CN113516173B - 一种基于随机森林与决策树的整车静动态干涉的测评方法 - Google Patents

一种基于随机森林与决策树的整车静动态干涉的测评方法 Download PDF

Info

Publication number
CN113516173B
CN113516173B CN202110583068.7A CN202110583068A CN113516173B CN 113516173 B CN113516173 B CN 113516173B CN 202110583068 A CN202110583068 A CN 202110583068A CN 113516173 B CN113516173 B CN 113516173B
Authority
CN
China
Prior art keywords
data
random forest
decision tree
static
decision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110583068.7A
Other languages
English (en)
Other versions
CN113516173A (zh
Inventor
赵闵清
鲁宇明
王仕生
罗雨晴
黄勤
陈明亮
李成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Isuzu Motors Co Ltd
Original Assignee
Jiangxi Isuzu Motors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Isuzu Motors Co Ltd filed Critical Jiangxi Isuzu Motors Co Ltd
Priority to CN202110583068.7A priority Critical patent/CN113516173B/zh
Publication of CN113516173A publication Critical patent/CN113516173A/zh
Application granted granted Critical
Publication of CN113516173B publication Critical patent/CN113516173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明为一种基于随机森林与决策树的整车静动态干涉的测评方法,包括以下步骤:根据整车静动态干涉试验规范要求,对开发阶段的试制样车进行试验及数据记录;对记录的数据进行预处理;对预处理后的数据进行模型训练,生成决策树模型;将多个决策树组合构建形成随机森林决策模型;随机不放回抽取不同批次、不同时间的量产样车进行相同的数据测量试验,并对试验结果进行数据记录;对记录的数据进行预处理;将预处理后的数据导入随机森林决策模型;输出整车静动态干涉的试验与评价结果。

Description

一种基于随机森林与决策树的整车静动态干涉的测评方法
技术领域
本发明涉及汽车制造技术领域,具体设计一种基于随机森林与决策树的整车静动态干涉的测评方法。
背景技术
首先,整车静动态干涉评价试验,其目的是对于车辆产品开发设计阶段,确认试验样车静动态下的线束、管子,各零件的间隙是否得当及有无干涉。对于整车而言,各个零件间的间隙及布置如果存在过小的情况,将会对车辆可靠性、整车性能产生显著的影响。如果零部件之间存在干涉,将极易造成整车零部件的损坏。基于此,在车辆产品开发阶段需要在整车静动态的情况下,对零部件的干涉情况进行评价,确认有无设计缺陷。
其次,由于设计阶段与实际制造阶段,各个零部件尺寸公差及制造情况都存在误差,容易导致设计阶段的零部件干涉情况与实际生产出来的产品干涉情况存在差异。所以,进入量产阶段,质量部门也需要对整车静动态干涉进行评价和确认。
然而,无论是产品开发阶段,还是制造阶段,由于整车零部件数量众多、总布置结构复杂多变,容易引起干涉的部位数量复杂。如何评价一台设计试制整车,亦或是一批次量产车辆静动态干涉的水平是否达到相关要求和标准,成为该实验实施的难题。其次,对于给定的零部件布置设计方案,是否与工厂及制造部门生产水平相吻合,如何给出下一步生产能力及水平的预测,缺乏相关的方法。
随机森林分类算法可用以整车静动态干涉评价试验。目前,随机森林分类算法主要存在特征属性划分问题、泛化误差估计问题、存在白噪声情况下算法稳定性差等难点问题。
特征属性划分问题
在高维数据中,很大一部分特征可能与对象的类别无关,或者因其包含较少的数据信息而干扰真实的特征凸显,从而导致算法数据判别的“失真效应”,并在特征间产生依赖性。因此,特征筛选的处理方式十分重要。
特征属性筛选异质化
数据筛选问题主要存在两个方面:
1、由于大规模数据计算复杂程度高,高维空间或具有大量特征属性的情况下进行学习可能会变得很困难,这使得高维数据分析变得很困难。
2、由于在实际生产生活过程中,特殊属性对于一个问题的影响往往是不一样的,在原有随机生了又放回随机取样的规则下,往往默认各个特殊属性“同等重要”。所产生的结果往往与实际问题不符合。但过度的对重要的特征属性进行“强信息化”又会导致特征子集的多样性造成破坏!
算法误差问题
在传统随机森林算法学习过程中,存在容易忽略少类数据样本、算法产生方差较高或偏差较大等问题。这些误差会严重影响到算法的泛化能力和推广性,造成错误的判断。其改进方面基于算法模型的角度,改进方面主要是决策树分类强度和森林整体性上进行调整和改进。
整车静动态干涉评价试验
整车静动态干涉评价试验,目前来说,是在开发试制整车或量产整车库中,随机挑选一台或若干台样车,在整车静动态下,观察和测量相关零部件的干涉情况和间隙,这种做法主要存在以下缺陷和问题:
(1)试验缺乏对开发阶段总布置设计方案整体评价的方法。
(2)试验缺乏对量产阶段制造能力的整体评价方法。
(3)试验缺乏对整车零部件干涉性能的预测。
发明内容
本发明提出一种基于随机森林与决策树的整车静动态干涉的测评方法,以解决上述提到的技术问题。
本发明的上述技术问题是通过以下技术方案得以实现的:
一种基于随机森林与决策树的整车静动态干涉的测评方法,包括以下步骤:
步骤1,根据整车静动态干涉试验规范要求,对开发阶段的试制样车进行试验及数据记录;
步骤2,对步骤1中记录的数据进行预处理;
步骤3,步骤2中预处理后的数据进行模型训练,生成决策树模型;
步骤4,将多个决策树模型组合构建形成随机森林决策模型;
步骤5,随机不放回抽取不同批次、不同时间的量产样车进行相同的数据测量试验,并对试验结果进行数据记录;
步骤6,对步骤5中记录的数据进行预处理;
步骤7,将步骤6预处理后的数据导入步骤4生成的随机森林决策模型;
步骤8,输出整车静动态干涉的试验与评价结果。
进一步地,步骤3中的决策树模型用于对新的数据集进行分类,分类过程包括以下步骤:
步骤31,由根节点进行特征属性测试得到叶子节点和非叶子节点;
步骤32,继续由非叶子节点进行特征属性测试得到叶子节点;
其中,根节点为整体样本数据集,叶子节点为决策结果,非叶子节点对应不同的特征属性测试。
进一步地,步骤4中的随机森林决策模型的构建过程包括以下步骤:
步骤41,通过对总体样本数据集中用boostrapping随机抽取特征属性来建立分类决策树,没有被抽取到的属性转变为“箱外属性”,各个单科决策树的“箱外属性”用于对随机森林整体分类能力的评估;
步骤42,重复步骤41,分别建立各个相互独立的分类决策树;
步骤43,通过多个独立的分类决策树共同组合构建了整个随机森林决策模型。
进一步地,步骤8中的整车静动态干涉的试验与评价结果包括:
判断生产设计相符合性,和对生产制造一致性做出预测和判断。
进一步地,在随机森林决策模型中,单个决策树模型的训练集都是利用Bagging算法随机抽取建立;通过bootstrapping算法随机选择整车静动态干涉的特征属性。
进一步地,可根据各类车型的不同情况,选定不同类型的特征属性作为干涉随机森林决策评价模型的研究指标。
进一步地,步骤2和步骤6中的对数据预处理主要用于将数据标准化处理,剔除失真的数据,判断数据是否处于0~1之间,处于0~1之间的保留,不处于0~1之间的剔除。
本发明的有益效果为:
1、本发明所采用的新型整车静动态干涉评价方法,能够系统、全面、整体反应整车各个零部件的静动态干涉水平。
2、本发明在原始随机森林模型与决策树模型的基础上从采样方式及特征属性加权两方面进行改进,提出一种新型的随机森林和改进决策树,其目的是能够改善特征属性划分问题、降低算法模型误差、提升模型鲁棒性和容错适应性。
3、基于新型随机森林与改进决策树的模型判断下,能够对整体制造水平进行评价;并对制造性能保证及质量稳定性预期做出合理预测。
4、基于模型测算结果,能够对质量提升和开发方案调整指明方向并提供指导。
5、随机森林算法具有更高的稳定性,相对于ANN、回归树以及SVM等算法,其分类准确性较高。随机森林算法对于大样本数据集具有快速性、高效性。能够很快适应高维数据的情况,有效避免过拟合的问题。简单易懂、便于实现,同时可以进行并行化处理。
附图说明
图1为一种基于随机森林与决策树的整车静动态干涉的测评方法步骤流程图;
图2为决策树模型步骤流程图;
图3为随机森林决策模型步骤流程图;
图4为对数据进行预处理的判断过程图;
图5为决策树模型原理简图;
图6为随机森林决策模型原理简图;
图7为对试制样车进行试验的数据图;
图8为决策树“剪枝”后的判别过程图;
图9为决策树分类器性能分析结果;
图10为本发明方法与原始随机森林算法的准确度对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1-9所示,本发明提出一种基于随机森林与决策树的整车静动态干涉的测评方法,包括以下步骤:
步骤1,根据整车静动态干涉试验规范要求,对开发阶段的试制样车进行试验及数据记录;
步骤2,对步骤1中记录的数据进行预处理;
步骤3,步骤2中预处理后的数据进行模型训练,生成决策树模型;
步骤4,将多个决策树模型组合构建形成随机森林决策模型;
步骤5,随机不放回抽取不同批次、不同时间的量产样车进行相同的数据测量试验,并对试验结果进行数据记录;
步骤6,对步骤5中记录的数据进行预处理;
步骤7,将步骤6预处理后的数据导入步骤4生成的随机森林决策模型;
步骤8,输出整车静动态干涉的试验与评价结果。
具体地,步骤3中的决策树模型用于对新的数据集进行分类,分类过程包括以下步骤:
步骤31,由根节点进行特征属性测试得到叶子节点和非叶子节点;
步骤32,继续由非叶子节点进行特征属性测试得到叶子节点;
其中,根节点为整体样本数据集,叶子节点为决策结果,非叶子节点对应不同的特征属性测试。
具体地,步骤4中的随机森林决策模型的构建过程包括以下步骤:
步骤41,通过对总体样本数据集中用boostrapping随机抽取特征属性来建立分类决策树,没有被抽取到的属性转变为“箱外属性”,各个单科决策树的“箱外属性”用于对随机森林整体分类能力的评估;
步骤42,重复步骤41,分别建立各个相互独立的分类决策树;
步骤43,通过多个独立的分类决策树共同组合构建了整个随机森林决策模型。
具体地,步骤8中的整车静动态干涉的试验与评价结果包括:
判断生产设计相符合性,和对生产制造一致性做出预测和判断。
具体地,在随机森林决策模型中,单个决策树模型的训练集都是利用Bagging算法随机抽取建立;通过bootstrapping算法随机选择整车静动态干涉的特征属性。
具体地,可根据各类车型的不同情况,选定不同类型的特征属性作为干涉随机森林决策评价模型的研究指标。
具体地,步骤2和步骤6中的对数据预处理主要用于将数据标准化处理,剔除失真的数据,判断数据是否处于0~1之间,处于0~1之间的保留,不处于0~1之间的剔除。
更加具体地说,如图7所示,根据试验规范进行试验后收集到的部分试验数据,其中第一列为样本编号,第二列为试验结果的判别(类别1为合格;类别2为不合格),后续的列为各个属性试验结果(加权后),数值越大表征该特征间隙特征差。根据各类车型的不同情况,选定不同类型的特种属性作为干涉评价模型的研究指标。本实施例选取32个对整车间隙影响较为重要属性作为研究指标。再如图8所示,将量产车型的试验结果导入改进后的决策树算法当中,生成决策树;决策树最终导出的结果如图9所示;但是该决策树过于复杂,需要简化决策流程,对决策树进行“剪枝”,“剪枝”后的决策树判别规则如图10所示,通过图10可知,针对提取的32个试验属性,该决策树判别方式为:
1、首先看8号属性,是否大于0.052175这个数值权值,若大于,则不合格。
2、看22号属性,是否大于23.74这个数值权值,若大于,则看6号属性,若小于,则看13号属性。
3、看13号属性,是否大于4.206这个数值权值,若大于,则不合格。
4、看6号属性,是否大于0.12835这个数值权值,若小于,则不合格;若大于则看6号属性。
5、看6号属性,是否大于0.14965这个数值权值,若大于,则不合格。
基于上述建立的单个决策树模型。利用Bagging算法随机抽取建立数据集;根据前文bootstrapping算法随机选择的特征属性,建立随机森林模型。在数据集中再随机抽取一定比例的数据,按照Gini指数进行决策树的生长(相关公式如下:
Figure RE-442333DEST_PATH_IMAGE002
Figure RE-156211DEST_PATH_IMAGE004
,其中H(x)表示信息熵,通常作为决策树中衡量样本数据纯度的一种常见的指标;p(xi)和Pk表示每种类别出现的概率。通常Gini值也小,说明划分属性后数据集的纯度越高)。最终产生出“叶子节点”决策树,通过算法程序后,产生的最终测试结果如下:
样本总数:480,合格:447,不合格:33,不合格产品率:6.8%;
训练集样本总数:400,合格:382,不合格:18;
测试集样本总数:80,合格:65,不合格:15;
合格样本认定:42,误判:12,准确率p1=77.7778%;
不合格样本认定:11,误判:4,准确率p2=73.3333%;
预测合格率:79.24%,不合格率:20.7%。
基于上述模型判断,评价该批次样车对于整车静动态干涉试验这项性能不合格产品率约为6.8%;在当前生产制造条件下,预测未来合格产品率仅为79.24%,远低于行业平均水平,预测准确率对于合格率为77.7778%,对于不合格率预测的准确率为73.3333%。
基于上述结果判断,该批次样车整车间隙试验评价结果不合格,需要对相关问题特征属性设计方案进行调整,或对生产制造过程进行管控和能力提升。
需要说明的是,在本实施例中没有对数据进行如图4所示预处理过程,且特征属性测试中选取了32个对整车间隙影响较为重要属性作为研究指标,这并不代表本发明中的方法受此限制。本发明中在需要时,比如在数据相差过大时,会影响到模式运行时需要对数据进行归一化、标准化,此时需要对失真的数据进行剔除,即:保留处于0~1之间的数据,剔除不在0~1之间的数据,而步骤2和步骤6就是实现该作用的过程。在本发明中特征属性测试中的特征属性在做特定测评时可以自行设定;在其他情况也可进行随机选取。
需要说明的是,如图5所示,决策树模型中整体样本数据集为根节点,经过特征属性判断测试后,生成非叶子节点和叶子节点;叶子节点为之前一步特征属性的判断结果(yes为合格,no为不合格),非叶子节点为剩余特征属性,在经过接下一步的特征属性判断测试继续生成判断结果的叶子节点和剩余特征属性的非叶子节点,经过多步特征属性判断测试而生成整个完整的决策树模型。
如图6所示,随机森林决策模型是在生成多个决策树模型的基础上,采用“双重随机性”,即:“属性划分随机性”和“数据集随机性”,全部训练样本D经过随机性的Bagging算法得到自动样本集D1、自动样本集Di、自动样本集Dn等等,根据bootstrapping算法随机划分属性形成决策树分类器f1、决策树分类器fi、决策树分类器fn等等,在随机森林决策模型中产生多棵决策树模型各自对样本进行分类。最后以“选举”的方式决定最终的分类结果,即:每个决策树模型分别得到结果,各种结果中数量最多的将被决定为最终的结果。
需要说明的是,传统随机森林投票常用的投票规则为众数投票法。通过建立多棵决策树来对某一样本输出自己的分类结果,然后统计每一棵分类决策树的分类结果。在确定最终结果时需要考虑的是如何判定最终的分类,通常是以得票数最高的作为最终结果,或者半数以上同意,半数以上不同意便不通过即为最终结果。这种投票&采样方式,忽略了每一个决策树的泛化能力,在随机森林建立过程中随机地对样本和特征指标属性进行采样,并为此优化决策树分类算法的投票机制,需要改变决策树的权重。加权方法为,在gini指数函数中映入属性加权变量,不妨设总样本数为Mj,然后设错误分类的样本数个数为Ej,那么加权后的加权值可视为:
Figure RE-467107DEST_PATH_IMAGE006
;其中,∂为加权调节系数,可以根据不同属性划分的具体情况进行设定。
由于在实际生产生活过程中,特殊属性对于一个问题的影响往往是不一样的,在原有随机生了又放回随机取样的规则下,往往默认各个特殊属性“同等重要”。所产生的结果往往与实际问题不符合。但过度的对重要的特征属性进行“强信息化”又会导致特征子集的多样性造成破坏!
所以本算法首次引入“两次随机分类”思想对属性进行加权,第一次随机分类法,目的在于,确定原始数据各个属性的重要程度,并对该特征进行加权,加权方法为:
若随机树节点利用特征fi 划分数据,样本特征划分后左右两侧的特征数分别为ki、kj,那么该特征的加权系数则定义为:
Wi=(ki+kj)/ki
第二次随机分类则采用新的加权数据集,可表示为date.new:
date.new=date*Wi
第一次随机分类确认各个特征属性的加权值后,第二次随机分类则进行结果输出。
改进算法验证效果如图10所示:
为了验证算法效果,本文选取三种数据集:WDBC/WOBC/SEER对算法进行验证,根据精度进行对比,在加权子集及决策树的加持下,相较于原始随机森林算法,准确度高出约1.2%~5.4%,虽然加权方式的可靠性提升不会太明显,算法效率存在降低的风险,但保证较高的分类准确率前提下,能有效降低整体泛化误差,使得整体效果更为明显,进一步说明结合加权特征选择的改进随机森林的集成算法能更好的拟合数据,有效解决分类模型的数据处理与泛化误差问题。
综上所述,本发明制定了一套完整的新型整车静动态干涉试验规范及流程,针对原始决策树与随机森林算法的相关缺陷及问题,进行改进,基于算法运行结果对开发总布置设计方法做出评价;对整体制造水平进行评价;并对制造性能保证及质量稳定性预期做出合理预测。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (6)

1.一种基于随机森林与决策树的整车静动态干涉的测评方法,其特征在于,包括以下步骤:
步骤1,根据整车静动态干涉试验规范要求,对开发阶段的试制样车进行试验及数据记录;
步骤2,对步骤1中记录的数据进行预处理;
步骤3,步骤2中预处理后的数据进行模型训练,生成决策树模型;
步骤4,将多个决策树模型组合构建形成随机森林决策模型;
步骤5,随机不放回抽取不同批次、不同时间的量产样车进行相同的数据测量试验,并对试验结果进行数据记录;
步骤6,对步骤5中记录的数据进行预处理;
步骤7,将步骤6预处理后的数据导入步骤4生成的随机森林决策模型;
步骤8,输出整车静动态干涉的试验与评价结果;
其中,步骤5中对随机抽取的特征指标属性的数据进行加权处理,加权方法包括以下步骤:
在gini指数函数中映入属性加权变量;
第一次随机分类,确定原始数据各个属性的重要程度,并对该特征进行加权,若随机树节点利用特征fi 划分数据,样本特征划分后左右两侧的特征数分别为ki、kj,那么该特征的加权系数则定义为:
Wi=(ki+kj)/ki;第二次随机分类则采用新的加权数据集,可表示为date.new:
date.new=date*Wi;
第一次随机分类确认各个特征属性的加权值后,第二次随机分类则进行结果输出;
加权方法为,在gini指数函数中映入属性加权变量,不妨设总样本数为Mj,然后设错误分类的样本数个数为Ej,那么加权后的加权值可视为:
Figure 449001DEST_PATH_IMAGE002
;其中,∂为加权调节系数,Pk表示每种类别出现的概率,可以根据不同属性划分的具体情况进行设定;
步骤2和步骤6中的对数据预处理主要用于将数据标准化处理,剔除失真的数据,判断数据是否处于0~1之间,处于0~1之间的保留,不处于0~1之间的剔除。
2.如权利要求1所述一种基于随机森林与决策树的整车静动态干涉的测评方法,其特征在于:
步骤3中的决策树模型用于对新的数据集进行分类,分类过程包括以下步骤:
步骤31,由根节点进行特征属性测试得到叶子节点和非叶子节点;
步骤32,继续由非叶子节点进行特征属性测试得到叶子节点;
其中,所述根节点为整体样本数据集,所述叶子节点为决策结果,所述非叶子节点对应不同的特征属性测试。
3.如权利要求1所述一种基于随机森林与决策树的整车静动态干涉的测评方法,其特征在于:
步骤4中的随机森林决策模型的构建过程包括以下步骤:
步骤41,通过对总体样本数据集中用boostrapping随机抽取特征属性来建立分类决策树,没有被抽取到的属性转变为“箱外属性”,各个单科决策树的“箱外属性”用于对随机森林整体分类能力的评估;
步骤42,重复步骤41,分别建立各个相互独立的分类决策树;
步骤43,通过多个独立的分类决策树共同组合构建了整个随机森林决策模型。
4.如权利要求1所述一种基于随机森林与决策树的整车静动态干涉的测评方法,其特征在于:
步骤8中的整车静动态干涉的试验与评价结果包括:
判断生产设计相符合性,和对生产制造一致性做出预测和判断。
5.如权利要求1所述一种基于随机森林与决策树的整车静动态干涉的测评方法,其特征在于:
在随机森林决策模型中,单个决策树模型的训练集都是利用Bagging算法随机抽取建立;通过bootstrapping算法随机选择整车静动态干涉的特征属性。
6.如权利要求1所述一种基于随机森林与决策树的整车静动态干涉的测评方法,其特征在于:
可根据各类车型的不同情况,选定不同类型的特征属性作为干涉随机森林决策评价模型的研究指标。
CN202110583068.7A 2021-05-27 2021-05-27 一种基于随机森林与决策树的整车静动态干涉的测评方法 Active CN113516173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110583068.7A CN113516173B (zh) 2021-05-27 2021-05-27 一种基于随机森林与决策树的整车静动态干涉的测评方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110583068.7A CN113516173B (zh) 2021-05-27 2021-05-27 一种基于随机森林与决策树的整车静动态干涉的测评方法

Publications (2)

Publication Number Publication Date
CN113516173A CN113516173A (zh) 2021-10-19
CN113516173B true CN113516173B (zh) 2022-09-09

Family

ID=78065143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110583068.7A Active CN113516173B (zh) 2021-05-27 2021-05-27 一种基于随机森林与决策树的整车静动态干涉的测评方法

Country Status (1)

Country Link
CN (1) CN113516173B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114169426A (zh) * 2021-12-02 2022-03-11 安徽庐峰交通科技有限公司 一种基于北斗位置数据的公路交通安全隐患排查方法
CN114580086B (zh) * 2022-05-05 2022-08-09 中汽研汽车检验中心(天津)有限公司 一种基于监督式机器学习的车辆部件建模方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007035B2 (en) * 2001-06-08 2006-02-28 The Regents Of The University Of California Parallel object-oriented decision tree system
CN106092597B (zh) * 2016-05-27 2019-04-05 大连楼兰科技股份有限公司 基于分担式的数学模型测试方法及系统
US11315045B2 (en) * 2016-12-29 2022-04-26 Intel Corporation Entropy-based weighting in random forest models
CN106897109B (zh) * 2017-02-13 2020-04-14 云南大学 基于随机森林回归的虚拟机性能预测方法
CN107766883A (zh) * 2017-10-13 2018-03-06 华中师范大学 一种基于加权决策树的优化随机森林分类方法及系统
CN109635830B (zh) * 2018-10-24 2020-11-06 吉林大学 用于估算汽车质量的有效数据的筛选方法
CN109726826B (zh) * 2018-12-19 2021-08-13 东软集团股份有限公司 随机森林的训练方法、装置、存储介质和电子设备
CN109657721A (zh) * 2018-12-20 2019-04-19 长沙理工大学 一种结合模糊集和随机森林树的多类别决策方法
CN110309948A (zh) * 2019-05-09 2019-10-08 上汽安吉物流股份有限公司 整车物流订单预测方法及装置、物流系统以及计算机可读介质
CN110717524B (zh) * 2019-09-20 2021-04-06 浙江工业大学 一种老年人热舒适预测方法
CN111859733B (zh) * 2020-06-19 2023-06-27 江西五十铃汽车有限公司 一种基于蚁群算法的汽车排气系统可靠性优化方法
CN112699793A (zh) * 2020-12-29 2021-04-23 长安大学 一种基于随机森林的疲劳驾驶检测优化识别方法
CN112785016B (zh) * 2021-02-20 2022-06-07 南京领行科技股份有限公司 基于机器学习的新能源汽车保养维护与故障监测诊断方法

Also Published As

Publication number Publication date
CN113516173A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN110213222B (zh) 基于机器学习的网络入侵检测方法
CN113516173B (zh) 一种基于随机森林与决策树的整车静动态干涉的测评方法
CN115577275A (zh) 一种基于lof和孤立森林的时序数据异常监测系统及方法
CN109934269B (zh) 一种电磁信号的开集识别方法和装置
CN113255573B (zh) 基于混合簇中心标签学习的行人重识别方法和存储介质
CN114722746B (zh) 一种芯片辅助设计方法、装置、设备及可读介质
US20230194624A1 (en) Battery management system for classifying a battery module
CN114048468A (zh) 入侵检测的方法、入侵检测模型训练的方法、装置及介质
CN111046930A (zh) 一种基于决策树算法的供电服务满意度影响因素识别方法
CN114114039A (zh) 一种电池系统的单体电芯一致性的评估方法和装置
CN112529109A (zh) 一种基于无监督多模型的异常检测方法及系统
CN113052577A (zh) 一种区块链数字货币虚拟地址的类别推测方法及系统
CN109670549A (zh) 火电机组的数据筛选方法、装置以及计算机设备
CN111860698A (zh) 确定学习模型的稳定性的方法和装置
CN115269247A (zh) 基于深度森林的闪存坏块预测方法、系统、介质及设备
CN111428790A (zh) 基于粒子群优化的双准确度加权随机森林算法
CN110717602A (zh) 一种基于噪音数据的机器学习模型鲁棒性评估方法
CN116910526A (zh) 模型训练方法、装置、通信设备及可读存储介质
CN114186644A (zh) 一种基于优化随机森林的缺陷报告严重程度预测方法
CN113810333B (zh) 基于半监督谱聚类和集成svm的流量检测方法及系统
CN115904920A (zh) 一种测试用例推荐方法、装置、终端及存储介质
CN113191439A (zh) 偏差度惩罚的增强型堆叠自动编码器处理方法及装置
AlSaif Large scale data mining for banking credit risk prediction
CN114826764B (zh) 一种基于集成学习的边缘计算网络攻击识别方法及系统
Ebrahimzadeh et al. A Hybrid Recurrent Neural Network Approach for Detecting Abnormal User Behavior in Social Networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant