CN113527655B - Fluorine-containing nonionic macromolecular surfactant and preparation method thereof - Google Patents

Fluorine-containing nonionic macromolecular surfactant and preparation method thereof Download PDF

Info

Publication number
CN113527655B
CN113527655B CN202110888786.5A CN202110888786A CN113527655B CN 113527655 B CN113527655 B CN 113527655B CN 202110888786 A CN202110888786 A CN 202110888786A CN 113527655 B CN113527655 B CN 113527655B
Authority
CN
China
Prior art keywords
fluorine
solution
parts
alcohol
macroinitiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110888786.5A
Other languages
Chinese (zh)
Other versions
CN113527655A (en
Inventor
白永平
魏彬校
吕孝松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Renxin Chemical Co ltd
Harbin Institute of Technology of Wuxi Research Institute of New Materials
Original Assignee
Shanghai Renxin Chemical Co ltd
Harbin Institute of Technology of Wuxi Research Institute of New Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Renxin Chemical Co ltd, Harbin Institute of Technology of Wuxi Research Institute of New Materials filed Critical Shanghai Renxin Chemical Co ltd
Priority to CN202110888786.5A priority Critical patent/CN113527655B/en
Publication of CN113527655A publication Critical patent/CN113527655A/en
Application granted granted Critical
Publication of CN113527655B publication Critical patent/CN113527655B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used

Abstract

The invention discloses a fluorine-containing nonionic macromolecular surfactant and a preparation method thereof, wherein the preparation method comprises the following steps: weighing 100 parts of alcohol macroinitiator and 100 parts of solvent according to the parts by mass, and mixing and dissolving to obtain an alcohol macroinitiator solution; then, weighing 10-50 parts of catalyst at the temperature of 0 ℃, putting into the alcohol macroinitiator solution, and reacting for 1 hour to obtain a reaction solution A; weighing 50-500 parts of fluorine-containing monomer and 100-400 parts of solvent by mass, and mixing and dissolving to obtain fluorine-containing monomer solution; dropwise adding the fluorine-containing monomer solution into the reaction solution A at the temperature of-10 ℃, and continuing to react for 8 hours after the dropwise adding is finished; cooling the reaction system to room temperature, and then adding a proper amount of 2wt% sodium bicarbonate water solution to adjust the reaction system to be neutral; standing and layering to obtain white transparent liquid on the lower layer; and (3) carrying out rotary evaporation on the white transparent liquid to obtain the fluorine-containing non-ionic macromolecular surfactant. The invention can improve the surface activity of the surfactant and reduce the critical micelle concentration of the surfactant.

Description

Fluorine-containing nonionic macromolecular surfactant and preparation method thereof
Technical Field
The invention relates to the field of surfactant preparation, in particular to a fluorine-containing nonionic macromolecular surfactant and a preparation method thereof.
Background
Surfactants have been used as cleaning aids for many years before they were systematically recognized in the scientific community. With the establishment of surface science, the development of surfactants is formally on the way. Surfactants can be classified as ionic or nonionic surfactants, with the common surfactants being either soaps, quaternaries or sodium lauryl sulfate. However, with the development of the application of surfactants in non-cleaning fields, the above small molecular surfactants all face some problems, such as poor weather resistance, poor stability or molecular migration, and the research field of the large molecular surfactants is in the process of operation.
The development of artificial macromolecular surfactants has been in the last 50 s, before which natural macromolecular surfactants were mainly widely used. However, strass synthesized the first artificial macromolecular surfactant in 1951, which was used in the industrial field in 1954 and was named as
Figure BDA0003193235300000011
Due to excellent weather resistance, lower critical micelle concentration and excellent rheological property of macromolecules, the macromolecules are widely applied to the fields of emulsion polymerization, special coatings, biotechnology, nanotechnology, medicine, daily chemical industry, wastewater treatment, photoelectricity and the like. With the development of fluorine chemistry, fluorocarbon surfactants gradually come into the visual field of people, and due to the strong electronegativity and excellent hydrophobic property of fluorine atoms, the fluorocarbon surfactants have extremely high surface activity and excellent chemical stability.
The present invention aims to obtain fluorinated nonionic macromolecular surfactants by using a mechanism of living cationic polymerization, thereby improving the yield of the fluorinated nonionic macromolecular surfactants and simplifying the preparation process thereof.
Disclosure of Invention
The invention provides a preparation method of a fluorine-containing nonionic macromolecular surfactant, which has the following technical scheme:
a method for preparing a fluorine-containing nonionic macromolecular surfactant, comprising:
weighing 100 parts of alcohol macroinitiator and 100 parts of solvent according to the mass parts, and fully mixing and dissolving to obtain an alcohol macroinitiator solution; then, weighing 10-50 parts of catalyst at the temperature of 0 ℃, putting into the alcohol macroinitiator solution, and reacting for 1h to obtain a reaction solution A;
weighing 50-500 parts of fluorine-containing monomer and 100-400 parts of solvent by mass, and fully mixing and dissolving to obtain fluorine-containing monomer solution;
slowly dripping the fluorine-containing monomer solution into the reaction solution A at the temperature of-10 ℃, and continuing to react for 8 hours after the dripping is finished;
after cooling the reaction system to room temperature, adding a proper amount of 2wt% sodium bicarbonate water solution to adjust the reaction system to be neutral;
standing and layering, and taking out the white transparent liquid at the lower layer;
and (3) carrying out rotary evaporation on the taken white transparent liquid to obtain the fluorine-containing nonionic macromolecular surfactant.
In some embodiments, the addition time of the fluorine-containing monomer solution to the solution A is controlled to be 6 to 8 hours.
In some embodiments, the alcoholic macroinitiator is polyethylene glycol, polyvinyl alcohol, or polyethylene glycol monomethyl ether.
In some embodiments, the solvent is dichloromethane or ethyl acetate.
In some embodiments, the fluoromonomer is fluorinated epichlorohydrin.
In some embodiments, the initiator comprises a boron trifluoride etherate complex, a boron trifluoride tetrahydrofuran complex, or a tin hydroxide.
The second aspect of the invention provides a fluorine-containing nonionic macromolecular surfactant prepared by the preparation method of any one of the fluorine-containing nonionic macromolecular surfactants.
The invention prepares the novel fluorine-containing nonionic surfactant by using an active cation polymerization mechanism between fluorinated epichlorohydrin and an alcohol macroinitiator as a principle, and the prepared fluorine-containing nonionic surfactant can greatly improve the surface activity of the surfactant and reduce the critical micelle concentration of the surfactant.
Drawings
FIG. 1 is a graph showing an infrared absorption spectrum of a fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
FIG. 2 is a NMR spectrum of a fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
FIG. 3 is a NMR fluorine spectrum of the fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
FIG. 4 is a gel permeation chromatogram of the fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
FIG. 5 is a digital photograph of the fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
FIG. 6 is a graph showing the relationship between the critical micelle concentration and the surface tension of the fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
Detailed Description
The description is further elucidated with reference to specific examples. The description is to be regarded as illustrative and explanatory only and should not be taken as limiting the scope of the invention.
First, in the embodiments of the present invention, an alcohol macroinitiator is used as an initiator for living cationic polymerization, and before use, the alcohol macroinitiator needs to be azeotropically removed with toluene to remove water absorbed by the alcohol macroinitiator in air, thereby reducing its polymerization inhibition effect on living cationic polymerization.
Example 1
The preparation of the fluorinated nonionic macromolecular surfactant by using the fluorinated epichlorohydrin initiated by the polyethylene glycol-2000 specifically comprises the following steps:
100g of polyethylene glycol-2000 and 100g of dichloromethane are weighed and put into a 1000mL four-neck flask to be uniformly stirred, so as to obtain an alcohol macroinitiator solution.
Weighing 50g of trifluoro-substituted fluorinated epichlorohydrin and 100g of dichloromethane solvent, putting the trifluoro-substituted fluorinated epichlorohydrin into a constant pressure dropping funnel, checking the airtightness after the constant pressure dropping funnel and a four-neck flask are assembled, introducing N2 into the whole device for about 30min, removing air and water vapor, and placing the whole device in an ice bath at 0 ℃.
10g of boron trifluoride etherate as a catalyst was added to the four-neck flask set by anhydrous and oxygen-free operation, so that it was fully complexed with the macroalcohol initiator.
After 1h, the whole device is placed in an ice bath at the temperature of-10 ℃, a constant-pressure dropping funnel is started, the fluorinated epichlorohydrin solution is dripped, the dripping speed is controlled to be 30-80 mg/min, and after the dripping is finished, the reaction is continued in the ice bath for 8h to improve the conversion rate of the fluorinated monomers.
After the reaction is finished, adding a proper amount of deionized water into the system to terminate the reaction and restore the temperature of the reaction system to room temperature, and adding a proper amount of 2wt% sodium bicarbonate aqueous solution to adjust the whole system to be neutral. Then, the mixture was poured into a separatory funnel, and after standing and layering, a white transparent liquid was taken out from the lower layer.
And (3) carrying out rotary evaporation on the obtained white transparent liquid, discarding fractions evaporated at 45 ℃ and 50mm/Hg, taking the residual light yellow liquid in a rotary evaporation bottle, placing the light yellow liquid in an oven at 80 ℃ for 2h, and further removing monomers to obtain the product.
Example 2
The preparation of the fluorinated nonionic macromolecular surfactant by using the fluorinated epichlorohydrin initiated by the polyethylene glycol-4000 comprises the following steps:
100g of polyethylene glycol-4000 and 100g of dichloromethane are weighed and put into a 1000mL four-neck flask to be uniformly stirred, so as to obtain an alcohol macroinitiator solution.
275g of trifluoro-substituted epichlorohydrin and 200g of dichloromethane solvent are weighed, put into a constant pressure dropping funnel, after the constant pressure dropping funnel and a four-neck flask are assembled, the airtightness is checked, N2 is introduced into the whole device for about 30min, air and water vapor are removed, and the whole device is placed in an ice bath at 0 ℃.
30g of boron trifluoride etherate as a catalyst is added into the system through anhydrous and oxygen-free operation, so that the boron trifluoride etherate and the macromolecular alcohol initiator are fully complexed.
After 1h, the whole device is placed in an ice bath at the temperature of-10 ℃, a constant-pressure dropping funnel is started, the fluorinated epichlorohydrin solution is dripped, the dripping speed is controlled to be 60-160 mg/min, and after the dripping is finished, the reaction is continued in the ice bath for 8h to improve the conversion rate of the fluorinated monomers.
After the reaction is finished, adding a proper amount of deionized water into the system to terminate the reaction and restore the temperature of the reaction system to room temperature, and adding a proper amount of 2wt% sodium bicarbonate aqueous solution to adjust the whole system to be neutral. Then, the mixture was poured into a separatory funnel, and after standing and layering, a white transparent liquid was taken out from the lower layer.
And (3) carrying out rotary evaporation on the obtained white transparent liquid, discarding fractions evaporated at 45 ℃ and 50mm/Hg, taking the residual light yellow liquid in a rotary evaporation bottle, placing the liquid in an oven at 80 ℃ for 2h, and further removing the monomers to obtain the product.
Example 3
The preparation of the fluorinated nonionic macromolecular surfactant by initiating fluorinated epichlorohydrin with polyethylene glycol monomethyl ether-2000 specifically comprises the following steps:
100g of polyethylene glycol monomethyl ether-2000 and 100g of dichloromethane are weighed and put into a 1000mL four-neck flask to be uniformly stirred, so as to obtain the alcohol macroinitiator solution.
Weighing 500g of trifluoro-substituted fluorinated epichlorohydrin and 400g of dichloromethane solvent, putting into a constant pressure dropping funnel, assembling the constant pressure dropping funnel and a four-neck flask, checking the air tightness, introducing N2 into the whole device for about 30min, removing air and water vapor, and placing the whole device in an ice bath at 0 ℃.
50g of boron trifluoride etherate as a catalyst is added into the system through anhydrous and oxygen-free operation, so that the boron trifluoride etherate is fully complexed with the macromolecular alcohol initiator.
After 1h, the whole device is placed in an ice bath at the temperature of-10 ℃, a constant-pressure dropping funnel is started, the fluorinated epichlorohydrin solution is dripped, the dripping speed is controlled to be 120-320 mg/min, and after the dripping is finished, the reaction is continued in the ice bath for 8h to improve the conversion rate of the fluorinated monomers.
After the reaction is finished, adding a proper amount of deionized water into the system to terminate the reaction and restore the temperature of the reaction system to room temperature, and adding a proper amount of 2wt% sodium bicarbonate aqueous solution to adjust the whole system to be neutral. Then, the mixture was poured into a separatory funnel, and after standing and layering, a white transparent liquid was taken out from the lower layer.
And (3) carrying out rotary evaporation on the obtained white transparent liquid, discarding fractions evaporated at 45 ℃ and 50mm/Hg, taking the residual light yellow liquid in a rotary evaporation bottle, placing the liquid in an oven at 80 ℃ for 2h, and further removing the monomers to obtain the product.
The following is an assay for the fluorinated nonionic macromolecular surfactant prepared in example 1:
and (3) structure determination: the molecular structure of the fluorinated nonionic macromolecular surfactant is determined by Fourier-infrared transform spectroscopy and nuclear magnetic resonance, and the molecular weight distribution of the synthesized fluorinated nonionic macromolecular surfactant are determined by gel permeation chromatography.
And (3) performance measurement: the curve of the surfactant concentration as a function of the water surface tension and its critical micelle concentration were measured using a tensiometer.
Fig. 1, 2 and 3 are an infrared absorption spectrum, a nuclear magnetic resonance hydrogen spectrum and a nuclear magnetic resonance fluorine spectrum of the fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention, respectively.
Fig. 4, 5 and 6 are respectively a gel permeation chromatogram, a digital photograph, a relationship between critical micelle concentration and surface tension of the fluorinated nonionic macromolecular surfactant prepared in example 1 of the present invention.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and amendments can be made without departing from the principle of the present invention, and these modifications and amendments should also be considered as the protection scope of the present invention.

Claims (5)

1. Preparation method of fluorine-containing nonionic macromolecular surfactant It is characterized in that it comprises:
weighing 100 parts of alcohol macroinitiator and 100 parts of solvent according to the mass parts, and fully mixing and dissolving to obtain an alcohol macroinitiator solution; then, weighing 10-50 parts of catalyst at the temperature of 0 ℃, putting into the alcohol macroinitiator solution, and reacting for 1h to obtain a reaction solution A;
weighing 50-500 parts of fluorine-containing monomer and 100-400 parts of solvent by mass, and fully mixing and dissolving to obtain fluorine-containing monomer solution;
slowly dripping the fluorine-containing monomer solution into the reaction solution A at the temperature of-10 ℃, and continuing to react for 8 hours after the dripping is finished;
cooling the reaction system to room temperature, and then adding a proper amount of 2wt% sodium bicarbonate water solution to adjust the reaction system to be neutral;
standing and layering, and taking out the white transparent liquid at the lower layer;
carrying out rotary evaporation on the taken white transparent liquid to obtain the fluorine-containing nonionic macromolecular surfactant;
the alcohol macroinitiator is polyethylene glycol or polyethylene glycol monomethyl ether, wherein the molecular weight of the polyethylene glycol is 2000 or 4000;
the fluorine-containing monomer is trifluoro-substituted fluorinated epichlorohydrin.
2. The method for producing a fluorinated nonionic macromolecular surfactant according to claim 1, wherein the dropping time of the solution of the fluorinated monomer into the solution A is controlled to 6 to 8 hours.
3. The method for producing a fluorine-containing nonionic macromolecular surfactant according to claim 1, wherein the solvent is dichloromethane or ethyl acetate.
4. The method for producing a fluorine-containing nonionic macromolecular surfactant according to claim 1, wherein said catalyst is a boron trifluoride etherate complex, a boron trifluoride tetrahydrofuran complex or tin hydroxide.
5. A fluorine-containing nonionic macromolecular surfactant, characterized in that the fluorine-containing nonionic macromolecular surfactant is prepared by the preparation method of any one of claims 1 to 4.
CN202110888786.5A 2021-08-03 2021-08-03 Fluorine-containing nonionic macromolecular surfactant and preparation method thereof Active CN113527655B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110888786.5A CN113527655B (en) 2021-08-03 2021-08-03 Fluorine-containing nonionic macromolecular surfactant and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110888786.5A CN113527655B (en) 2021-08-03 2021-08-03 Fluorine-containing nonionic macromolecular surfactant and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113527655A CN113527655A (en) 2021-10-22
CN113527655B true CN113527655B (en) 2023-04-18

Family

ID=78121944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110888786.5A Active CN113527655B (en) 2021-08-03 2021-08-03 Fluorine-containing nonionic macromolecular surfactant and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113527655B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850695A (en) * 2022-11-21 2023-03-28 广州振清环保技术有限公司 Bio-based water-based polyether amine high-molecular polymer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010523A1 (en) * 1978-10-20 1980-04-30 Ciba-Geigy Ag Perfluoroalkylalkylenemercapto group containing non-ionic surfactants, process for their manufacture and their use
JP2015120861A (en) * 2013-12-25 2015-07-02 Dic株式会社 Surfactant composition, coating composition, and resist composition
CN106117413A (en) * 2016-06-27 2016-11-16 南京信息工程大学 Fluorine carbon emulsion without soap prepared by a kind of perfluoroalkyl acrylate copolymerization and preparation method thereof
CN110156594A (en) * 2019-05-21 2019-08-23 淮海工学院 Polyoxyethylene ether carboxylic acid Gemini surface active agent class drag reducer and its preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392332B2 (en) * 2014-07-28 2019-08-27 Merck Patent Gmbh Fluorinated tensides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010523A1 (en) * 1978-10-20 1980-04-30 Ciba-Geigy Ag Perfluoroalkylalkylenemercapto group containing non-ionic surfactants, process for their manufacture and their use
JP2015120861A (en) * 2013-12-25 2015-07-02 Dic株式会社 Surfactant composition, coating composition, and resist composition
CN106117413A (en) * 2016-06-27 2016-11-16 南京信息工程大学 Fluorine carbon emulsion without soap prepared by a kind of perfluoroalkyl acrylate copolymerization and preparation method thereof
CN110156594A (en) * 2019-05-21 2019-08-23 淮海工学院 Polyoxyethylene ether carboxylic acid Gemini surface active agent class drag reducer and its preparation method and application

Also Published As

Publication number Publication date
CN113527655A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113527655B (en) Fluorine-containing nonionic macromolecular surfactant and preparation method thereof
CN103923334A (en) Fluorosilicone release film and preparation method thereof
CN101869813A (en) Preparation method for gemini surfactant with double bonds
CN104086587B (en) Preparation method for cage-type dec(glycidyl silsesquioxane)
CN110818890A (en) Super-spreading wetting agent and preparation method thereof
CN102127173A (en) High-polymer ultraviolet light initiator and preparation method thereof
CN111072754A (en) Trisiloxane modified carnosine and preparation method thereof
CN108384293B (en) Anti-fog/anti-frost coating based on cationic polyelectrolyte copolymer and preparation method thereof
CN103781965B (en) For the chemically-reactive dyes of contact lenses
CN104829839B (en) A kind of fluoro organosilicon polymer and preparation method thereof
EP3437630A1 (en) Gel composition, cosmetic and manufacturing method for gel composition
CN111392760A (en) Preparation method of rare earth fluoride
CN110903344B (en) Tetrasiloxane modified glutathione and preparation method thereof
CN110028639A (en) A kind of photosensitivity Zr-B-Si-C ceramic forerunner and its in-situ preparation method
CN102190761B (en) Fluorine-containing amphipathic modifying material for preparing antifouling membrane and preparation method thereof
CN107602758A (en) Child room interior wall special emulsion and preparation method thereof
CN109999716B (en) Nonionic fluorine-containing surfactant and preparation method and application thereof
CN112603855A (en) Method for preparing hair product for replacing silicone oil
CN112898185B (en) Fluorine-containing compound for immersion photoresist, preparation method thereof and photoresist
CN112142358A (en) Anhydrous polycarboxylate superplasticizer formula and vacuum-pumping preparation method capable of quickly saving energy consumption
CN109608595A (en) Silicon-containing surfactant, silicone-hydrogel treatment fluid and preparation, processing method
CN106750327B (en) A kind of modified polyether and its preparation method and application
CN110655604A (en) Physical hydrogel and preparation method thereof
CN208136135U (en) A kind of acrylic modified epoxy resin preparation system
CN107032946B (en) Method for preparing trifluorobromoethylene by phase transfer catalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant