CN113517690A - 含电动汽车充电站的社区综合能源系统双层调度方法 - Google Patents

含电动汽车充电站的社区综合能源系统双层调度方法 Download PDF

Info

Publication number
CN113517690A
CN113517690A CN202110754730.0A CN202110754730A CN113517690A CN 113517690 A CN113517690 A CN 113517690A CN 202110754730 A CN202110754730 A CN 202110754730A CN 113517690 A CN113517690 A CN 113517690A
Authority
CN
China
Prior art keywords
power
load
constraint
electric
evcs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110754730.0A
Other languages
English (en)
Inventor
李扬
韩猛
王彬
李嘉政
王瑞浓
陈海鹏
李国庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202110754730.0A priority Critical patent/CN113517690A/zh
Publication of CN113517690A publication Critical patent/CN113517690A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明是一种含电动汽车充电站的社区综合能源系统双层调度方法,其特点是,首先,构建一种包含电动汽车充电站的社区综合能源系统的物理模型;然后,利用序列运算理论,将原机会约束规划调度模型转化为一个易于求解的混合整数线性规划模型;最后,采用CPLEX求解器求解该双层模型,获得CIES和EVCS的最优调度方案,有效的解决了CIES和EVCS在多方利益相关者情景下的协调调度问题,降低了联合系统的联合运行成本,通过有效引导电动汽车参与需求响应,促进可再生能源的消纳能力,具有方法科学合理、适用性强、效果佳等待优点。

Description

含电动汽车充电站的社区综合能源系统双层调度方法
技术领域
本发明涉及综合能源系统经济运行的技术领域,是一种含电动汽车充电站的社区综合能源系统双层调度方法。
背景技术
现有综合能源系统(Integrated Energy System,IES)作为可再生能源的有效载体,可以有效整合各类分布式能源、负载、储能等装置和控制系统,满足用户侧多能源需求。而含电动汽车的社区综合能源系统(community integrated energy system,CIES)作为一种能源互联网的典型示范,将成为未来社区重点发展的新模式。但是,可再生能源固有的波动性和间歇性导致大量可再生能源的浪费,并增加了CIES调度的难度。电动汽车等灵活负载的需求响应已被证明有利于解决可再生能源的不确定性问题。然而,随着电动汽车普及率的不断提高,电动汽车的无序充电行为将不可避免地加剧负荷的波动和电动汽车充电站(electric vehicle charging station,EVCS)的调度难度。因此,通过引导电动汽车充放电以及提供旋转备用服务的行为,积极参与灵活需求响应,对促进可再生能源消纳具有重要意义。
目前针对CIES和EVCS的调度问题,本领域已进行了一些有益的探索。然而,现有方法中很少同时考虑多种可再生能源发电的不确定性,并且以往的工作多关注单一的电力需求响应,对综合需求响应(integrated demand response,IDR)的关注相对较少。据了解,迄今未见对CIES和EVCS在多方利益相关者情景下进行协调调度的文献报道和实际应用。
发明内容
本发明的目的是克服现有技术的不足,为更好得解决CIES和EVCS在多方利益相关者情景下的协调调度问题,提供一种科学合理,能够降低联合系统的运行成本,同时有效引导电动汽车参与需求响应,促进可再生能源的消纳能力,适用性强,效果佳的含电动汽车充电站的社区综合能源系统双层调度方法。
本发明的目的是由以下技术方案来实现的:一种含电动汽车充电站的社区综合能源系统双层调度方法,其特征是,它包括以下步骤:
1)构建上层社区综合能源系统物理模型和优化调度模型
(1)社区综合能源系统(community integrated energy system,CIES)物理模型包括:风机、光伏和储能系统(energy storage system,ESS)联合为用户提供电需求,电锅炉(electric boiler,EB)消纳电源侧提供的部分电能转换成热能,与储热装置(heatstorage device,HSD)联合为用户提供相应的热需求;
①电力需求响应
电力负荷由固定负荷和柔性负荷组成,根据需求响应的特点,电力柔性负荷分为可转移负荷和可中断负荷;
a)可时移的电力负荷
可时移负荷的特征是总耗电量是恒定的,并且消耗时间可灵活改变,用式(1)、式(2)描述:
Figure BDA0003144489290000021
Figure BDA0003144489290000022
式中,
Figure BDA0003144489290000023
是已发生时移的电力负荷功率,
Figure BDA0003144489290000024
Figure BDA0003144489290000025
是t时段可时移负荷的最大值和最小值;
b)可中断电力负荷
在电力供应不足或电价高的时期,用户可中断部分负荷以缓解电力供应压力,可中断负荷的相关约束用式(3)描述:
Figure BDA0003144489290000026
式中,
Figure BDA0003144489290000027
Figure BDA0003144489290000028
分别是中断的电力及其在时段t中的最大值;
②热需求响应
将建筑热需求视为热负荷,利用瞬态热平衡方程将建筑温度与热需求联系起来,采用热感觉投票值来描述用户对室内温度变化的舒适体验,供热可中断负荷的相关约束为式(4):
Figure BDA0003144489290000029
式中,
Figure BDA00031444892900000210
是中断的热负荷,
Figure BDA00031444892900000211
是在t时段内的最大值,引入热感觉平均预测指PMV(predicted mean vote)来描述用户可接受的热舒适范围;
Figure BDA00031444892900000212
式中,M为人体能量代谢率;Icl是服装的热阻;Ts是处于舒适状态的人体皮肤的平均温度;Tin(t)是室内温度;
室内温度变化范围是
Figure BDA0003144489290000031
为全面衡量IDR对用户体验的影响用户综合满意度设计为:
Figure BDA0003144489290000032
式中,US为用户综合满意度,
Figure BDA0003144489290000033
为t时段固定负荷,
Figure BDA0003144489290000034
Figure BDA0003144489290000035
为初始电力和热负荷;
(2)上层社区综合能源系统优化调度模型
①上层模型以CIES净运行成本F1最小化作为目标函数,由CIES向电网和EVCS购电的费用,即电力负荷、热力负荷购电费用;电网、ESS以及EVCS向CIES提供旋转备用费用;ESS折旧成本;中断电热负荷补偿费用;EVCS购买可再生能源收益组成,表达式为式(8):
Figure BDA0003144489290000036
式中,ωst,t为电网分时,ωrt,t为动态电价,
Figure BDA0003144489290000037
是可转移电力负荷消耗的电网功率,
Figure BDA0003144489290000038
是固定电力负荷消耗的电网功率,
Figure BDA0003144489290000039
是可中断电力负荷消耗的电网功率,
Figure BDA00031444892900000310
是热负荷消耗的电网功率,ωre,grid为电网的备用价格,ωre,ESS为ESS的备用价格,ωre,EV为EVs的备用价格,
Figure BDA00031444892900000311
是电网提供的备用容量,
Figure BDA00031444892900000312
是ESS提供的备用容量,
Figure BDA00031444892900000313
是电动汽车提供的备用容量,ωdp,ESS是ESS的折旧成本,
Figure BDA00031444892900000314
是ESS的充电功率,ωel和ωhl分别是电和热中断负荷的补偿价格;
Figure BDA00031444892900000315
是电动汽车消耗的RGs功率;
②确定约束条件,调度模型的约束条件包括供电系统约束、储能系统约束、旋转备用约束和供热系统约束,表述式为式(9):
(i)供电系统约束:包括电力供需平衡和电网功率约束
Figure BDA0003144489290000041
式中,
Figure BDA0003144489290000042
为时段t内系统电力负荷消耗的电网功率,
Figure BDA0003144489290000043
Figure BDA0003144489290000044
分别是RGs联合出力及其期望值;
Figure BDA0003144489290000045
为可控负荷,
Figure BDA0003144489290000046
为电网提供的最大功率,
Figure BDA0003144489290000047
为t时段系统电力负荷消耗电网功率,
Figure BDA0003144489290000048
Figure BDA0003144489290000049
分别为t时段储能充放电功率,
Figure BDA00031444892900000410
Figure BDA00031444892900000411
分别为t时段电动汽车充放电效率,
Figure BDA00031444892900000412
为t时段可控负荷,
Figure BDA00031444892900000413
为联合系统从电网购电功率,
Figure BDA00031444892900000414
为电网提供功率的最大值;
(ii)储能系统约束:包括储能装置功率约束和容量约束,
Figure BDA00031444892900000415
Figure BDA00031444892900000416
Figure BDA00031444892900000417
Figure BDA00031444892900000418
式中,
Figure BDA00031444892900000419
为t时段储能容量,
Figure BDA00031444892900000420
Figure BDA00031444892900000421
分别为t时段储能充放电功率,ηch和ηdc分别为储能充放电效率,
Figure BDA00031444892900000422
表示ESS初始容量,
Figure BDA00031444892900000423
表示一个调度周期,即24小时结束时的储能容量,
Figure BDA00031444892900000424
表示储能的初始存储容量最小值,PRess,t为t时段储能提供的备用容量;
(iii)旋转备用约束:包括电网备用约束,ESS备用约束和EVCS备用约束,总旋转备用约束以机会约束形式表达式为,
Figure BDA00031444892900000425
Figure BDA00031444892900000426
Figure BDA00031444892900000427
Figure BDA00031444892900000428
式中,α为系统置信水平,
Figure BDA00031444892900000429
Figure BDA00031444892900000430
分别是风机和光伏的功率输出;
(iv)供热系统约束:包括供热系统电热功率平衡约束、电锅炉运行约束和储热装置约束;
供热系统电热功率平衡约束表达式为式(18),
Figure BDA0003144489290000051
式中,Pdhp,n,t为供热负荷的耗电量,
Figure BDA0003144489290000052
为t时段热负荷消耗的RGs功率;
电锅炉运行约束:
Peh,n,t=ηebPdhp,n,t (19)
0≤Peh,n,t≤Peh,n (20)
式中,Peh,n,t和Peh,n为第n台电锅炉的供热功率及其额定值,N为电锅炉总数,ηeb为电锅炉性能系数,表示热泵供暖功率与耗电功率的比值。
储热装置约束:包括储热装置功率约束和容量约束,
Figure BDA0003144489290000053
Figure BDA0003144489290000054
Figure BDA0003144489290000055
Figure BDA0003144489290000056
式中,
Figure BDA0003144489290000057
为t时段HSD储热容量,
Figure BDA0003144489290000058
Figure BDA0003144489290000059
分别为HSD容量的最小值和最大值,
Figure BDA00031444892900000510
Figure BDA00031444892900000511
分别为HSD最大充放电功率,
Figure BDA00031444892900000512
表示HSD初始容量,
Figure BDA00031444892900000513
表示一个调度周期24小时结束时的储热容量,
Figure BDA00031444892900000514
表示HSD存储容量的最小值;
2)将机会约束转化为确定性约束;
利用序列运算理论将光伏、风机输出功率的概率分布进行离散化处理,得到其对应的概率性序列分别为a(iat)和b(ibt),通过概率性序列,获得各时段风光联合出力的期望值,t时段预测的间歇性风光共同出力的期望值Et计算式为:
Figure BDA00031444892900000515
式(25)中,Nat为光伏出力概率序列长度;Nbt为风机出力概率序列长度;q为离散化步长;matq为光伏t时段第ma种状态的出力值;mbtq为风机t时段第mb种状态的出力值;
然后将旋转备用的机会约束形式转化成确定性约束形式,t时段风光共同出力所对应的概率性序列c(ict)能够利用概率性序列a(iat)和b(ibt)的卷和获得,根据卷和的定义有:
Figure BDA0003144489290000061
为了方便处理旋转备用约束,定义一类新的0-1变量
Figure BDA0003144489290000062
它满足以下关系:
Figure BDA0003144489290000063
式(27)说明在t时段,当系统旋转备用容量大于风光出力期望值与风光第mct种出力mctq的差值时取1,否则为0,
因此旋转备用的机会约束形式简化为:
Figure BDA0003144489290000064
式(28)中用到了0-1变量
Figure BDA0003144489290000065
Figure BDA0003144489290000066
的表达式不兼容混合整数规划(Mixed-Integer Linear Programming,MILP)的求解形式,必须利用式(29)替代式(27),
Figure BDA0003144489290000067
式中,τ取一个很大的数,由于τ较大,当
Figure BDA0003144489290000068
时,式
Figure BDA0003144489290000069
Figure BDA00031444892900000610
λ是一个非常小的正数,由于
Figure BDA00031444892900000611
是一个0-1变量,所以
Figure BDA00031444892900000612
只能等于1,否则为0;
3)输入CIES参数,包括负荷参数和置信水平参数,所述负荷参数为风机参数、光伏组件参数、储能装置参数、储热装置参数、电锅炉参数、建筑物参数、调度时段数和电负荷预测值;
4)确定解决方案是否存在,若解决方案存在,继续解决步骤;否则,更新置信度和负荷,并返回步骤3;
5)通过动态定价机制获得CIES最优调度方案和动态电价,并将动态价格传递给下层电动汽车充电站;
分时电价能够有效显示各时段负荷水平,但分时电价不能有效区分上层CIES可再生能源剩余时段,为指导下层EVCS有效消纳上层CIES中的可再生能源功率,利用“分时+实时”动态定价机制指导下层EVCS充放电方案以消纳CIES中的可再生能源功率,“分时+实时”动态定价机制的用式(30)描述:
Figure BDA0003144489290000071
式中,a表示CIES的供求关系,
Figure BDA0003144489290000072
是电网谷时段分时电价;
6)构建下层EVCS优化调度模型;
根据电动汽车到达EVCS的时间服从正态分布的特点,电动汽车到达EVCS时间的概率密度函数为;
Figure BDA0003144489290000073
式中,μ1和μ2分别是电动汽车到达和离开EVCS的时间的平均值;σ1和σ2分别是电动汽车到达和离开EVCS时间的标准差;
电动汽车充电的日负荷需求与日行驶里程和充电时长有关,电动汽车的每日行驶里程为服从正态分布,其概率密度函数为;
Figure BDA0003144489290000074
式中,Md代表电动汽车的日行驶里程,σM和μM分别为日行驶里程的标准差和平均值;
根据电动汽车的行驶里程及其初始充电状态,充电结束时的实际充电状态为;
Figure BDA0003144489290000075
式中,Sreal表示实际充电状态,Ss表示EV的初始SOC,Ed,100表示EV行驶100公里时的电力需求,Bc表示EV的电池容量,电动汽车的充电时间计算式为;
Figure BDA0003144489290000081
式中,Tch是电动汽车的充电时间;
Figure BDA0003144489290000082
Figure BDA0003144489290000083
为电动汽车的额定电能和充电效率;
Figure BDA0003144489290000084
为t时段电动汽车的电池容量;
电动汽车充电站(electric vehicle charging station,EVCS)优化调度模型构建过程为:
(a)选取优化目标,选用电动汽车充电站运行成本最小为优化目标,包括EVCS向电网购电成本、EVCS向CIES购电成本、EVCS向CIES放电收益、EVCS向CIES提供旋转备用的收益,表达式为:
Figure BDA0003144489290000085
式中,
Figure BDA0003144489290000086
为电动汽车消耗电网功率,
Figure BDA0003144489290000087
为电动汽车消耗CIES中可再生能源功率,
Figure BDA0003144489290000088
为电动汽车向CIES放电功率;
(b)确定约束条件,调度模型的约束条件包括能量平衡约束、充放电功率约束、充放电容量约束、充放电格位数约束和旋转备用约束,具体式为:
能量平衡约束:包括电热平衡约束和上下限约束,
Figure BDA0003144489290000089
式中,
Figure BDA00031444892900000810
Figure BDA00031444892900000811
为电动汽车在t时间段的最大充放电功率,
Figure BDA00031444892900000812
Figure BDA00031444892900000813
为t时间段电力负荷和热负荷在消耗RGs功率后的功率缺额;
充放电功率约束:包括可再生能源消纳量约束和上下限约束,
Figure BDA00031444892900000814
Figure BDA00031444892900000815
Figure BDA00031444892900000816
充放电容量约束:包括充放电容量和上下限约束,
Figure BDA00031444892900000817
Figure BDA00031444892900000818
充放电格位数约束:
Figure BDA0003144489290000091
式中,
Figure BDA0003144489290000092
为t时段电动汽车容量
Figure BDA0003144489290000093
Figure BDA0003144489290000094
分别为t时段电动车充放电功率,
Figure BDA0003144489290000095
Figure BDA0003144489290000096
分别为t时段电动汽车最小和最大容量,
Figure BDA0003144489290000097
Figure BDA0003144489290000098
分别为t时段处于充电和放电状态的电动汽车数量,NB,pos,max为电动汽车充电站最大充放电格位数;
7)输入EVCS参数;
电动汽车充电站参数包括:园区内电动汽车数目,每台电动汽车的电池容量,每台电动汽车的充放电效率,充电桩数目,每个充电桩的额定充放电功率,一个调度周期24小时内电动汽车总充电功率,可控负荷功率;
8)根据上层CIES提供的动态价格,利用CPLEX求解器对EVCS最优调度模型进行求解;
9)获取EVCS充放电方案;通过步骤8)中的求解结果获取EVCS充放电方案;
10)计算联合优化目标函数
Figure BDA0003144489290000099
Figure BDA00031444892900000910
Figure BDA00031444892900000911
Figure BDA00031444892900000912
分别代表联合优化上层CIES和下层EVCS的运行成本;
11)判断是否满足终止条件:
采用的迭代终止条件是当前迭代次数超过预设的最大迭代次数,若满足,停止迭代过程;否则,将EVCS充电放电方案传递给上层并返回步骤3);
12)确定联合最优解;
通过求解双层模型,获得多组调度方案,为从多个方案中选择最优解,定义联合优化目标函数FJO为:
Figure BDA00031444892900000913
13)输出CIES和EVCS的最优调度方案,通过求解联合优化目标函数,获得对应的CIES和EVCS的最优调度方案和联合最优解。
本发明的一种含电动汽车充电站的社区综合能源系统双层调度方法,首先,构建一种包含电动汽车充电站(electric vehicle charging station,EVCS)的社区综合能源系统(community integrated energy system,CIES)的物理模型;然后,利用序列运算理论,将原机会约束规划(CCP)调度模型转化为一个易于求解的混合整数线性规划(MILP)模型;最后,采用CPLEX求解器求解该双层模型,获得CIES和EVCS的最优调度方案,有效的解决了CIES和EVCS在多方利益相关者情景下的协调调度问题,降低了联合系统的联合运行成本,通过有效引导电动汽车参与需求响应,促进可再生能源的消纳能力,具有方法科学合理、适用性强、效果佳等待优点。
附图说明
图1是本发明的一种含电动汽车充电站的社区综合能源系统双层调度方法流程框图;
图2是社区综合能源测试系统示意图;
图3是不同时段的风机和光伏发电量以及电热负荷需求;
图4是不同定价机制下的电力需求调度方案示意图;
图5是不同定价机制下的热需求调度方案示意图;
图6是不同定价机制下的EVCS充放电方案示意图。
具体实施方式
下面结合附图,对优选实施例作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
参见图1,一种含电动汽车充电站的社区综合能源系统双层调度方法,首先,构建一种包含电动汽车充电站(electric vehicle charging station,EVCS)的社区综合能源系统(community integrated energy system,CIES)的物理模型;然后,利用序列运算理论,将原机会约束规划(chance-constrained programming,CCP)调度模型转化为一个易于求解的混合整数线性规划(mixed-integer linear programming,MILP)模型;最后,采用CPLEX求解器求解该双层模型,得到CIES和EVCS的最优调度方案以及联合最优解,其具体步骤包括:
1)社区综合能源系统(community integrated energy system,CIES)物理模型构建;参见图2,风机、光伏和储能系统(energy storage system,ESS)联合为用户提供电需求,电锅炉(electric boiler,EB)消纳电源侧提供的部分电能转换成热能,与储热装置(heat storage device,HSD)联合为用户提供相应的热需求,其中热负荷需求为具有供暖系统建筑物的供暖量。
2)建立基于机会约束规划的社区综合能源系统(community integrated energysystem,CIES)优化调度模型;
1.CIES综合需求响应模型:
(1)电力需求响应
在本专利中,电力负荷由固定负荷和柔性负荷组成。根据需求响应的特点,电力柔性负荷分为两种类型:可转移负荷和可中断负荷。
a)可时移的电力负荷
可时移负荷的特征是总耗电量是恒定的,并且消耗时间可以灵活改变。可以用下面的公式来描述:
Figure BDA0003144489290000111
Figure BDA0003144489290000112
式中,
Figure BDA0003144489290000113
是已发生时移的电力负荷功率,
Figure BDA0003144489290000114
Figure BDA0003144489290000115
是t时段可时移负荷的最大值和最小值。
b)可中断电力负荷
在电力供应不足或电价高的时期,用户可以中断部分负荷以缓解电力供应压力。可中断负荷的相关约束可描述为:
Figure BDA0003144489290000116
式中,
Figure BDA0003144489290000117
Figure BDA0003144489290000118
分别是中断的电力及其在时段t中的最大值。
(2)热需求响应
将建筑热需求视为热负荷,利用瞬态热平衡方程将建筑温度与热需求联系起来。这里,热感觉投票值用于描述用户对室内温度变化的舒适体验。供热可中断负荷的相关约束可描述为:
Figure BDA0003144489290000119
式中,
Figure BDA00031444892900001110
Figure BDA00031444892900001111
分别是中断的热负荷及其在t时段内的最大值。引入热感觉平均预测指PMV(predicted mean vote)来描述用户可接受的热舒适范围;
Figure BDA00031444892900001112
式中,M为人体能量代谢率;Icl是服装的热阻;Ts是处于舒适状态的人体皮肤的平均温度;Tin(t)是室内温度。
室内温度变化范围是
Figure BDA0003144489290000121
为了全面衡量IDR对用户体验的影响用户综合满意度设计为
Figure BDA0003144489290000122
式中,US为用户综合满意度,
Figure BDA0003144489290000123
为t时段固定负荷,
Figure BDA0003144489290000124
Figure BDA0003144489290000125
为初始电力和热负荷。
2.上层CIES优化调度模型构建
上层模型以CIES净运行成本F1最小化作为目标函数,它是用运行成本和收益相减得到,由以下五部分组成:CIES向电网和EVCS购电的费用(电力负荷、热力负荷购电费用),电网、ESS以及EVCS向CIES提供旋转备用费用,ESS折旧成本,中断电热负荷补偿费用,EVCS购买可再生能源收益。上层目标函数具体描述如下:
Figure BDA0003144489290000126
式中,ωst,t和ωrt,t分别为电网分时和动态电价,
Figure BDA0003144489290000127
Figure BDA0003144489290000128
分别是可转移电力负荷,固定电力负荷,可中断电力负荷和热负荷消耗的电网功率。ωre,gridre,ESS和ωre,EV分别是电网,ESS,EVs的备用价格。
Figure BDA0003144489290000129
Figure BDA00031444892900001210
分别是电网,ESS和电动汽车提供的备用容量。ωdp,ESS是ESS的折旧成本,
Figure BDA00031444892900001211
是ESS的充电功率,ωel和ωhl分别是电和热中断负荷的补偿价格;
Figure BDA00031444892900001212
是电动汽车消耗的RGs功率。
(b)确定约束条件,调度模型的约束条件包括供电系统约束、储能系统约束、供热系统约束、电热平衡约束、电锅炉约束、储热约束、和旋转备用约束,具体如下:
供电系统约束:包括电力供需平衡和电网功率约束
Figure BDA00031444892900001213
式中,
Figure BDA00031444892900001214
为时段t内系统电力负荷消耗的电网功率,
Figure BDA00031444892900001215
Figure BDA00031444892900001216
分别是RGs联合出力及其期望值;
Figure BDA00031444892900001217
为可控负荷,
Figure BDA00031444892900001218
为电网提供的最大功率。
Figure BDA00031444892900001219
为t时段系统电力负荷消耗电网功率,
Figure BDA0003144489290000131
Figure BDA0003144489290000132
分别为t时段储能充放电功率,
Figure BDA0003144489290000133
Figure BDA0003144489290000134
分别为t时段电动汽车充放电效率,
Figure BDA0003144489290000135
为t时段可控负荷,
Figure BDA0003144489290000136
为联合系统从电网购电功率,
Figure BDA0003144489290000137
为电网提供功率的最大值。
储能系统约束:包括储能装置功率约束和容量约束,
Figure BDA0003144489290000138
Figure BDA0003144489290000139
Figure BDA00031444892900001310
Figure BDA00031444892900001311
式中,
Figure BDA00031444892900001312
为t时段储能容量,
Figure BDA00031444892900001313
Figure BDA00031444892900001314
分别为t时段储能充放电功率,ηch和ηdc分别为储能充放电效率。
Figure BDA00031444892900001315
表示ESS初始容量,
Figure BDA00031444892900001316
表示一个调度周期的结束时的储能容量(设置为24小时),
Figure BDA00031444892900001317
表示储能的初始存储容量最小值。PRess,t为t时段储能提供的备用容量。
旋转备用约束:包括电网备用约束,ESS备用约束和EVCS备用约束,总旋转备用约束以机会约束形式表达,
Figure BDA00031444892900001318
Figure BDA00031444892900001319
Figure BDA00031444892900001320
Figure BDA00031444892900001321
式中,α为系统置信水平,
Figure BDA00031444892900001322
Figure BDA00031444892900001323
分别是风机和光伏的功率输出。
供热系统约束条件:
(1)系统电、热功率平衡约束:
Figure BDA00031444892900001324
式中,Pdhp,n,t为供热负荷的耗电量,
Figure BDA00031444892900001325
为t时段热负荷消耗的RGs功率。
(2)电锅炉运行约束:
Peh,n,t=ηebPdhp,n,t (19)
0≤Peh,n,t≤Peh,n (20)
式中,Peh,n,t和Peh,n为第n台电锅炉的供热功率及其额定值,N为电锅炉总数,ηeb为电锅炉性能系数,表示热泵供暖功率与耗电功率的比值。
(3)储热装置约束:包括储热装置功率约束和容量约束,
Figure BDA0003144489290000141
Figure BDA0003144489290000142
Figure BDA0003144489290000143
Figure BDA0003144489290000144
式中,
Figure BDA0003144489290000145
为t时段HSD储热容量,
Figure BDA0003144489290000146
Figure BDA0003144489290000147
分别为HSD容量的最小值和最大值,
Figure BDA0003144489290000148
Figure BDA0003144489290000149
分别为HSD最大充放电功率,
Figure BDA00031444892900001410
表示HSD初始容量,
Figure BDA00031444892900001411
表示一个调度周期的结束时的储热容量(设置为24小时),
Figure BDA00031444892900001412
表示HSD存储容量的最小值。
2)将机会约束转化为确定性约束;所述步骤2)中,利用序列运算理论将光伏、风机输出功率的概率分布进行离散化处理,得到其对应的概率性序列分别为a(iat)和b(ibt)。通过概率性序列,获得各时段风光联合出力的期望值。t时段预测的间歇性风光共同出力的期望值Et计算式为:
Figure BDA00031444892900001413
式(25)中,Nat为光伏出力概率序列长度;Nbt为风机出力概率序列长度;q为离散化步长;matq为光伏t时段第ma种状态的出力值;mbtq为风机t时段第mb种状态的出力值。
然后将旋转备用的机会约束形式转化成确定性约束形式。t时段风光共同出力所对应的概率性序列c(ict)可以利用概率性序列a(iat)和b(ibt)的卷和获得,根据卷和的定义有:
Figure BDA00031444892900001414
为了方便处理旋转备用约束,定义一类新的0-1变量
Figure BDA0003144489290000151
它满足以下关系:
Figure BDA0003144489290000152
式(27)说明在t时段,当系统旋转备用容量大于风光出力期望值与风光第mct种出力mctq的差值时取1,否则为0,
因此旋转备用的机会约束形式可简化为:
Figure BDA0003144489290000153
式(28)中用到了0-1变量
Figure BDA0003144489290000154
Figure BDA0003144489290000155
的表达式不兼容混合整数规划(Mixed-Integer Linear Programming,MILP)的求解形式,必须利用式(29)替代式(27),
Figure BDA0003144489290000156
式中,τ取一个很大的数,由于τ较大,当
Figure BDA0003144489290000157
时,式(29)等价为
Figure BDA0003144489290000158
λ是一个非常小的正数,由于
Figure BDA0003144489290000159
是一个0-1变量,所以
Figure BDA00031444892900001510
只能等于1,否则为0。
3)输入CIES参数;所述步骤3)中输入的初始参数包括:风机参数,光伏组件参数,储能装置参数,储热装置参数,电锅炉参数,建筑物参数,调度时段数,电负荷预测值,置信水平以及各优化变量的上、下限值。
4)确定解决方案是否存在。所述步骤4)中,确定解决方案是否存在。如果解决方案存在,继续解决步骤;否则,更新置信度和负荷,并返回步骤3;
5)通过动态定价机制获得CIES最优调度方案和动态电价,并将动态价格传递给下层电动汽车充电站(electric vehicle charging station,EVCS);所述步骤5)中,分时电价可以有效显示各时段负荷水平,但分时电价不能有效区分上层CIES可再生能源剩余时段,为了指导下层EVCS有效消纳上层CIES中的可再生能源功率,本文提出一种新的“分时+实时”动态定价机制,该机制充分结合了分时电价和实时电价的优点,能够高效指导下层EVCS充放电方案以消纳CIES中的可再生能源功率,有效降低上、下层运行成本“分时+实时”动态定价机制的具体细节可以描述为:
Figure BDA0003144489290000161
式中,a表示CIES的供求关系,
Figure BDA0003144489290000162
是电网谷时段分时电价。
6)构建下层EVCS优化调度模型;所述步骤6)中的电动汽车充电站(electricvehicle charging station,EVCS)物理模型中,一个EVCS为电动汽车提供足够数量的充电桩,用于电动汽车充放电以及作旋转备用辅助服务;园区内有一定数量的电动汽车,参与CIES灵活需求响应。
根据电动汽车到达EVCS的时间大致服从正态分布。电动汽车到达EVCS时间的概率密度函数如下
Figure BDA0003144489290000163
式中,μ1和μ2分别是电动汽车到达和离开EVCS的时间的平均值;σ1和σ2分别是电动汽车到达和离开EVCS时间的标准差。
电动汽车充电的日负荷需求与日行驶里程和充电时长有关。一般来说,电动汽车的每日行驶里程被认为服从正态分布,其概率密度函数为
Figure BDA0003144489290000164
式中,Md代表电动汽车的日行驶里程,σM和μM分别为日行驶里程的标准差和平均值。
根据电动汽车的行驶里程及其初始充电状态,充电结束时的实际充电状态为
Figure BDA0003144489290000165
式中,Sreal表示实际充电状态,Ss表示EV的初始SOC,Ed,100表示EV行驶100公里时的电力需求,Bc表示EV的电池容量。电动汽车的充电时间可以计算为
Figure BDA0003144489290000171
式中,Tch是电动汽车的充电时间;
Figure BDA0003144489290000172
Figure BDA0003144489290000173
为电动汽车的额定电能和充电效率;
Figure BDA0003144489290000174
为t时段电动汽车的电池容量。
电动汽车充电站(electric vehicle charging station,EVCS)优化调度模型构建过程为:
(a)选取优化目标,选用电动汽车充电站运行成本最小为优化目标。它由以下四部分组成:EVCS向电网购电成本、EVCS向CIES购电成本、EVCS向CIES放电收益、EVCS向CIES提供旋转备用的收益。
Figure BDA0003144489290000175
式中,
Figure BDA0003144489290000176
为电动汽车消耗电网功率,
Figure BDA0003144489290000177
为电动汽车消耗CIES中可再生能源功率,
Figure BDA0003144489290000178
为电动汽车向CIES放电功率。
(b)确定约束条件,调度模型的约束条件包括能量平衡约束、充放电功率约束、充放电容量约束、充放电格位数约束和作旋转备用约束,具体如下:
能量平衡约束:包括电热平衡约束和上下限约束,
Figure BDA0003144489290000179
式中,
Figure BDA00031444892900001710
Figure BDA00031444892900001711
为电动汽车在t时间段的最大充放电功率,
Figure BDA00031444892900001712
Figure BDA00031444892900001713
为t时间段电力负荷和热负荷在消耗RGs功率后的功率缺额。
充放电功率约束:包括可再生能源消纳量约束和上下限约束,
Figure BDA00031444892900001714
Figure BDA00031444892900001715
Figure BDA00031444892900001716
充放电容量约束:包括充放电容量和上下限约束,
Figure BDA00031444892900001717
Figure BDA00031444892900001718
充放电格位数约束:
Figure BDA0003144489290000181
式中,
Figure BDA0003144489290000182
为t时段电动汽车容量
Figure BDA0003144489290000183
Figure BDA0003144489290000184
分别为t时段电动车充放电功率,
Figure BDA0003144489290000185
Figure BDA0003144489290000186
分别为t时段电动汽车最小和最大容量,
Figure BDA0003144489290000187
Figure BDA0003144489290000188
分别为t时段处于充电和放电状态的电动汽车数量,NB,pos,max为电动汽车充电站最大充放电格位数。
7)输入EVCS参数;所述步骤7)中的电动汽车充电站参数包括:园区内电动汽车数目,每台电动汽车的电池容量,每台电动汽车的充放电效率,充电桩数目,每个充电桩的额定充放电功率,一个调度周期内(设为24h)电动汽车总充电功率,可控负荷功率以及各优化变量的上、下限值。
8)根据上层CIES提供的动态价格,求解EVCS最优调度模型;所述步骤8)中,利用CPLEX求解器对EVCS最优调度模型进行求解;
9)获取EVCS充放电方案;所述步骤9)中,通过步骤8)中的求解结果获取EVCS充放电方案;
10)计算联合优化目标函数;所述步骤10)中,F1 JO和F2 JO分别代表联合优化上层CIES和下层EVCS的运行成本。
11)判断是否满足终止条件。所述步骤11)中,采用的迭代终止条件是当前迭代次数超过预设的最大迭代次数。如果满足,停止迭代过程;否则,将EVCS充电放电方案传递给上层并返回步骤3);
12)确定联合最优解;所述步骤12)中,通过求解双层模型,可以获得多组调度方案,为了从多个方案中选择最优解,定义了联合优化目标函数FJO如下:
Figure BDA0003144489290000189
13)输出CIES和EVCS的最优调度方案。所述步骤13)中,通过求解联合优化目标函数,获得对应的CIES和EVCS的最优调度方案和联合最优解。
图2是社区综合能源测试系统示意图,实施例是本发明的一种协调灵活需求响应和可再生能源不确定性的含电动汽车充电站的社区综合能源系统双层调度方法在此系统上的具体应用。该综合能源系统包括一组风机和光伏发电装置,一个电储能装置,一个电锅炉和一个储热装置,一个电动汽车充电站。
图3是该测试系统不同时段的风机和光伏发电量以及电热负荷需求。
基于所提出的双层调度方法,所得的不同定价机制下的电力和热力需求调度方案分别如图4和图5所示;所得的不同定价机制下的EVCS充放电方案如图6所示。
由图4可以看出,采用“分时+实时”动态定价机制使得可控负荷显著减少,表明上层CIES中的可再生能源功率基本都被EVCS消纳,说明“分时+实时”动态定价机制可以准确识别上层模型新能源剩余功率及时段,从而避免可再生能源功率的浪费,减小了弃风弃光率。
由图5可以看出,在1:00-5:00时段,采用“分时+实时”动态定价机制减少了热力负荷对电网功率的消耗,在满足热负荷需求平衡的基础上,增加热负荷对可再生能源的消纳,同时通过对电锅炉和储热系统产生热量的存储和释放,进一步降低了上层CIES运行成本。
由图6可以看出,相比于分时电价,由所提定价机制确定的动态电价引导电动汽车更积极地参与CIES运行,这能够减少下层EVCS的运行成本。同时,该定价机制可以灵活引导电动汽车合理安排充放电方案,避免非高峰时段集中充电。此外,电动汽车充电时段与可再生能源消纳时段基本吻合,可以减少从电网购买的电量,增加可再生能源的消纳。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (1)

1.一种含电动汽车充电站的社区综合能源系统双层调度方法,其特征是,它包括以下步骤:
1)构建上层社区综合能源系统物理模型和优化调度模型
(1)社区综合能源系统(community integrated energy system,CIES)物理模型包括:风机、光伏和储能系统(energy storage system,ESS)联合为用户提供电需求,电锅炉(electric boiler,EB)消纳电源侧提供的部分电能转换成热能,与储热装置(heatstorage device,HSD)联合为用户提供相应的热需求;
①电力需求响应
电力负荷由固定负荷和柔性负荷组成,根据需求响应的特点,电力柔性负荷分为可转移负荷和可中断负荷;
a)可时移的电力负荷
可时移负荷的特征是总耗电量是恒定的,并且消耗时间可灵活改变,用式(1)、式(2)描述:
Figure FDA0003144489280000011
Figure FDA0003144489280000012
式中,Pt TSL是已发生时移的电力负荷功率,
Figure FDA0003144489280000013
Figure FDA0003144489280000014
是t时段可时移负荷的最大值和最小值;
b)可中断电力负荷
在电力供应不足或电价高的时期,用户可中断部分负荷以缓解电力供应压力,可中断负荷的相关约束用式(3)描述:
Figure FDA0003144489280000015
式中,Pt EIL
Figure FDA0003144489280000016
分别是中断的电力及其在时段t中的最大值;
②热需求响应
将建筑热需求视为热负荷,利用瞬态热平衡方程将建筑温度与热需求联系起来,采用热感觉投票值来描述用户对室内温度变化的舒适体验,供热可中断负荷的相关约束为式(4):
Figure FDA0003144489280000017
式中,Pt HIL是中断的热负荷,
Figure FDA0003144489280000018
是在t时段内的最大值,引入热感觉平均预测值PMV(predicted mean vote)来描述用户可接受的热舒适范围;
Figure FDA0003144489280000021
式中,M为人体能量代谢率;Icl是服装的热阻;Ts是处于舒适状态的人体皮肤的平均温度;Tin(t)是室内温度;
室内温度变化范围是
Figure FDA0003144489280000022
为全面衡量IDR对用户体验的影响用户综合满意度设计为:
Figure FDA0003144489280000023
式中,US为用户综合满意度,Pt GL为t时段固定负荷,Pt EL和Pt HL为初始电力和热负荷;
(2)上层社区综合能源系统优化调度模型
①上层模型以CIES净运行成本F1最小化作为目标函数,由CIES向电网和EVCS购电的费用,即电力负荷、热力负荷购电费用;电网、ESS以及EVCS向CIES提供旋转备用费用;ESS折旧成本;中断电热负荷补偿费用;EVCS购买可再生能源收益组成,表达式为式(8):
Figure FDA0003144489280000024
式中,ωst,t为电网分时,ωrt,t为动态电价,
Figure FDA0003144489280000025
是可转移电力负荷消耗的电网功率,
Figure FDA0003144489280000026
是固定电力负荷消耗的电网功率,
Figure FDA0003144489280000027
是可中断电力负荷消耗的电网功率,
Figure FDA0003144489280000028
是热负荷消耗的电网功率,ωre,grid为电网的备用价格,ωre,ESS为ESS的备用价格,ωre,EV为EVs的备用价格,
Figure FDA0003144489280000029
是电网提供的备用容量,
Figure FDA00031444892800000210
是ESS提供的备用容量,
Figure FDA00031444892800000211
是电动汽车提供的备用容量,ωdp,ESS是ESS的折旧成本,
Figure FDA00031444892800000212
是ESS的充电功率,ωel和ωhl分别是电和热中断负荷的补偿价格;
Figure FDA00031444892800000213
是电动汽车消耗的RGs功率;
②确定约束条件,调度模型的约束条件包括供电系统约束、储能系统约束、旋转备用约束和供热系统约束,表述式为式(9):
(i)供电系统约束:包括电力供需平衡和电网功率约束
Figure FDA0003144489280000039
式中,
Figure FDA00031444892800000310
为时段t内系统电力负荷消耗的电网功率,Pt DG和E(Pt DG)分别是RGs联合出力及其期望值;Pt CNLOAD为可控负荷,
Figure FDA00031444892800000311
为电网提供的最大功率,
Figure FDA00031444892800000312
为t时段系统电力负荷消耗电网功率,
Figure FDA00031444892800000313
Figure FDA00031444892800000314
分别为t时段储能充放电功率,
Figure FDA00031444892800000315
Figure FDA00031444892800000316
分别为t时段电动汽车充放电效率,Pt CNLOAD为t时段可控负荷,Pt grid为联合系统从电网购电功率,
Figure FDA00031444892800000317
为电网提供功率的最大值;
(ii)储能系统约束:包括储能装置功率约束和容量约束,
Figure FDA0003144489280000031
Figure FDA0003144489280000032
Figure FDA0003144489280000033
Figure FDA0003144489280000034
式中,
Figure FDA00031444892800000318
为t时段储能容量,
Figure FDA00031444892800000319
Figure FDA00031444892800000320
分别为t时段储能充放电功率,ηch和ηdc分别为储能充放电效率,
Figure FDA00031444892800000321
表示ESS初始容量,
Figure FDA00031444892800000322
表示一个调度周期,即24小时结束时的储能容量,
Figure FDA00031444892800000323
表示储能的初始存储容量最小值,PRess,t为t时段储能提供的备用容量;
(iii)旋转备用约束:包括电网备用约束,ESS备用约束和EVCS备用约束,总旋转备用约束以机会约束形式表达式为,
Figure FDA0003144489280000035
Figure FDA0003144489280000036
Figure FDA0003144489280000037
Figure FDA0003144489280000038
式中,α为系统置信水平,Pt MT和Pt PV分别是风机和光伏的功率输出;
(iv)供热系统约束:包括供热系统电热功率平衡约束、电锅炉运行约束和储热装置约束;
供热系统电热功率平衡约束表达式为式(18),
Figure FDA0003144489280000041
式中,Pdhp,n,t为供热负荷的耗电量,
Figure FDA0003144489280000047
为t时段热负荷消耗的RGs功率;
电锅炉运行约束:
Peh,n,t=ηebPdhp,n,t (19)
0≤Peh,n,t≤Peh,n (20)
式中,Peh,n,t和Peh,n为第n台电锅炉的供热功率及其额定值,N为电锅炉总数,ηeb为电锅炉性能系数,表示热泵供暖功率与耗电功率的比值。
储热装置约束:包括储热装置功率约束和容量约束,
Figure FDA0003144489280000042
Figure FDA0003144489280000043
Figure FDA0003144489280000044
Figure FDA0003144489280000045
式中,
Figure FDA0003144489280000048
为t时段HSD储热容量,
Figure FDA0003144489280000049
Figure FDA00031444892800000410
分别为HSD容量的最小值和最大值,
Figure FDA00031444892800000411
Figure FDA00031444892800000412
分别为HSD最大充放电功率,
Figure FDA00031444892800000413
表示HSD初始容量,
Figure FDA00031444892800000414
表示一个调度周期24小时结束时的储热容量,
Figure FDA00031444892800000415
表示HSD存储容量的最小值;
2)将机会约束转化为确定性约束;
利用序列运算理论将光伏、风机输出功率的概率分布进行离散化处理,得到其对应的概率性序列分别为a(iat)和b(ibt),通过概率性序列,获得各时段风光联合出力的期望值,t时段预测的间歇性风光共同出力的期望值Et计算式为:
Figure FDA0003144489280000046
式(25)中,Nat为光伏出力概率序列长度;Nbt为风机出力概率序列长度;q为离散化步长;matq为光伏t时段第ma种状态的出力值;mbtq为风机t时段第mb种状态的出力值;
然后将旋转备用的机会约束形式转化成确定性约束形式,t时段风光共同出力所对应的概率性序列c(ict)能够利用概率性序列a(iat)和b(ibt)的卷和获得,根据卷和的定义有:
Figure FDA0003144489280000051
为了方便处理旋转备用约束,定义一类新的0-1变量
Figure FDA0003144489280000055
它满足以下关系:
Figure FDA0003144489280000052
式(27)说明在t时段,当系统旋转备用容量大于风光出力期望值与风光第mct种出力mctq的差值时取1,否则为0,
因此旋转备用的机会约束形式简化为:
Figure FDA0003144489280000053
式(28)中用到了0-1变量
Figure FDA0003144489280000056
Figure FDA0003144489280000057
的表达式不兼容混合整数规划(Mixed-IntegerLinear Programming,MILP)的求解形式,必须利用式(29)替代式(27),
Figure FDA0003144489280000054
式中,τ取一个很大的数,由于τ较大,当
Figure FDA0003144489280000058
时,式(29)等价为
Figure FDA0003144489280000059
λ是一个非常小的正数,由于
Figure FDA00031444892800000510
是一个0-1变量,所以
Figure FDA00031444892800000511
只能等于1,否则为0;
3)输入CIES参数,包括负荷参数和置信水平参数,所述负荷参数为风机参数、光伏组件参数、储能装置参数、储热装置参数、电锅炉参数、建筑物参数、调度时段数和电负荷预测值;
4)确定解决方案是否存在,若解决方案存在,继续解决步骤;否则,更新置信度和负荷,并返回步骤3;
5)通过动态定价机制获得CIES最优调度方案和动态电价,并将动态价格传递给下层电动汽车充电站;
分时电价能够有效显示各时段负荷水平,但分时电价不能有效区分上层CIES可再生能源剩余时段,为指导下层EVCS有效消纳上层CIES中的可再生能源功率,利用“分时+实时”动态定价机制指导下层EVCS充放电方案以消纳CIES中的可再生能源功率,“分时+实时”动态定价机制的用式(30)描述:
Figure FDA0003144489280000061
式中,a表示CIES的供求关系,
Figure FDA0003144489280000066
是电网谷时段分时电价;
6)构建下层EVCS优化调度模型;
根据电动汽车到达EVCS的时间服从正态分布的特点,电动汽车到达EVCS时间的概率密度函数为;
Figure FDA0003144489280000062
式中,μ1和μ2分别是电动汽车到达和离开EVCS的时间的平均值;σ1和σ2分别是电动汽车到达和离开EVCS时间的标准差;
电动汽车充电的日负荷需求与日行驶里程和充电时长有关,电动汽车的每日行驶里程为服从正态分布,其概率密度函数为;
Figure FDA0003144489280000063
式中,Md代表电动汽车的日行驶里程,σM和μM分别为日行驶里程的标准差和平均值;
根据电动汽车的行驶里程及其初始充电状态,充电结束时的实际充电状态为;
Figure FDA0003144489280000064
式中,Sreal表示实际充电状态,Ss表示EV的初始SOC,Ed,100表示EV行驶100公里时的电力需求,Bc表示EV的电池容量,电动汽车的充电时间计算式为;
Figure FDA0003144489280000065
式中,Tch是电动汽车的充电时间;
Figure FDA0003144489280000067
Figure FDA0003144489280000068
为电动汽车的额定电能和充电效率;
Figure FDA0003144489280000069
为t时段电动汽车的电池容量;
电动汽车充电站(electric vehicle charging station,EVCS)优化调度模型构建过程为:
(a)选取优化目标,选用电动汽车充电站运行成本最小为优化目标,包括EVCS向电网购电成本、EVCS向CIES购电成本、EVCS向CIES放电收益、EVCS向CIES提供旋转备用的收益,表达式为:
Figure FDA0003144489280000075
式中,
Figure FDA0003144489280000076
为电动汽车消耗电网功率,
Figure FDA0003144489280000077
为电动汽车消耗CIES中可再生能源功率,
Figure FDA0003144489280000078
为电动汽车向CIES放电功率;
(b)确定约束条件,调度模型的约束条件包括能量平衡约束、充放电功率约束、充放电容量约束、充放电格位数约束和旋转备用约束,具体式为:
能量平衡约束:包括电热平衡约束和上下限约束,
Figure FDA0003144489280000071
式中,
Figure FDA0003144489280000079
Figure FDA00031444892800000710
为电动汽车在t时间段的最大充放电功率,
Figure FDA00031444892800000711
Figure FDA00031444892800000712
为t时间段电力负荷和热负荷在消耗RGs功率后的功率缺额;
充放电功率约束:包括可再生能源消纳量约束和上下限约束,
Figure FDA0003144489280000072
Figure FDA0003144489280000073
Figure FDA0003144489280000074
充放电容量约束:包括充放电容量和上下限约束,
Figure FDA00031444892800000713
Figure FDA00031444892800000714
充放电格位数约束:
Figure FDA00031444892800000715
式中,
Figure FDA00031444892800000716
为t时段电动汽车容量
Figure FDA00031444892800000717
Figure FDA00031444892800000718
分别为t时段电动车充放电功率,
Figure FDA00031444892800000719
Figure FDA00031444892800000720
分别为t时段电动汽车最小和最大容量,
Figure FDA00031444892800000721
Figure FDA00031444892800000722
分别为t时段处于充电和放电状态的电动汽车数量,NB,pos,max为电动汽车充电站最大充放电格位数;
7)输入EVCS参数;
电动汽车充电站参数包括:园区内电动汽车数目,每台电动汽车的电池容量,每台电动汽车的充放电效率,充电桩数目,每个充电桩的额定充放电功率,一个调度周期24小时内电动汽车总充电功率,可控负荷功率;
8)根据上层CIES提供的动态价格,利用CPLEX求解器对EVCS最优调度模型进行求解;
9)获取EVCS充放电方案;通过步骤8)中的求解结果获取EVCS充放电方案;
10)计算联合优化目标函数F1 JO
Figure FDA0003144489280000082
F1 JO
Figure FDA0003144489280000083
分别代表联合优化上层CIES和下层EVCS的运行成本;
11)判断是否满足终止条件:
采用的迭代终止条件是当前迭代次数超过预设的最大迭代次数,若满足,停止迭代过程;否则,将EVCS充电放电方案传递给上层并返回步骤3);
12)确定联合最优解;
通过求解双层模型,获得多组调度方案,为从多个方案中选择最优解,定义联合优化目标函数FJO为:
Figure FDA0003144489280000081
13)输出CIES和EVCS的最优调度方案,通过求解联合优化目标函数,获得对应的CIES和EVCS的最优调度方案和联合最优解。
CN202110754730.0A 2021-07-02 2021-07-02 含电动汽车充电站的社区综合能源系统双层调度方法 Pending CN113517690A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110754730.0A CN113517690A (zh) 2021-07-02 2021-07-02 含电动汽车充电站的社区综合能源系统双层调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110754730.0A CN113517690A (zh) 2021-07-02 2021-07-02 含电动汽车充电站的社区综合能源系统双层调度方法

Publications (1)

Publication Number Publication Date
CN113517690A true CN113517690A (zh) 2021-10-19

Family

ID=78066154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110754730.0A Pending CN113517690A (zh) 2021-07-02 2021-07-02 含电动汽车充电站的社区综合能源系统双层调度方法

Country Status (1)

Country Link
CN (1) CN113517690A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485702A (zh) * 2021-12-30 2022-05-13 国网江苏省电力有限公司连云港供电分公司 一种电动汽车充电路径规划方法及系统
CN114862068A (zh) * 2022-07-05 2022-08-05 东南大学 一种协调电动汽车充电站的综合能源系统控制方法及装置
CN114977271A (zh) * 2022-03-31 2022-08-30 华南理工大学 一种考虑社会因素的新型电力系统调度方法
CN115879651A (zh) * 2023-02-21 2023-03-31 国网天津市电力公司城西供电分公司 考虑电动汽车参与的综合能源系统低碳优化方法及装置
CN116667355A (zh) * 2023-05-22 2023-08-29 西安理工大学 基于源荷协同降碳的ies-evcs双层调度方法
CN117436672A (zh) * 2023-12-20 2024-01-23 国网湖北省电力有限公司经济技术研究院 考虑等效循环寿命和温控负荷的综合能源运行方法及系统
CN118074199A (zh) * 2024-04-22 2024-05-24 始途科技(杭州)有限公司 一种储充设备多向能源调度系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110533225A (zh) * 2019-08-07 2019-12-03 华北电力大学 一种基于机会约束规划的商业园区综合能源系统优化调度方法
CN110912120A (zh) * 2019-11-26 2020-03-24 东北电力大学 考虑可再生能源发电不确定性和用户热舒适性的综合能源系统优化调度方法
CN111614121A (zh) * 2020-06-04 2020-09-01 四川大学 考虑需求响应的含电动汽车的多能源园区日前经济调度方法
CN113013906A (zh) * 2021-02-23 2021-06-22 南京邮电大学 考虑电动汽车v2g模式下的光伏储能容量优化配置方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110533225A (zh) * 2019-08-07 2019-12-03 华北电力大学 一种基于机会约束规划的商业园区综合能源系统优化调度方法
CN110912120A (zh) * 2019-11-26 2020-03-24 东北电力大学 考虑可再生能源发电不确定性和用户热舒适性的综合能源系统优化调度方法
CN111614121A (zh) * 2020-06-04 2020-09-01 四川大学 考虑需求响应的含电动汽车的多能源园区日前经济调度方法
CN113013906A (zh) * 2021-02-23 2021-06-22 南京邮电大学 考虑电动汽车v2g模式下的光伏储能容量优化配置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG LI ET AL: "Coordinating Flexible Demand Response and Renewable Uncertainties for Scheduling of Community Integrated Energy Systems With an Electric Vehicle Charging Station: A Bi-Level Approach", 《IEEE TRANSACTIONS ON SUSTAINABLE ENERGY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485702A (zh) * 2021-12-30 2022-05-13 国网江苏省电力有限公司连云港供电分公司 一种电动汽车充电路径规划方法及系统
CN114977271A (zh) * 2022-03-31 2022-08-30 华南理工大学 一种考虑社会因素的新型电力系统调度方法
CN114862068A (zh) * 2022-07-05 2022-08-05 东南大学 一种协调电动汽车充电站的综合能源系统控制方法及装置
CN115879651A (zh) * 2023-02-21 2023-03-31 国网天津市电力公司城西供电分公司 考虑电动汽车参与的综合能源系统低碳优化方法及装置
CN116667355A (zh) * 2023-05-22 2023-08-29 西安理工大学 基于源荷协同降碳的ies-evcs双层调度方法
CN116667355B (zh) * 2023-05-22 2024-08-20 西安理工大学 基于源荷协同降碳的ies-evcs双层调度方法
CN117436672A (zh) * 2023-12-20 2024-01-23 国网湖北省电力有限公司经济技术研究院 考虑等效循环寿命和温控负荷的综合能源运行方法及系统
CN117436672B (zh) * 2023-12-20 2024-03-12 国网湖北省电力有限公司经济技术研究院 考虑等效循环寿命和温控负荷的综合能源运行方法及系统
CN118074199A (zh) * 2024-04-22 2024-05-24 始途科技(杭州)有限公司 一种储充设备多向能源调度系统

Similar Documents

Publication Publication Date Title
CN113517690A (zh) 含电动汽车充电站的社区综合能源系统双层调度方法
Chen et al. Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai
CN110689189A (zh) 考虑供能侧和需求侧的冷热电联合供需平衡优化调度方法
CN111339689B (zh) 建筑综合能源调度方法、系统、存储介质及计算机设备
CN107612041B (zh) 一种考虑不确定性的基于事件驱动的微电网自动需求响应方法
CN113987734A (zh) 机会约束条件的园区综合能源系统多目标优化调度方法
CN113610316B (zh) 不确定环境下考虑综合需求响应的园区综合能源系统优化调度方法
CN116151486B (zh) 含储能系统的光伏充电站多时间尺度随机优化方法及装置
CN110556822B (zh) 一种含电动汽车消纳大规模风电机组的组合计算方法
CN107231001B (zh) 一种基于改进灰色预测的楼宇微网在线能量管理方法
CN113574760A (zh) 能量系统、本地能量市场和用于运行能量系统的方法
Wu et al. Data-driven adjustable robust Day-ahead economic dispatch strategy considering uncertainties of wind power generation and electric vehicles
Polimeni et al. Numerical and experimental testing of predictive EMS algorithms for PV-BESS residential microgrid
Ahmed et al. Grid Integration of PV Based Electric Vehicle Charging Stations: A Brief Review
CN117239771A (zh) 一种综合能源系统中的负荷柔性调度方法及系统
CN117332989A (zh) 一种区域综合能源系统削峰填谷方法
CN110070210B (zh) 一种多微电网系统能量管理与贡献度评估方法和系统
Chen et al. Data-driven-based distributionally robust optimization approach for a virtual power plant considering the responsiveness of electric vehicles and Ladder-type carbon trading
CN108493973A (zh) 一种电动汽车充放电设施的容量配置方法
Yang et al. Energy Storage Configuration Optimization Method for Industrial Park Microgrid Based on Demand Side Response
CN113852073A (zh) 一种基于激励-响应充电决策估计的日前优化调度方法
Zafar et al. Smart Home Energy Management System Design: A Realistic Autonomous V2H/H2V Hybrid Energy Storage System
Liu et al. Multi-objective security-constrained unit commitment model considering wind power and EVs
CN113036751A (zh) 一种考虑虚拟储能的可再生能源微电网优化调度方法
Dan et al. Integrated energy flexible building and e-mobility with demand-side management and model predictive control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211019