016-10-26 2018-05-04 科思创有限公司 Antibacterial proppant
CN106833586A (en) * 2016-12-28 2017-06-13 浙江海洋大学 One kind receives micron polymer particle and surfactant combination flooding method
CN110573592A (en) * 2017-02-09 2019-12-13 沙特阿拉伯石油公司 nanoparticle reinforced resin coated frac sand compositions
CN108587595A (en) * 2018-03-02 2018-09-28 中国石油集团川庆钻探工程有限公司 A kind of pressure break phase transformation support preparation method of granules
US20200216750A1 (en) * 2019-01-04 2020-07-09 Cnpc Usa Corporation Method for making nano- and micro-particles for use as a proppant and fluid-loss-control additive

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘付臣等: "国外超高温压裂液添加剂的研发进展与分析", 《化工管理》 *
吴行才等: "微凝胶颗粒水分散液体系在多孔介质中的驱替机理", 《地球科学》 *

Also Published As

Publication number Publication date
CN113530510B (en) 2023-02-28

Similar Documents

Publication Publication Date Title
CN107109203B (en) Compositions and methods for producing petroleum using hydraulic fracturing fluids
US11041110B2 (en) Compositions of and methods for using hydraulic fracturing fluid for petroleum production
CA2126422C (en) Consolidatable particulate material and well treatment method
AU648683B2 (en) Hardenable resin compositions and methods
US5128390A (en) Methods of forming consolidatable resin coated particulate materials in aqueous gels
US4829100A (en) Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US20200369952A1 (en) Compositions of hydraulic fracturing fluid and method thereof
US7093658B2 (en) Foamed treatment fluids, foaming additives, and associated methods
US20090298720A1 (en) Methods for maintaining fracture conductivity
US10604694B1 (en) Process and composition for sand and proppant flowback
MXPA04003137A (en) Methods and compositions for consolidating proppant in subterranean fractures.
AU2017400546B2 (en) Delayed release of resin curing agent
US20100282465A1 (en) Methods of consolidating particulates using a hardenable resin and an orgaosilane coupling agent
US11459502B2 (en) Method for making nano- and micro-particles for use as a proppant and fluid-loss-control additive
EA006971B1 (en) System for treating an underground formation
CN113530510B (en) Nano-micron support particle composition, nano-micron support particle and hydraulic fracturing method
US20230029914A1 (en) Method for making nano- and micro-particles for use as a proppant and fluid-loss-control additive
CA3021291A1 (en) Enhanced propped fracture conductivity in subterranean wells
WO2024072424A1 (en) Method for making nano- and micro-particles for use as a proppant and fluid-loss-control additive
US10501681B2 (en) Inorganic clay particulate additive for consolidating treatments
WO2017214281A1 (en) Compositions of and methods for using hydraulic fracturing fluid for petroleum production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221213

Address after: 100007 No. 9 North Main Street, Dongcheng District, Beijing, Dongzhimen

Applicant after: CHINA NATIONAL PETROLEUM Corp.

Applicant after: BEIJING HUAMEI SHIJI INTERNATIONAL TECHNOLOGY Co.,Ltd.

Applicant after: BEIJING PETROLEUM MACHINERY Co.,Ltd.

Address before: 100007 No. 9 North Main Street, Dongcheng District, Beijing, Dongzhimen

Applicant before: CHINA NATIONAL PETROLEUM Corp.

Applicant before: BEIJING HUAMEI SHIJI INTERNATIONAL TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant