CN113517388B - A kind of degradable piezoelectric energy harvester and preparation method thereof - Google Patents
A kind of degradable piezoelectric energy harvester and preparation method thereof Download PDFInfo
- Publication number
- CN113517388B CN113517388B CN202110558458.9A CN202110558458A CN113517388B CN 113517388 B CN113517388 B CN 113517388B CN 202110558458 A CN202110558458 A CN 202110558458A CN 113517388 B CN113517388 B CN 113517388B
- Authority
- CN
- China
- Prior art keywords
- degradable
- piezoelectric
- array
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 16
- 239000012620 biological material Substances 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 230000010287 polarization Effects 0.000 claims abstract description 12
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 17
- 239000004626 polylactic acid Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 230000005684 electric field Effects 0.000 claims description 9
- 108010022355 Fibroins Proteins 0.000 claims description 7
- 229920000954 Polyglycolide Polymers 0.000 claims description 7
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 7
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 7
- 229920001610 polycaprolactone Polymers 0.000 claims description 7
- 239000004633 polyglycolic acid Substances 0.000 claims description 7
- 150000001413 amino acids Chemical class 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 4
- 239000007888 film coating Substances 0.000 claims 2
- 238000009501 film coating Methods 0.000 claims 2
- 239000000560 biocompatible material Substances 0.000 abstract description 4
- 239000005022 packaging material Substances 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 9
- 108010016626 Dipeptides Proteins 0.000 description 7
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 241001124569 Lycaenidae Species 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biological Depolymerization Polymers (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
技术领域Technical field
本发明属于能量收集器技术领域,具体涉及一种可降解压电能量收集器及其制备方法。The invention belongs to the technical field of energy collectors, and specifically relates to a degradable piezoelectric energy collector and a preparation method thereof.
背景技术Background technique
压电能量收集器是一种基于压电材料制备而成的能量转化装置,它能有效地将机械能(例如,蓝色能源、风能、声能以及生物体运动等)转变为可二次利用的电能,被认为是一类最有前途的绿色能源,其中能进行机电转换的纳米发电机为持续能源供应提供了全新的解决方案。A piezoelectric energy collector is an energy conversion device based on piezoelectric materials. It can effectively convert mechanical energy (such as blue energy, wind energy, sound energy, and biological movement, etc.) into secondary energy that can be used again. Electric energy is considered to be the most promising type of green energy, and nanogenerators that can perform electromechanical conversion provide a new solution for continuous energy supply.
压电效应存在于许多具有非中心对称的晶体结构的材料中,尤以陶瓷材料最为常见,虽然它具有较高的压电常数,然而天然脆性,导致陶瓷材料在力的作用下容易破损,限制了其在柔性电子设备中的应用。虽然经过工艺改进,用纳米带、纳米线等能增加它的柔韧性,但是其合成温度较高,加之陶瓷材料通常含有生物不兼容元素,使得当前大多数压电能量收集器都不具有完全可降解特性和生物相容性,限制了其在可植入电子设备领域的应用。The piezoelectric effect exists in many materials with non-centrosymmetric crystal structures, especially ceramic materials. Although it has a high piezoelectric constant, its natural brittleness causes ceramic materials to be easily damaged under the action of force, limiting the its application in flexible electronic devices. Although the flexibility can be increased by using nanoribbons, nanowires, etc. after process improvement, the synthesis temperature is relatively high, and ceramic materials usually contain bioincompatible elements, making most current piezoelectric energy harvesters not fully reliable. Degradation characteristics and biocompatibility limit its application in the field of implantable electronic devices.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种可降解压电能量收集器及其制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a degradable piezoelectric energy collector and a preparation method thereof. The technical problems to be solved by the present invention are achieved through the following technical solutions:
本发明提供了一种可降解压电能量收集器的制备方法,包括:The invention provides a method for preparing a degradable piezoelectric energy collector, which includes:
在基底上生长压电生物材料阵列;growing an array of piezoelectric biomaterials on a substrate;
在所述基底上制备可降解膜,以使所述可降解膜包覆所述压电生物材料阵列;Preparing a degradable film on the substrate so that the degradable film coats the piezoelectric biomaterial array;
将包覆所述压电生物材料阵列的所述可降解膜从所述基底上剥离,得到可降解压电层;Peeling the degradable film covering the piezoelectric biomaterial array from the substrate to obtain a degradable piezoelectric layer;
制备两个可降解电极,所述可降解电极包括层叠设置的可降解衬底层和金属层;Preparing two degradable electrodes, the degradable electrodes including a stacked degradable substrate layer and a metal layer;
将所述可降解压电层放置在两个所述可降解电极之间,粘合形成可降解压电能量收集器,所述金属层位于靠近所述可降解压电层的一侧。The degradable piezoelectric layer is placed between the two degradable electrodes and bonded to form a degradable piezoelectric energy collector. The metal layer is located on the side close to the degradable piezoelectric layer.
在本发明的一个实施例中,所述压电生物材料阵列具有单一的生长方向和极化方向。In one embodiment of the invention, the piezoelectric biomaterial array has a single growth direction and polarization direction.
在本发明的一个实施例中,所述压电生物材料阵列的材料为肽、氨基酸、纤维素中的一种或多种。In one embodiment of the present invention, the material of the piezoelectric biomaterial array is one or more of peptides, amino acids, and cellulose.
在本发明的一个实施例中,在基底上生长压电生物材料阵列,包括:In one embodiment of the invention, growing a piezoelectric biomaterial array on a substrate includes:
在基底上生长生物材料阵列,所述生物材料阵列垂直于所述基底;growing a biomaterial array on a substrate, the biomaterial array being perpendicular to the substrate;
对所述生物材料阵列施加平行于其生长方向的电场,以实现单一的极化方向,得到压电生物材料阵列。An electric field parallel to the growth direction of the biomaterial array is applied to achieve a single polarization direction to obtain a piezoelectric biomaterial array.
在本发明的一个实施例中,所述电场强度为-10KV~10KV。In one embodiment of the present invention, the electric field intensity is -10KV ~ 10KV.
在本发明的一个实施例中,在所述基底上制备可降解膜,以使所述可降解膜包覆所述压电生物材料阵列,包括:In one embodiment of the present invention, a degradable film is prepared on the substrate so that the degradable film covers the piezoelectric biomaterial array, including:
在生长有压电生物材料阵列的所述基底上旋涂可降解溶液,使所述可降解溶液完全覆盖所述压电生物材料阵列,待干燥后形成包覆所述压电生物材料阵列的可降解膜。A degradable solution is spin-coated on the substrate on which the piezoelectric biomaterial array is grown, so that the degradable solution completely covers the piezoelectric biomaterial array, and after drying, a degradable solution covering the piezoelectric biomaterial array is formed. Degradable film.
在本发明的一个实施例中,所述可降解膜与所述可降解衬底层的材料为聚乳酸、丝素蛋白、聚羟基乙酸、聚ε-己内酯或聚羟基丁酸酯中的一种。In one embodiment of the present invention, the material of the degradable film and the degradable substrate layer is one of polylactic acid, silk fibroin, polyglycolic acid, polyε-caprolactone or polyhydroxybutyrate. kind.
在本发明的一个实施例中,所述可降解衬底层的厚度为0.2-0.4mm。In one embodiment of the present invention, the thickness of the degradable substrate layer is 0.2-0.4mm.
本发明还提供了一种可降解压电能量收集器,采用如上述实施例中任一项所述的制备方法制备得到,所述可降解压电能量收集器,包括:自下而上依次设置的第一可降解电极、可降解压电层和第二可降解电极,其中,The present invention also provides a degradable piezoelectric energy collector, which is prepared by the preparation method as described in any one of the above embodiments. The degradable piezoelectric energy collector includes: arranged in sequence from bottom to top. The first degradable electrode, the degradable piezoelectric layer and the second degradable electrode, wherein,
所述第一可降解电极和所述第二可降解电极均包括层叠设置的可降解衬底层和金属层,所述金属层位于靠近所述可降解压电层的一侧;The first degradable electrode and the second degradable electrode both include a degradable substrate layer and a metal layer arranged in a stack, and the metal layer is located on a side close to the degradable piezoelectric layer;
所述可降解压电层包括压电生物材料阵列以及包覆所述压电生物材料阵列的可降解膜,所述压电生物材料阵列具有单一的生长方向和极化方向。The degradable piezoelectric layer includes a piezoelectric biomaterial array and a degradable film covering the piezoelectric biomaterial array. The piezoelectric biomaterial array has a single growth direction and polarization direction.
在本发明的一个实施例中,所述压电生物材料阵列的材料为肽、氨基酸、纤维素中的一种或多种;In one embodiment of the present invention, the material of the piezoelectric biomaterial array is one or more of peptides, amino acids, and cellulose;
所述可降解膜与所述可降解衬底层的材料为聚乳酸、丝素蛋白、聚羟基乙酸、聚ε-己内酯或聚羟基丁酸酯中的一种。The material of the degradable film and the degradable substrate layer is one of polylactic acid, silk fibroin, polyglycolic acid, polyε-caprolactone or polyhydroxybutyrate.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明的可降解压电能量收集器的制备方法,将具有单一生长方向和极化方向的压电生物材料阵列从硬质基底上剥离,使用可降解和生物相容的材料作为可降解压电能量收集器的电极和封装材料,使得制备的压电能量收集器具有可降解性和生物相容性,大大拓展了压电能量收集器的应用范围,尤其是在生物医学领域内的应用。The preparation method of the degradable piezoelectric energy collector of the present invention peels off the piezoelectric biomaterial array with a single growth direction and polarization direction from the hard substrate, and uses degradable and biocompatible materials as the degradable piezoelectric energy collector. The electrodes and packaging materials of the energy harvester make the prepared piezoelectric energy harvester degradable and biocompatible, which greatly expands the application range of piezoelectric energy harvesters, especially in the biomedical field.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。The above description is only an overview of the technical solution of the present invention. In order to have a clearer understanding of the technical means of the present invention, it can be implemented according to the content of the description, and in order to make the above and other objects, features and advantages of the present invention more obvious and understandable. , the following is a detailed description of the preferred embodiments, together with the accompanying drawings.
附图说明Description of the drawings
图1是本发明实施例提供的一种可降解压电能量收集器的制备方法的示意图;Figure 1 is a schematic diagram of a preparation method of a degradable piezoelectric energy collector provided by an embodiment of the present invention;
图2a-图2f是本发明实施例提供的一种可降解压电能量收集器的制备方法的流程工艺图;Figures 2a-2f are process flow diagrams of a method for preparing a degradable piezoelectric energy harvester provided by an embodiment of the present invention;
图3是本发明实施例提供的一种可降解压电能量收集器的结构示意图;Figure 3 is a schematic structural diagram of a degradable piezoelectric energy collector provided by an embodiment of the present invention;
图4是本发明实施例提供的一种可降解压电能量收集器的电性能图;Figure 4 is an electrical performance diagram of a degradable piezoelectric energy collector provided by an embodiment of the present invention;
图5是本发明实施例提供的一种可降解压电能量收集器的降解过程图片。Figure 5 is a picture of the degradation process of a degradable piezoelectric energy collector provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种可降解压电能量收集器及其制备方法进行详细说明。In order to further elaborate on the technical means and effects adopted by the present invention to achieve the intended inventive purpose, a degradable piezoelectric energy harvester and its preparation method proposed according to the present invention will be described in detail below in conjunction with the drawings and specific embodiments.
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。The foregoing and other technical contents, features and effects of the present invention can be clearly presented in the following detailed description of the specific embodiments in conjunction with the accompanying drawings. Through the description of the specific embodiments, we can have a more in-depth and specific understanding of the technical means and effects adopted by the present invention to achieve the intended purpose. However, the attached drawings are only for reference and illustration, and are not used to explain the technical aspects of the present invention. program is restricted.
实施例一Embodiment 1
请参见图1,图1是本发明实施例提供的一种可降解压电能量收集器的制备方法的示意图。如图所示,本实施例的制备方法包括:Please refer to Figure 1. Figure 1 is a schematic diagram of a method for preparing a degradable piezoelectric energy harvester provided by an embodiment of the present invention. As shown in the figure, the preparation method of this embodiment includes:
S1:在基底上生长压电生物材料阵列;S1: Growth of piezoelectric biomaterial arrays on substrates;
在本实施例中,压电生物材料阵列具有单一的生长方向和极化方向,压电生物材料阵列的材料为肽、氨基酸、纤维素中的一种或多种。基底通常选取硬质基底,例如硅片。In this embodiment, the piezoelectric biomaterial array has a single growth direction and polarization direction, and the material of the piezoelectric biomaterial array is one or more of peptides, amino acids, and cellulose. The substrate is usually a hard substrate, such as silicon wafer.
需要说明的是,在本实施例中选取硬质基底并在其上制备压电生物材料阵列然后再剥离,而不是直接在可降解膜上制备压电生物材料阵列,是因为硬质基底表面较为平整,利于压电生物材料阵列生长,而可降解薄膜表面不平整,不能生长出单一方向的阵列,其次生长过程中用到的溶剂会腐蚀可降解膜。It should be noted that in this embodiment, a hard substrate is selected and a piezoelectric biomaterial array is prepared on it and then peeled off, instead of directly preparing a piezoelectric biomaterial array on a degradable film, because the surface of the hard substrate is relatively thin. Smoothness is conducive to the growth of piezoelectric biomaterial arrays, but the surface of the degradable film is uneven and cannot grow an array in a single direction. Secondly, the solvent used in the growth process will corrode the degradable film.
具体地,S1包括:Specifically, S1 includes:
S11:在基底上生长生物材料阵列,生物材料阵列垂直于基底;S11: Grow the biomaterial array on the substrate, and the biomaterial array is perpendicular to the substrate;
可选地,通过外延生长法在基底上生长垂直于基底的生物材料阵列。Alternatively, an array of biomaterials perpendicular to the substrate is grown on the substrate by epitaxial growth.
S12:对生物材料阵列施加平行于其生长方向的电场,以实现单一的极化方向,得到压电生物材料阵列。S12: Apply an electric field parallel to the growth direction of the biomaterial array to achieve a single polarization direction to obtain a piezoelectric biomaterial array.
在本实施例中,外加电场方向为垂直方向,电场强度为-10KV~10KV。In this embodiment, the direction of the external electric field is the vertical direction, and the electric field intensity is -10KV~10KV.
S2:在基底上制备可降解膜,以使可降解膜包覆压电生物材料阵列;S2: Prepare a degradable film on the substrate so that the degradable film coats the piezoelectric biomaterial array;
具体地,包括:在生长有压电生物材料阵列的基底上旋涂可降解溶液,使可降解溶液完全覆盖压电生物材料阵列,待干燥后形成包覆压电生物材料阵列的可降解膜。Specifically, the method includes: spin-coating a degradable solution on a substrate on which a piezoelectric biomaterial array is grown, so that the degradable solution completely covers the piezoelectric biomaterial array, and after drying, a degradable film covering the piezoelectric biomaterial array is formed.
在本实施例中,可降解膜的材料为聚乳酸、丝素蛋白、聚羟基乙酸、聚ε-己内酯或聚羟基丁酸酯中的一种。In this embodiment, the material of the degradable membrane is one of polylactic acid, silk fibroin, polyglycolic acid, polyε-caprolactone or polyhydroxybutyrate.
以聚乳酸为例对可降解溶液的配置进行说明,具体地,将聚乳酸放入三氯甲烷溶液,用磁力搅拌器搅拌30min,配置得到浓度为50mg/mL的聚乳酸溶液。Taking polylactic acid as an example, the configuration of the degradable solution is explained. Specifically, the polylactic acid is put into the chloroform solution, stirred with a magnetic stirrer for 30 minutes, and a polylactic acid solution with a concentration of 50 mg/mL is prepared.
可选地,可降解溶液的旋涂速度为2000rad/s-4000rad/s。Optionally, the spin coating speed of the degradable solution is 2000rad/ s -4000rad/ s .
S3:将包覆压电生物材料阵列的可降解膜从基底上剥离,得到可降解压电层;S3: Peel off the degradable film covering the piezoelectric biomaterial array from the substrate to obtain a degradable piezoelectric layer;
在本实施例中,手动将包覆压电生物材料阵列的可降解膜从基底上缓慢剥离。In this embodiment, the degradable film covering the piezoelectric biomaterial array is slowly peeled off from the substrate manually.
S4:制备两个可降解电极,可降解电极包括层叠设置的可降解衬底层和金属层;S4: Prepare two degradable electrodes. The degradable electrodes include a stacked degradable substrate layer and a metal layer;
在本实施例中,可降解衬底层的材料为聚乳酸、丝素蛋白、聚羟基乙酸、聚ε-己内酯或聚羟基丁酸酯中的一种。金属层的材料为镁、钼、锌或钛中的一种。In this embodiment, the material of the degradable substrate layer is one of polylactic acid, silk fibroin, polyglycolic acid, polyε-caprolactone or polyhydroxybutyrate. The material of the metal layer is one of magnesium, molybdenum, zinc or titanium.
可选地,可降解衬底层的厚度为0.2-0.4mm。Optionally, the thickness of the degradable substrate layer is 0.2-0.4mm.
具体包括:首先制备得到可降解溶液,将可降解溶液倒入器皿成膜,得到可降解衬底层,然后在可降解衬底层上热蒸镀金属,制备得到可降解电极。Specifically, the method includes: first preparing a degradable solution, pouring the degradable solution into a vessel to form a film to obtain a degradable substrate layer, and then thermally evaporating metal on the degradable substrate layer to prepare a degradable electrode.
S5:将可降解压电层放置在两个可降解电极之间,粘合形成可降解压电能量收集器,金属层位于靠近可降解压电层的一侧。S5: Place the degradable piezoelectric layer between two degradable electrodes and bond them to form a degradable piezoelectric energy collector. The metal layer is located on the side close to the degradable piezoelectric layer.
在本实施例中,可降解溶液作为粘合剂将可降解压电层与两个可降解电极粘合在一起,形成三明治结构。可降解衬底层作为该可降解压电能量收集器的封装层。In this embodiment, the degradable solution serves as an adhesive to bond the degradable piezoelectric layer and the two degradable electrodes together to form a sandwich structure. The degradable substrate layer serves as the encapsulation layer of the degradable piezoelectric energy collector.
需要说明的是,由于可降解压电层与可降解电极单独制备而成,其制备顺序在此不做限制,也可先制备得到可降解电极,再制备得到可降解压电层。It should be noted that since the degradable piezoelectric layer and the degradable electrode are prepared separately, the preparation sequence is not limited here. The degradable electrode can also be prepared first, and then the degradable piezoelectric layer can be prepared.
本实施例的可降解压电能量收集器的制备方法,将具有单一生长方向和极化方向的压电生物材料阵列从硬质基底上剥离,使用可降解和生物相容的材料作为可降解压电能量收集器的电极和封装材料,使得制备的压电能量收集器具有可降解性和生物相容性,大大拓展了压电能量收集器的应用范围,尤其是在生物医学领域内的应用。The preparation method of the degradable piezoelectric energy collector in this embodiment is to peel off the piezoelectric biomaterial array with a single growth direction and polarization direction from the hard substrate, and use degradable and biocompatible materials as the degradable piezoelectric energy harvester. The electrodes and packaging materials of the electrical energy harvester make the prepared piezoelectric energy harvester degradable and biocompatible, which greatly expands the application range of piezoelectric energy harvesters, especially in the biomedical field.
实施例二Embodiment 2
以聚乳酸作为可降解膜与可降解衬底层为例对实施例一中的制备方法进行具体说明,请参见图2a-图2f,图2a-图2f是本发明实施例提供的一种可降解压电能量收集器的制备方法的流程工艺图该方法包括以下步骤:Taking polylactic acid as a degradable film and a degradable substrate layer as an example, the preparation method in Embodiment 1 will be described in detail. Please refer to Figures 2a to 2f. Figures 2a to 2f are a degradable film provided by the embodiment of the present invention. Flowchart of a method for preparing a piezoelectric energy harvester. The method includes the following steps:
步骤1:通过外延生长法在在硅片201上生长垂直于硅片的苯丙氨酸二肽阵列202,如图2a所示;Step 1: Grow the phenylalanine dipeptide array 202 perpendicular to the silicon wafer on the silicon wafer 201 by epitaxial growth method, as shown in Figure 2a;
步骤2:对苯丙氨酸二肽阵列202施加平行于其生长方向的电场,施加的电场强度为8.5KV,如图2b所示;Step 2: Apply an electric field parallel to the growth direction of the phenylalanine dipeptide array 202, and the applied electric field intensity is 8.5KV, as shown in Figure 2b;
步骤3:在硅片201上旋涂可降解溶液,使可降解溶液完全覆盖苯丙氨酸二肽阵列,待干燥后形成包覆苯丙氨酸二肽阵列的可降解膜203,如图2c所示;Step 3: Spin-coat the degradable solution on the silicon wafer 201 so that the degradable solution completely covers the phenylalanine dipeptide array. After drying, a degradable film 203 covering the phenylalanine dipeptide array is formed, as shown in Figure 2c. shown;
具体地,旋涂速度为2000rad/s,可降解溶液配置方法为,将聚乳酸放入三氯甲烷溶液,用磁力搅拌器搅拌30min,可降解聚乳酸溶液的浓度为50mg/mL。Specifically, the spin coating speed is 2000rad/s, and the degradable solution preparation method is to put the polylactic acid into the chloroform solution and stir it with a magnetic stirrer for 30 minutes. The concentration of the degradable polylactic acid solution is 50 mg/mL.
步骤4:将包覆苯丙氨酸二肽阵列202的可降解膜203从硅基片201上缓慢剥离,得到可降解压电层,如图2d所示;Step 4: Slowly peel off the degradable film 203 covering the phenylalanine dipeptide array 202 from the silicon substrate 201 to obtain a degradable piezoelectric layer, as shown in Figure 2d;
制备得到的能够完全包裹住苯丙氨酸二肽阵列的可降解膜,使得在剥离过程中不会对苯丙氨酸二肽阵列的结构产生破坏。The prepared degradable membrane can completely wrap the phenylalanine dipeptide array, so that the structure of the phenylalanine dipeptide array will not be damaged during the peeling process.
步骤5:将可降解聚乳酸溶液倒入器皿成膜,得到可降解衬底层204,在可降解衬底层上热蒸镀金属钼层205,制备得到可降解电极,如图2e所示;Step 5: Pour the degradable polylactic acid solution into a vessel to form a film to obtain a degradable substrate layer 204. A metal molybdenum layer 205 is thermally evaporated on the degradable substrate layer to prepare a degradable electrode, as shown in Figure 2e;
步骤6:将可降解压电层置于中间,其上下为镀有金属钼的可降解电极,用聚乳酸作为粘合剂,将上下两个可降解电极和可降解压电层粘合在一起组装得到可降解压电能量收集器,如图2f所示。Step 6: Place the degradable piezoelectric layer in the middle, with degradable electrodes coated with metal molybdenum above and below it. Use polylactic acid as an adhesive to bond the upper and lower degradable electrodes and the degradable piezoelectric layer together. The degradable piezoelectric energy harvester is assembled, as shown in Figure 2f.
实施例三Embodiment 3
本实施例提供了一种可降解压电能量收集器,采用如上述实施例所述的制备方法制备得到,请参见图3,图3是本发明实施例提供的一种可降解压电能量收集器的结构示意图。如图所示,该可降解压电能量收集器,包括:自下而上依次设置的第一可降解电极301、可降解压电层302和第二可降解电极303。This embodiment provides a degradable piezoelectric energy harvester, which is prepared by the preparation method described in the above embodiment. Please refer to Figure 3. Figure 3 is a degradable piezoelectric energy harvester provided by an embodiment of the present invention. Schematic diagram of the structure of the device. As shown in the figure, the degradable piezoelectric energy collector includes: a first degradable electrode 301, a degradable piezoelectric layer 302 and a second degradable electrode 303 arranged in sequence from bottom to top.
其中,第一可降解电极301和第二可降解电极303均包括层叠设置的可降解衬底层30和金属层31,金属层31位于靠近可降解压电层302的一侧。可降解压电层302包括压电生物材料阵列3021以及包覆压电生物材料阵列3021的可降解膜3022,压电生物材料阵3021列具有单一的生长方向和极化方向。Wherein, the first degradable electrode 301 and the second degradable electrode 303 both include a stacked degradable substrate layer 30 and a metal layer 31, and the metal layer 31 is located on the side close to the degradable piezoelectric layer 302. The degradable piezoelectric layer 302 includes a piezoelectric biomaterial array 3021 and a degradable film 3022 covering the piezoelectric biomaterial array 3021. The piezoelectric biomaterial array 3021 columns have a single growth direction and polarization direction.
在本实施例中,压电生物材料阵列3021的材料为肽、氨基酸、纤维素中的一种或多种。可降解膜3022与可降解衬底层30的材料为聚乳酸、丝素蛋白、聚羟基乙酸、聚ε-己内酯或聚羟基丁酸酯中的一种。In this embodiment, the material of the piezoelectric biomaterial array 3021 is one or more of peptides, amino acids, and cellulose. The material of the degradable membrane 3022 and the degradable substrate layer 30 is one of polylactic acid, silk fibroin, polyglycolic acid, polyε-caprolactone or polyhydroxybutyrate.
需要说明的是,可降解衬底层30也作为可降解压电能量收集器的封装层。It should be noted that the degradable substrate layer 30 also serves as an encapsulation layer of the degradable piezoelectric energy collector.
本实施例的可降解压电能量收集器,使用可降解和生物相容的材料作为可降解压电能量收集器的电极和封装材料,使得压电能量收集器具有可降解性和生物相容性,大大拓展了压电能量收集器的应用范围,尤其是在生物医学领域内的应用。The degradable piezoelectric energy collector of this embodiment uses degradable and biocompatible materials as the electrodes and packaging materials of the degradable piezoelectric energy collector, so that the piezoelectric energy collector has degradability and biocompatibility. , greatly expanding the application scope of piezoelectric energy harvesters, especially in the biomedical field.
请参见图4,图4是本发明实施例提供的一种可降解压电能量收集器的电性能图,该可降解压电能量收集器的可降解膜3022与可降解衬底层30的材料均采用聚乳酸,其中,(a)图为在外力作用下可降解压电能量收集器产生的开路电压图,(b)图为在外力作用下可降解压电能量收集器产生的短路电流图,从图中可以看出,在外力作用下,该可降解压电能量收集器产生的开路电压和短路电流分别为1.2V和40nA。Please refer to Figure 4. Figure 4 is an electrical performance diagram of a degradable piezoelectric energy collector provided by an embodiment of the present invention. The materials of the degradable film 3022 and the degradable substrate layer 30 of the degradable piezoelectric energy collector are both Polylactic acid is used. The picture (a) shows the open circuit voltage diagram generated by the degradable piezoelectric energy collector under the action of external force. The picture (b) shows the short circuit current diagram generated by the degradable piezoelectric energy collector under the action of external force. It can be seen from the figure that under the action of external force, the open circuit voltage and short circuit current generated by the degradable piezoelectric energy harvester are 1.2V and 40nA respectively.
进一步地,请参见图5,图5是本发明实施例提供的一种可降解压电能量收集器的降解过程图片。该可降解压电能量收集器的可降解膜3022与可降解衬底层30的材料均采用聚乳酸,将该可降解压电能量收集器完全浸泡在磷酸盐缓冲溶液中,并置于37℃恒温箱内,观察其降解特性,如图所示,分别为本实施例的可降解压电能量收集器浸泡于磷酸盐缓冲溶液内的第1天(图5中的(a)图)和第180天(图5中的(b)图)的照片,从图中可以看出,在第180天,本实施例的可降解压电能量收集器基本降解完全。Further, please refer to FIG. 5 , which is a picture of the degradation process of a degradable piezoelectric energy collector provided by an embodiment of the present invention. The degradable piezoelectric energy collector's degradable film 3022 and the degradable substrate layer 30 are both made of polylactic acid. The degradable piezoelectric energy collector is completely immersed in a phosphate buffer solution and placed at a constant temperature of 37°C. In the box, observe its degradation characteristics. As shown in the figure, they are the first day ((a) in Figure 5) and the 180th day when the degradable piezoelectric energy collector of this embodiment is soaked in the phosphate buffer solution. It can be seen from the photo of the day ((b) in Figure 5) that on the 180th day, the degradable piezoelectric energy collector of this embodiment is basically completely degraded.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations are mutually exclusive. any such actual relationship or sequence exists between them. Furthermore, the terms "comprises," "comprises," or any other variation are intended to cover a non-exclusive inclusion, such that an article or device including a list of elements includes not only those elements, but also other elements not expressly listed. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in an article or device including the stated element. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. The orientations or positional relationships indicated by "upper", "lower", "left", "right", etc. are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying The devices or elements referred to must have a specific orientation, be constructed and operate in a specific orientation and therefore are not to be construed as limitations of the invention.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be concluded that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field to which the present invention belongs, several simple deductions or substitutions can be made without departing from the concept of the present invention, and all of them should be regarded as belonging to the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110558458.9A CN113517388B (en) | 2021-05-21 | 2021-05-21 | A kind of degradable piezoelectric energy harvester and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110558458.9A CN113517388B (en) | 2021-05-21 | 2021-05-21 | A kind of degradable piezoelectric energy harvester and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113517388A CN113517388A (en) | 2021-10-19 |
CN113517388B true CN113517388B (en) | 2023-10-13 |
Family
ID=78064796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110558458.9A Active CN113517388B (en) | 2021-05-21 | 2021-05-21 | A kind of degradable piezoelectric energy harvester and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113517388B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015109720A1 (en) * | 2014-01-21 | 2015-07-30 | 西安交通大学 | Manufacturing method for energy harvester based on piezoelectric polymer microstructure array |
CN107706301A (en) * | 2017-10-31 | 2018-02-16 | 深圳市柔纬联科技有限公司 | Degradable nano sequence arthrogryposis collection of energy device |
WO2018170132A1 (en) * | 2017-03-14 | 2018-09-20 | University Of Connecticut | Biodegradable pressure sensor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140073201A (en) * | 2012-12-06 | 2014-06-16 | 한국전자통신연구원 | Piezoelectric Energy Harvesting Device and Method of Fabricating the Same |
US11826495B2 (en) * | 2019-03-01 | 2023-11-28 | University Of Connecticut | Biodegradable piezoelectric ultrasonic transducer system |
-
2021
- 2021-05-21 CN CN202110558458.9A patent/CN113517388B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015109720A1 (en) * | 2014-01-21 | 2015-07-30 | 西安交通大学 | Manufacturing method for energy harvester based on piezoelectric polymer microstructure array |
WO2018170132A1 (en) * | 2017-03-14 | 2018-09-20 | University Of Connecticut | Biodegradable pressure sensor |
CN107706301A (en) * | 2017-10-31 | 2018-02-16 | 深圳市柔纬联科技有限公司 | Degradable nano sequence arthrogryposis collection of energy device |
Non-Patent Citations (2)
Title |
---|
Jun Li等."Degradable piezoelectric biomaterials for wearable and implantable bioelectronics".《Current Opinion in Solid State & Materials Science》.2020,第24卷1-16页. * |
Kory Jenkinsa,等."Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators".《Nano Energy》.2018,第51卷第321页第1栏第1行-第321页第2栏第22行、附图4. * |
Also Published As
Publication number | Publication date |
---|---|
CN113517388A (en) | 2021-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109205551A (en) | A kind of tapered array flexible electrode and preparation method thereof | |
CN108530806A (en) | Double-layer structure flexible piezoelectric film with height output and its methods for making and using same | |
CN107508569A (en) | A kind of preparation method of FBAR | |
CN110676384B (en) | A two-dimensional organic-inorganic heterojunction encapsulated by boron nitride and preparation method thereof | |
CN108321299B (en) | Low-dimensional lead-free perovskite thin film and preparation method of lead-free perovskite solar cell | |
CN108597875B (en) | Transparent flexible full oxide heteroepitaxial ferroelectric film and preparation method thereof | |
CN108517555A (en) | The method for obtaining large-area high-quality flexible self-supporting monocrystalline oxide film based on Van der Waals extension | |
CN113517388B (en) | A kind of degradable piezoelectric energy harvester and preparation method thereof | |
CN102586169A (en) | Photon stimulated cell desorption method and cell culture implement used by same | |
CN110299450B (en) | A kind of flexible porous carbon counter electrode preparation method and perovskite solar cell | |
CN112725741A (en) | Preparation method of flexible ferroelectric film loaded by in-situ stress | |
CN111733452A (en) | Preparation of flexible self-supporting single crystal magnetic Fe3O4 thin film materials, thin film materials and applications, single crystal structure | |
JP2010251766A (en) | Ink jet printing module with orientation-determined piezoelectric film | |
CN109279652A (en) | A kind of platinum-lead zirconate titanate nanocomposite ferroelectric thin film material and preparation method | |
CN210467888U (en) | A boron nitride encapsulated two-dimensional organic-inorganic heterojunction | |
CN115440577A (en) | Method for preparing heterocrystalline homojunction thin film | |
CN110534639A (en) | A kind of nano generator and preparation method thereof | |
CN114551582A (en) | Lanthanum strontium manganese oxygen/aluminum-doped zinc oxide flexible thin film heterojunction and preparation method thereof | |
CN115489177A (en) | A kind of colored carbon-based electrovariable infrared emissivity thin film and preparation method thereof | |
TW200534553A (en) | Semiconductor laser device | |
CN117328139B (en) | A flexible transparent sodium potassium niobate-based lead-free ferroelectric single crystal film and preparation method thereof | |
WO2023279669A1 (en) | Piezoelectric material for directionally regulating growth orientation of pmn-pt film by using cofe2o4, and preparation method therefor | |
CN119212542A (en) | A biological piezoelectric film with uniform polarization, preparation method and application | |
WO2024098285A1 (en) | Exosome program-controlled tissue repair material and preparation method therefor | |
KR102669380B1 (en) | Perovskite Composite Film Comprising Natural Polymer, Method for Preparing Same and Energy Harvesting Device Using Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |