CN113521132A - Application of kozakha extract in preparation of medicine for preventing and/or treating NAFLD - Google Patents

Application of kozakha extract in preparation of medicine for preventing and/or treating NAFLD Download PDF

Info

Publication number
CN113521132A
CN113521132A CN202010295787.4A CN202010295787A CN113521132A CN 113521132 A CN113521132 A CN 113521132A CN 202010295787 A CN202010295787 A CN 202010295787A CN 113521132 A CN113521132 A CN 113521132A
Authority
CN
China
Prior art keywords
extract
quzhazhigan
nafld
liver
polydatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010295787.4A
Other languages
Chinese (zh)
Other versions
CN113521132B (en
Inventor
胡琳
任杨帆
李清清
胡群
尹开云
方震东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Xianghao Technology Co ltd
Original Assignee
Kunming Xianghao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Xianghao Technology Co ltd filed Critical Kunming Xianghao Technology Co ltd
Priority to CN202010295787.4A priority Critical patent/CN113521132B/en
Publication of CN113521132A publication Critical patent/CN113521132A/en
Application granted granted Critical
Publication of CN113521132B publication Critical patent/CN113521132B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/70Polygonaceae (Buckwheat family), e.g. spineflower or dock
    • A61K36/708Rheum (rhubarb)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The application discloses application of a quzhazhigan extract in preparation of a medicine for preventing and/or treating NAFLD, wherein the quzhazhigan extract contains at least one of quzhazhigan or methyl polydatin. The application value of the Quzhazhigan or methyl polydatin-rich Quzhazhigan extract in the aspect of preventing and treating the non-alcoholic fatty liver is found for the first time.

Description

Application of kozakha extract in preparation of medicine for preventing and/or treating NAFLD
Technical Field
The application relates to application of a koozhiza trifoliata extract in preparing a medicine for preventing and/or treating NAFLD, belonging to the field of medicines.
Background
In normal human livers, lipids account for approximately 5% of the wet weight of the liver. When the accumulation of lipid in the liver cells exceeds 5% of the wet weight of the liver, or reaches an area more than 1/3 histologically, the liver is non-alcoholic fatty liver disease (NAFLD).
NAFLD is a clinical syndrome disease characterized primarily by diffuse hepatocellular bullous fat, and has no history of excessive alcohol consumption and other well-defined liver damage factors. The NAFLD disease spectrum includes non-alcoholic simple fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and cirrhosis (cirrhosis). The incidence of NAFLD has increased year by year in recent years and has become a significant public health problem worldwide in the 21 st century. The prevalence of NAFLD is about 25% worldwide, which has become the first chronic liver disease in our country, and has increased to 58% and 74% in overweight people and patients with type II diabetes.
One longitudinal clinical data analysis showed that NAFL patients at about 1/3 progressed to NASH, and once NASH progressed, the risk of cirrhosis, hepatocellular carcinoma, and liver failure increased significantly, as well as the presence of NASH increased non-hepatic adverse consequences (such as cardiovascular and malignant diseases). Most NASH patients do not have obvious clinical symptoms for decades, but some patients develop a rapid progression. The NASH clinical study web fibrosis classification data shows that NASH diagnosed patients will progress to a fibrosis stage on average every 7 years. Therefore, the positive prevention and treatment of the fatty liver has important significance for preventing the progress of the chronic liver disease and improving the prognosis.
The pathogenesis of NAFLD is closely related to insulin resistance, obesity, type II diabetes and hyperlipidemia, and due to a complex pathogenesis, a specific medicine aiming at NAFLD is not available in the market. At present, some corresponding therapeutic drugs including insulin sensitizer, lipid-lowering, anti-oxidative stress and liver-protecting drugs, etc. also fail to completely reverse the development of NAFLD.
The common drugs for clinically treating NAFLD are statins lipid-lowering drugs, which can increase the burden of the liver. The lack of drugs for the treatment of NAFLD has prompted researchers to study and develop novel drugs.
Disclosure of Invention
The application provides an application of a quzhao extract for solving the technical problems in preparing a medicine for preventing and/or treating NAFLD.
The application provides application of a quzhazhigan extract in preparation of a medicine for preventing and/or treating NAFLD, wherein the quzhazhigan extract contains at least one of quzhazhigan or methylpiperazine.
Preferably, the preventing and/or treating NAFLD comprises: delay the development of NAFLD caused by high fat diet; or improving the activity of the liver antioxidant enzyme of the NAFLD rat, improving the antioxidant capacity of the liver cells, inhibiting oxidative stress and lipid peroxidation, and reducing the accumulation of lipid in the liver cells; or has obvious down-regulation effect on the liver inflammation level of the NAFLD, and can improve the liver inflammation environment so as to play the role of preventing and treating the NAFLD.
Preferably, the NAFLD comprises: simple non-alcoholic fatty liver disease (NAFL).
Preferably, the NAFLD comprises: nonalcoholic steatohepatitis (NASH).
Preferably, the NAFLD comprises: fatty liver fibrosis.
Need to explain: the application provides the Quzhu extract used in the application, and in order to prepare the required medicament, required auxiliary materials and auxiliary agents can be added according to the conventional requirements of the preparation form of the prepared medicament. The added auxiliary materials and auxiliary agents do not play a role in treatment. Meanwhile, after each quzhang extract is mixed with other treatment components according to requirements, the medicine is prepared, and the quzhang extract plays a role in preventing and/or treating NAFLD in the medicine.
The extract contains only one of Quzhazhigan and methyl polydatin, and can be used for the above purpose.
Specifically, the Quzhazhigan extract can be Quzhazhigan or methyl polydatin.
Preferably, the Quzhazhigan extract at least comprises Quzhazhigan or methyl polydatin.
Preferably, the Quzhazhigan extract is Quzhazhigan.
Preferably, the extract of kozak is methyl polydatin.
Preferably, the Quzhazhigan extract at least comprises 50-99 wt.% of Quzhazhigan and 1-25 wt.% of polydatin.
Preferably, the quzhazhigan extract at least comprises 50-80 wt.% of quzhazhigan and 20-50 wt.% of methylpiperazine.
Preferably, the Quzhazhigan extract at least comprises 25 wt.% to 40 wt.% of Quzhazhigan, 5 wt.% to 10 wt.% of polydatin, 10 wt.% to 25 wt.% of methyl polydatin, 1 wt.% to 5 wt.% of resveratrol, 5 wt.% to 10 wt.% of piceatannol and 5 wt.% to 10 wt.% of methyl resveratrol.
Specifically, the chemical formula of the Quzhazhigan is (E) -1- (3, 5-dihydroxyphenyl) -2- (3-hydroxy-4-O-D-glucopyranosyl phenyl) ethylene or 3,5,3 ', 4 ' -tetrahydroxystilbene-3 ' -O-beta-glucoside, and the structural formula is shown as formula I:
Figure BDA0002452140330000031
specifically, the polydatin has the chemical formula of 4 ', 5-dihydroxy stilbene-3-O-glucoside (4', 5-
dihydroxy-stilbene-3-O-glucoside, polystatin, piceid), formula II:
Figure BDA0002452140330000032
specifically, the chemical formula of the methyl polydatin is 5-hydroxy-4 '-methoxystilbene-3-O-glucoside (4' -methoxy-5-hydroxy-stilbene-3-O-glucoside, deoxyhalophilic), and the structural formula is shown as formula III:
Figure BDA0002452140330000033
specifically, the structural formula of resveratrol is shown as formula IV:
Figure BDA0002452140330000041
specifically, the structural formula of piceatannol is shown as formula V:
Figure BDA0002452140330000042
specifically, the structural formula of the methyl resveratrol is shown as a formula VI:
Figure BDA0002452140330000043
the application discovers for the first time that the Quzhazhigan extract containing at least one of Quzhazhigan, polydatin or methyl polydatin can significantly reduce serum Total Cholesterol (TC), Triglyceride (TG), alanine Aminotransferase (ALT), glutamic-oxalacetic transaminase (AST) and low-density lipoprotein (LDL) indexes of NAFLD rats caused by high-fat diet, significantly increase serum high-density lipoprotein (HDL) indexes, and prompt that the Quzhazhigan extract has an obvious treatment and protection effect on experimental NAFLD rats and is beneficial to generation and development of fatty liver of the rats induced by high-fat diet. It is suggested that the medicine has corresponding effect on human body and can play a role in preventing and treating simple non-alcoholic fatty liver disease (NAFL).
The application also finds that the quzhao extract can obviously reduce the Malondialdehyde (MDA) content of liver tissues of NAFLD rats, and increase the activity of superoxide dismutase (SOD) and the total antioxidant capacity (T-AOC), and shows that the quzhao extract can improve the activity of the liver antioxidant of the NAFLD rats, increase the antioxidant capacity of hepatocytes, inhibit oxidative stress and lipid peroxidation, and reduce the accumulation of lipid in the hepatocytes, so that the development of NAFLD can be effectively prevented and treated. The suggestion shows that the medicine also has corresponding effect on human body and can play a role in preventing and treating simple non-alcoholic fatty liver disease (NAFL) and fatty liver fibrosis thereof.
The application further discovers that the quzhang extract can reduce the expression level of matrix metalloproteinase 9(MMP-9), tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta (IL-1 beta) and human monocyte chemotactic protein-1 (MCP-1) which are factors related to the inflammation of the rat NAFLD caused by high-fat diet, and the quzhang extract has a remarkable down-regulation effect on the liver inflammation level of the rat NAFLD and can improve the liver inflammation environment so as to play a role in preventing and treating the NAFLD. It is suggested that the medicine has corresponding effect on human body and can prevent and treat nonalcoholic steatohepatitis (NASH).
Pharmacodynamic experiment results show that the Quzhang extract can obviously reduce the content of Malondialdehyde (MDA) in liver tissues and increase the activity of superoxide dismutase (SOD) and the total antioxidant capacity (T-AOC).
In recent years, the oxidative stress mechanism of fatty liver and the prevention and treatment effect of antioxidant in fatty liver pathological process are attracting more and more attention. Fatty liver is a pathological change caused by the disturbance of lipid metabolism of liver due to various causes, and the accumulation of a large amount of lipid in liver, and the occurrence of steatosis when the lipid is accumulated in liver tissue for a long time will block the transmission of electron current in respiratory chain, induce pro-oxidant increase and anti-oxidant decrease of oxygen stress, thereby promoting the significant increase of intracellular Reactive Oxygen Species (ROS), and react with intracellular lipid, protein and DNA, resulting in the damage and death of liver cells.
ROS generated after the enhancement of oxygen stress oxidize the biofilm to form a series of lipid free radicals and degradation products such as Malondialdehyde (MDA) and 4-hydroxynonenoic acid (HNE). These substances can further cross-link intracellular proteins to form Mallory corpuscles, and induce immune responses, chemotaxis neutrophils, and cause inflammatory cell infiltration. The lipid peroxide not only increases endogenous ROS and toxicity, but also can inhibit oxidation and the like, and increase the sensitivity to exogenous peroxide toxicity.
The blood MDA level of experimental NAFLD (nafLD) hyperlipidemic rats is obviously increased, the T-AOC level and the SOD activity are obviously reduced, and the condition that the oxidation and antioxidation balance of the body is damaged under the state of non-alcoholic fatty liver is suggested, so that the excessive accumulation of ROS in the body is caused.
The application finds that the Quzhu extract can improve the activity of liver antioxidase of a rat NAFLD, increase the antioxidant capacity of liver cells, and inhibit oxidative stress and lipid peroxidation, so that the accumulation of lipid in the liver cells is effectively reduced, and the purpose of effectively preventing and treating NAFLD is achieved.
In addition, the liver can generate inflammatory factors due to long-term high fat diet, the generation and development of NAFLD are closely independent of inflammatory reaction, and various inflammatory factors play a role in the NAFLD to aggravate the degree of liver lesion. TNF-alpha is an important inflammatory factor mediating liver injury and plays a cytotoxic role in liver disease leading to liver injury. The liver kupffer cell can produce IL-1 beta to aggravate liver inflammation and steatosis, and the IL-1 beta promotes the generation of nitric oxide and apoptosis in islet cells to cause the selective damage of the islet cells, thereby further inducing insulin resistance. Inflammatory cells, represented by neutrophils, produce MMP-9, one of the markers of chronic inflammatory changes in NAFLD liver tissue, which degrades liver basement membrane and destroys basement membrane integrity.
MMP-9 overexpression can destroy the normal matrix environment of Hepatic Stellate Cells (HSC), so that the Hepatic Stellate Cells (HSC) are activated, the activated HSC express a large amount of inflammatory mediators and fibrosis cytokines, and stimulate the massive synthesis of extracellular matrix (ECM), thereby promoting the occurrence and development of hepatic fibrosis. The overexpression of MMP-9, IL-1 beta and TNF-alpha forms a mutual vicious circle, and the pathological degree of the liver is continuously increased.
MCP-1 is a chemokine, a potent chemoattractant secreted by macrophages, endothelial cells, hepatic stellate cells and vascular smooth muscle cells, and is associated with fat accumulation in hepatocytes in NAFLD in response to inflammatory stimuli of IL-1 β and TNF- α.
The animal experiment results prove that the quzhao extract can obviously reduce the expression levels of related factors MMP-9, TNF-alpha, IL-1 beta and MCP-1 of NAFLD rat inflammation caused by high fat diet, and the quzhao extract has obvious down-regulation effect on the level of the NAFLD rat liver inflammation and can obviously improve the liver inflammation environment so as to block the process of NAFLD and play a role in preventing and treating diseases.
The extract of Quzhang Zaozha used in the above application can be directly prepared from the rhizome of Quzhang Zaozha by conventional extraction and purification method, or can be obtained by mixing the extracts containing the above components at the above ratio. The ingredients of the Quzhazha extract can also be prepared from other plant materials such as edible radix et rhizoma Rhei (Rheum rhaponticum L.) and rhizoma Polygoni Cuspidati (Polygonum cuspidatum Sieb. et Zucc.) or obtained by chemical synthesis. The medicinal material, namely the roots and stems of the quzhang are used as raw materials for extraction.
Quzhao, a Tibetan medicine material, is prepared from Rheum lhasaense A.J. Li et P.K.Hsiao as plant source, belonging to Rheum genus of Polygonaceae family, produced in east of Tibet, Sichuan and other places, and has been successfully introduced and domesticated in Shandong botanical garden of Shanghai Shang, by Shang, and Shang, Shang. The Quzhu herb is selected from wild or planted Rheum palmatum rhizome.
The research on the chemical components and the pharmacological activity of the Lhasa rhubarb finds that the Lhasa rhubarb contains high-content stilbene compounds which mainly comprise Quzhazhigan and methyl polydatin. Unlike other rhubarb plants, Quzha contains almost no anthraquinone chemical components with potential toxic and side effects.
Still another aspect of the present application provides an agent for preventing and/or treating NAFLD, comprising the extract of kozakh as described above;
preferably, the pharmaceutical dosage form is a fixed oral dosage form or an injectable dosage form.
Is prepared by the preparation method of a fixed oral preparation or an injection preparation in the prior art.
The beneficial effects that this application can produce include:
1) the application provided by the application discovers for the first time that the extract of the quzhazhigan and the methyl polydatin which are rich in is of application value in the aspect of preventing and treating the non-alcoholic fatty liver. Pharmacodynamic experiment results show that the Quzha kouzi extract can remarkably reduce serum Total Cholesterol (TC), Triglyceride (TG), alanine Aminotransferase (ALT), glutamic-oxalacetic transaminase (AST) and low-density lipoprotein (LDL) indexes of NAFLD rats caused by high-fat diet, remarkably increase serum high-density lipoprotein (HDL) indexes, prompt that the Quzha kouzi extract has a remarkable treatment and protection effect on non-alcoholic fatty liver induced by high-fat diet, and is beneficial to delaying or preventing NAFLD induced by high-fat diet, especially occurrence of simple non-alcoholic fatty liver.
(2) The application provided by the application is rich in the stilbene components such as Quzhazhigan, methyl polydatin and the like, and the components are clear and controllable. Because the used plant-based source contains rich stilbene substances and the extract hardly contains anthraquinone impurities, the extract rich in the stilbene components such as quzhazhigan, methyl polydatin and the like can be obtained only by a conventional extraction and purification method, and the extract raw material for preparing the medicament can be obtained without complicated purification and refining.
Detailed Description
The present application will be described in detail with reference to examples, but the present application is not limited to these examples.
Examples
Unless otherwise specified, the raw materials, solvents and auxiliaries in the examples of the present application were purchased commercially and were not treated.
The instrumentation used was tested:
the multifunctional microplate reader is a card box type SpectraMax Paradigm multifunctional microplate reader produced by Molecular Devices company; the full-automatic chemiluminescence apparatus is a UniCel DxI 800 immunoassay system produced by Beckmann Coulter. The refrigerated centrifuge is a high-speed refrigerated centrifuge 3k15 produced by Sigma in Germany; the full-automatic biochemical analyzer is a UniCel DxC 800 Synchron full-automatic biochemical analyzer produced by Beckmann Coulter.
Example 1 preparation of Quzhazha extract samples 1-12
a. Washing artificially-planted or wild koozhiza plants with water to remove soil, hanging and air-drying in a ventilation place, separating underground rhizomes and overground stems and leaves, and respectively crushing the underground rhizomes and the overground stems and leaves into coarse particles by a crusher;
b. cutting underground rhizome and overground stem and leaf, soaking in 75% ethanol for 24 hr, percolating with 75% ethanol at percolation rate of 20ml/min, and mixing extractive solutions;
performing high performance liquid chromatography (chromatographic column using octadecylsilane chemically bonded silica as filler; methanol-6% acetic acid (19: 81) as mobile phase; detection wavelength is 319nm, and high performance liquid chromatography operation according to appendix V of 2010 version of Chinese pharmacopoeia) on the obtained extract, determining the content of each substance in the extract, and entering step c when the content of each substance meets the requirement;
c. and c, adding water into the quzha extract in the step b for precipitation, collecting the precipitate, and directly drying and refining to obtain a quzha extract sample 1-11.
The content of each substance in the quzao extract samples 1-11 is shown in table 1, and the percentage of each substance in the table represents the mass ratio of the substance to the total mass of the quzao extract.
TABLE 1 percentage content of active ingredients in each Quzhang extract sample
Figure BDA0002452140330000081
Figure BDA0002452140330000091
Example 2: preparation of oral dispersible tablet of Quzhazha extract 1-5
(1) Prescription
Figure BDA0002452140330000092
(2) Method for producing
Preparing a inclusion compound of the quzha extract: dissolving the prescription amount of the extract of the quzhu in 2.5L of 50% ethanol, grinding, adding the prescription amount of hydroxypropyl-beta-cyclodextrin, filtering the obtained solution through a microporous membrane until the solution is clear, and separating the inclusion compound from the mixture. Adding hydroxypropyl-beta-cyclodextrin, sodium carboxymethyl starch and pregelatinized starch according to the formula amount by an equivalent gradual addition method, uniformly mixing, adding magnesium stearate, uniformly mixing, and tabletting to obtain the oral dispersible tablet 1-5 of the quzhang extract.
The correspondence between the dispersible tablets 1-5 and the Quzha extract used in each dispersible tablet is shown in the following table:
dispersible tablet numbering Quzha extract sample number
1 1
2 2
3 3
4 4
5 5
EXAMPLE 3 preparation of Quzhu extract injection 1-5
(1) Prescription
Figure BDA0002452140330000093
Figure BDA0002452140330000101
(2) Method for producing
Weighing 2.50L of absolute ethyl alcohol, adding 1.50L of propylene glycol and phosphate buffer solution, mixing well, adding 100.00g of the quzhazhigan extract obtained in examples 1 and 2, performing ultrasonic dissolution, and fixing the volume of the buffer solution to scale. Filtering with 0.45 μm microporous membrane, and coarse filtering. The secondary filtrate is filtered through a 0.22 mu m microporous filter membrane and is filtered through a 1 ten thousand molecular weight cutoff polyether sulfone membrane to remove pyrogen. And filling nitrogen into the brown bottle, and filling and sealing to obtain 1-5 of injection.
The corresponding relation between the injection 1-5 and the Quzha extract used in each injection is shown in the following table:
injection numbering Quzha extract sample number
1 1
2 2
3 3
4 4
5 5
EXAMPLE 4 improving Effect of Quzhao extract on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats
1. Experimental methods
1.1 clean SD rat is fed with common feed for 1 week, and the experiment is started, with room temperature of 22 + -2 deg.C and humidity of 55 + -15%. Randomly selecting 10 rats as a normal group, feeding the rats with common feed, feeding 60 rats as a modeling group, feeding the rats with high-fat feed (5% of lard, 10% of sucrose, 3% of egg yolk, 5% of cholesterol and 59% of basal feed) for 4 weeks, and then dividing the rats into a model group and 1-5 quzhao extract samples, wherein each group contains 10 rats.
The normal group and the model group are perfused with normal saline, the administration group is perfused with 40mg/kg of normal saline for 8 weeks, and mouse serum and liver are taken after 12 weeks of experiments. Fasting is carried out for 12 hours before material taking, water is not forbidden, chloral hydrate is used for anesthesia on day 2, eyeballs are removed, blood is taken, livers are quickly dissected and weighed, and normal saline at 4 ℃ is used for washing for standby.
1.2 serum physiological and biochemical index detection: the contents of serum Total Cholesterol (TC), Triglyceride (TG), low density lipoprotein (LDL-C) and high density lipoprotein (HDL-C) were measured with a blood lipid biochemical kit (Shanghai Jingjing diagnostics technologies Co., Ltd.).
Mouse whole blood 3000 r.min-1Centrifuging for 10min, collecting serum, operating according to the kit instructions, and measuring absorbance values of TC and TG with an enzyme-labeling instrument at 510nm wavelength; the absorbance of LDL and HDL was measured at 546nm, and the concentration of each marker in serum was calculated. The levels of serum alanine Aminotransferase (ALT) and aspartate Aminotransferase (AST) were measured by ELISA, which was performed according to the instructions of the kit, and the absorbance at 510nm was measured by an enzyme-linked immunosorbent assay to calculate the concentration of each index in serum.
1.3 detecting physiological and biochemical indexes of liver: adding normal saline into liver tissue at 4 deg.C to make into 100 g.L-1Centrifuging the liver homogenate at 3500r/min at 4 deg.C for 10min, collecting supernatant, and storing at-70 deg.C for detecting physiological and biochemical indexes of liver. The total antioxidant capacity (T-AOC) is measured by a colorimetric method, Malondialdehyde (MDA) is measured by a TBA method, and superoxide dismutase (SOD) is measured by a hydroxylamine method, which are operated according to the operation method of the kit specification.
The results are expressed as the amount of protein per gram of liver tissue. The expression levels of matrix metalloproteinase 9(MMP-9), tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta (IL-1 beta) and human monocyte chemotactic protein-1 (MCP-1) are determined by enzyme-linked immunosorbent assay, and operation and calculation are carried out according to the instructions of rat MMP-9, rat TNF-alpha and rat MCP-1ELISA kit (Heifeier biology).
1.4 data processing: data to
Figure 4
The normal distribution data is tested by t, and the bias distribution data is tested by rank sum.
2. The experimental results are as follows:
2.1 Effect on NAFLD rat serum Biochemical index
The effect of the Zaoza extract samples 6-11 is similar to the results listed in Table 2, and the experimental results of typical samples 1-5 are shown in Table 2.
TABLE 2 Effect of Quzhang extracts on the biochemical indices of NAFLD rat serum: (
Figure 5
n=10,TC,TC, LDL,HDL:mmol/L;AST,ALT:U/L)
Figure BDA0002452140330000113
Figure BDA0002452140330000121
Note: in comparison with the normal group,Δp is less than 0.05; in comparison with the set of models,*P<0.05,**P<0.01
the experimental results in table 2 show that compared with the normal group, the serum TC, TG, LDL, ALT and AST contents of the model group mice are obviously increased, the HDL content is obviously reduced (P <0.05), and the model building is successful. Compared with the model group, the serum TG, TC and LDL contents of mice in each administration group are obviously reduced (P <0.01 and P <0.05), the HDL content is obviously increased (P <0.05), and the AST and ALT contents or activities are obviously reduced (P <0.01 and P < 0.05).
The results show that after the high fat feeding action, the blood fat TC, TG and LDL levels are obviously increased, the liver function indexes AST and ALT levels are obviously increased, and the liver cells are damaged to a certain extent. 1-5 groups of the Quzhazha extracts can obviously reduce the contents of TC, TG, LDL, AST and ALT in NAFLD rat serum, increase the content of HDL and prompt that liver cell damage of each group of the Quzhazha extracts is protected and relieved. The effect of the Quzha extract samples 6-11 was similar to that of the Quzha extract samples 1-5.
2.2 Effect on the expression level of TNF-alpha, IL-1 beta, MCP-1, MMP-9 proteins in NAFLD rat serum
The effect of the quzha extract samples 6-11 is similar to the results listed in the table 3, and the experimental results of the influence of typical quzha extract samples 1-5 on the expression levels of TNF-alpha, IL-1 beta, MCP-1 and MMP-9 proteins in liver tissues of NAFLD rats are shown in the table 3.
TABLE 3 influence of the extract of each Quzhu on the expression level of TNF-alpha, IL-1 beta, MCP-1, MMP-9 protein in NAFLD rat serum
Group of TNF-α IL-1β MCP-1 MMP-9
Is normal 1.49±0.21 1.33±0.13 0.78±0.22 0.98±0.10
Model (model) 2.53±0.24Δ 1.87±0.16Δ 1.13±0.17Δ 1.32±0.09Δ
Quzha extract 1 2.11±0.31* 1.35±0.12* 0.88±0.19* 1.07±0.12*
Quzhao extract 2 2.18±0.20* 1.43±0.15* 0.83±0.21* 1.01±0.09*
Quzha extract 3 1.82±0.19* 1.36±0.11* 0.78±0.11* 0.96±0.10*
Quzha extract 4 1.76±0.22* 1.31±0.11** 0.67±0.15** 0.88±0.09**
Quzha extract 5 1.98±0.18* 1.39±0.17* 0.73±0.13* 0.99±0.11*
Note: in comparison with the normal group,Δp is less than 0.05; in comparison with the set of models,*P<0.05,**P<0.01
the experimental results in Table 3 show that the expression levels of NF-alpha, IL-1 beta, MCP-1 and MMP-9 in the model group are obviously increased compared with those in the normal group. Compared with a model group, each quzha extract can obviously reduce the expression level of the protein (P is less than 0.05, and P is less than 0.01), and the quzha extract has down-regulation effect on the liver inflammation level of NAFLD rats. The effect of the Quzha extract samples 6-11 was similar to that of the Quzha extract samples 1-5.
2.3 Effect on NAFLD rat liver T-AOC, SOD and MDA
The effect of the quzha extract samples 6-11 is similar to the results listed in table 2, and the experimental results of the effect of typical quzha extracts 1-5 on liver tissues of NAFLD rats are shown in table 4.
TABLE 4 Effect of extracts of Fiveleaf akebia on NAFLD rat liver tissue T-AOC, SOD and MDA
Figure BDA0002452140330000131
Note: in comparison with the normal group,ΔP<0.05,ΔΔp is less than 0.01; in comparison with the set of models,*P<0.05,**P<0.01
the experimental results in Table 4 show that compared with the normal group, the T-AOC and SOD activity of the modeling group is obviously reduced (P is less than 0.01 and P is less than 0.05), and the MDA content is obviously increased (P is less than 0.05). Compared with the model group, the liver MDA level of each quzhang extract group is obviously reduced, the T-AOC activity and the SOD activity are obviously increased, and the fact that each quzhang extract group can regulate the antioxidant capacity of liver cells is suggested. The effect of the Quzha extract samples 6-11 was similar to that of the Quzha extract samples 1-5.
Reference throughout this specification to "one embodiment," "another embodiment," "an embodiment," "a preferred embodiment," or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment described generally in this application. The appearances of the same phrase in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the scope of the disclosure to effect such feature, structure, or characteristic in connection with other embodiments.
Although the present application has been described herein with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More specifically, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure and claims of this application. In addition to variations and modifications in the component parts and/or arrangements, other uses will also be apparent to those skilled in the art.

Claims (10)

1. The application of a quzhazha extract in preparing a medicine for preventing and/or treating NAFLD is characterized in that the quzhazha extract comprises: at least one of Quzhazhigan and methyl polydatin.
2. The use of claim 1, wherein the NAFLD comprises: at least one of simple non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and fatty liver fibrosis.
3. The use of claim 1, wherein the Quzhazhigan extract at least comprises Quzhazhigan or Methylpolygonin.
4. The use according to claim 3, wherein the Quzhazhigan extract is Quzhazhigan.
5. The use according to claim 3, wherein the Quzhazha extract is methyl polydatin.
6. The use of claim 1, wherein the Quzhazhigan extract at least comprises 50-99 wt.% of Quzhazhigan and 1-25 wt.% of polydatin.
7. The use of claim 1, wherein the Quzhazhigan extract at least comprises 50-80 wt.% of Quzhazhigan and 20-50 wt.% of Methylpolygonin.
8. The use according to claim 1, wherein the Quzhazhigan extract at least comprises 25 wt.% to 40 wt.% Quzhazhigan, 5 wt.% to 10 wt.% polydatin, 10 wt.% to 25 wt.% methyl polydatin, 1 wt.% to 5 wt.% resveratrol, 5 wt.% to 10 wt.% piceatannol and 5 wt.% to 10 wt.% methyl resveratrol.
9. The use of claim 1, wherein the Quzhu extract is extracted from wild or artificially planted Rheum palmatum rhizomes.
10. A medicament for preventing and/or treating NAFLD, which comprises the extract of kozakh koidz as claimed in any one of claims 1 to 9;
preferably, the dosage form of the medicament is a fixed oral dosage form or an injection dosage form.
CN202010295787.4A 2020-04-15 2020-04-15 Preparation method of koozhao extract Active CN113521132B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010295787.4A CN113521132B (en) 2020-04-15 2020-04-15 Preparation method of koozhao extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010295787.4A CN113521132B (en) 2020-04-15 2020-04-15 Preparation method of koozhao extract

Publications (2)

Publication Number Publication Date
CN113521132A true CN113521132A (en) 2021-10-22
CN113521132B CN113521132B (en) 2023-02-10

Family

ID=78120113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010295787.4A Active CN113521132B (en) 2020-04-15 2020-04-15 Preparation method of koozhao extract

Country Status (1)

Country Link
CN (1) CN113521132B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117860813A (en) * 2024-03-13 2024-04-12 云南邦纳科技有限公司 Composition with liver protection function and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102058678A (en) * 2010-12-10 2011-05-18 成都华西天然药物有限公司 Medicine or health-care food composition for treating fatty liver
CN102526227A (en) * 2012-01-13 2012-07-04 西藏金哈达药业有限公司 Use of Rheum emodi extract for preparing drugs for preventing and treating fatty liver diseases
CN104224813A (en) * 2014-09-03 2014-12-24 昆明制药集团股份有限公司 Pharmaceutical composition as well as preparation method and application thereof
CN110624006A (en) * 2019-09-23 2019-12-31 昆明翔昊科技有限公司 A health wine containing effective components of fructus Quzhazhii
CN111000854A (en) * 2019-12-30 2020-04-14 昆药集团股份有限公司 Application of Quzhazhigan in preparation of product for treating and/or preventing non-alcoholic fatty liver disease

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102058678A (en) * 2010-12-10 2011-05-18 成都华西天然药物有限公司 Medicine or health-care food composition for treating fatty liver
CN102526227A (en) * 2012-01-13 2012-07-04 西藏金哈达药业有限公司 Use of Rheum emodi extract for preparing drugs for preventing and treating fatty liver diseases
CN104224813A (en) * 2014-09-03 2014-12-24 昆明制药集团股份有限公司 Pharmaceutical composition as well as preparation method and application thereof
CN110624006A (en) * 2019-09-23 2019-12-31 昆明翔昊科技有限公司 A health wine containing effective components of fructus Quzhazhii
CN111000854A (en) * 2019-12-30 2020-04-14 昆药集团股份有限公司 Application of Quzhazhigan in preparation of product for treating and/or preventing non-alcoholic fatty liver disease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安利贞等: "超高效液相色谱法测定拉萨大黄中三种化学成分的含量", 《云南中医学院学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117860813A (en) * 2024-03-13 2024-04-12 云南邦纳科技有限公司 Composition with liver protection function and preparation method and application thereof

Also Published As

Publication number Publication date
CN113521132B (en) 2023-02-10

Similar Documents

Publication Publication Date Title
Wang et al. Comparison of antidiabetic effects of saponins and polysaccharides from Momordica charantia L. in STZ-induced type 2 diabetic mice
Chen et al. A review of the ethnobotanical value, phytochemistry, pharmacology, toxicity and quality control of Tussilago farfara L.(coltsfoot)
Wang et al. Antihyperlipidemic effect of protodioscin, an active ingredient isolated from the rhizomes of Dioscorea nipponica
Fei et al. Zhikang Capsule ameliorates dextran sodium sulfate-induced colitis by inhibition of inflammation, apoptosis, oxidative stress and MyD88-dependent TLR4 signaling pathway
Hussain et al. Anti-arthritic activity of Ricinus communis L. and Withania somnifera L. extracts in adjuvant-induced arthritic rats via modulating inflammatory mediators and subsiding oxidative stress
Li et al. Rosa rugosa polysaccharide attenuates alcoholic liver disease in mice through the gut-liver axis
Liang et al. Protection effect of Zhen‐Wu‐tang on adriamycin‐induced nephrotic syndrome via inhibiting oxidative lesions and inflammation damage
Sharma et al. attenuates streptozotocin induced diabetic cardiomyopathy via inhibition of oxidative stress and inflammatory response in rats
Kale et al. Five traditional Nigerian Polyherbal remedies protect against high fructose fed, Streptozotocin-induced type 2 diabetes in male Wistar rats
Pandeya et al. 18KHT01, a potent anti-obesity polyherbal formulation
Albuquerque et al. Chalcones from Myracrodruon urundeuva are efficacious in guinea pig ovalbumin-induced allergic conjunctivitis
Wang et al. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus
CN113521132B (en) Preparation method of koozhao extract
Chen et al. Astragalin: A food-origin flavonoid with therapeutic effect for multiple diseases
Zhang et al. Hepatotoxicity comparison of crude and licorice-processed Euodiae Fructus in rats with stomach excess-cold syndrome
Zhang et al. A review of the traditional uses, phytochemistry, pharmacology and quality control of the ethnic medicinal plant Persicaria orientalis (L.) Spach in China
Guo et al. Chemical composition, biological activities, and quality standards of hawthorn leaves used in traditional Chinese medicine: a comprehensive review
Fu et al. Protective effects and possible mechanisms of catalpol against diabetic nephropathy in animal models: a systematic review and meta-analysis
CN105749072B (en) Chinese medicinal composition for preventing and treating hyperuricemia and hyperlipemia and preparation method thereof
Hosseinimehr et al. Radioprotective effect of chicory seeds against genotoxicity induced by ionizing radiation in human normal lymphocytes
Zhang et al. A comprehensive review on distribution, pharmacological properties, and mechanisms of action of sesamin
Kpoyizoun et al. Effect of Maytenus senegalensis roots on OVA-induced airway inflammation in a mouse asthma model
CN115006494A (en) Inula flower composite anti-alcohol composition with pulse-displaying function, anti-alcohol and liver-protecting preparation and application thereof
Li et al. Tibetan medicine Bang Jian: a comprehensive review on botanical characterization, traditional use, phytochemistry, and pharmacology
Tang et al. Qinhuo Shanggan oral solution resolves acute lung injury by down-regulating TLR4/NF-κ B signaling cascade and inhibiting NLRP3 inflammasome activation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant