CN113514628A - 一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法 - Google Patents

一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法 Download PDF

Info

Publication number
CN113514628A
CN113514628A CN202110432345.4A CN202110432345A CN113514628A CN 113514628 A CN113514628 A CN 113514628A CN 202110432345 A CN202110432345 A CN 202110432345A CN 113514628 A CN113514628 A CN 113514628A
Authority
CN
China
Prior art keywords
sample
pressurizing
cavity
sensor
permeable plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110432345.4A
Other languages
English (en)
Inventor
柏巍
孔令伟
罗晓倩
简涛
刘观仕
张文博
王凤华
岳秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Rock and Soil Mechanics of CAS
Original Assignee
Wuhan Institute of Rock and Soil Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Rock and Soil Mechanics of CAS filed Critical Wuhan Institute of Rock and Soil Mechanics of CAS
Priority to CN202110432345.4A priority Critical patent/CN113514628A/zh
Publication of CN113514628A publication Critical patent/CN113514628A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Abstract

一种细粒土固结胀缩及干湿循环一体试验装置,包括用于模拟温湿度风速状况的外圈容器;用于施加侧向压力多腔覆膜结构的环状内圈容器,内圈容器内部形成的开敞区域设置有下透水板;下透水板上方设置有试样,试样顶面从下到上依次设置有上透水板、加压基座及顶盖,顶盖的下端面设置有多个无荷状态位移传感器,加压基座上端面与外部加压机构相连,加压基座上设置有压力传感器和有荷状态位移传感计,外圈容器内壁设置有温湿度风速传感器,试样周围设置有含水率传感器;各类传感器、位移计、摄像头与多通道数据采集仪连接;本发明还公开对应试验方法;更加全面的评价细粒土在不同干湿循环条件下,土体固结性胀缩性的变化;提高试验效率、灵活度、适用性及精确度。

Description

一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法
技术领域
本发明涉及岩土力学与工程领域,具体涉及一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法,适用但不限于研究各种类型土的固结、胀缩及干湿循环特性。
背景技术
细粒土由于含水率增加面发生体积增大的性能,称膨胀性;由于土中失去水分而体积缩小的性能,称收缩性。细粒土中含水率的增加与减小主要是由外部因素引起的,如降水、地表水与地下水的变化、气温及湿度的变化等。细粒土的胀缩性对工程建筑物的影响很大,土体的膨胀和收缩不仅降低了土体的强度,面且引起土体变形,导致建筑物的毁坏。由细粒土所组成的斜坡,常因土体的膨胀发生滑坡,给工程带来危害。因此,研究细粒土的胀缩性在工程实践中有重要意义。在工程施工中,建造在含水量保持不变的膨胀土上的构造物不会遭受由胀缩而引起的破坏。当土的含水量发生变化,立即就会产生垂直和水平两个方向的体积膨胀。含水量的轻微变化,仅1%~2%的量值,就足以引起有害的膨胀。深入了解细粒土的胀缩特性是解决细粒土胀缩导致的工程问题的关键。细粒土的胀缩性受其固结程度和干湿循环变化情况的影响很大,研究不同干湿循环条件下细粒土的固结和胀缩是了解细粒土胀缩性的关键。
目前相关的试验装置,都存在以下缺点:
(1)本发明的细粒土固结胀缩及干湿循环一体试验装置,前细粒土的固结试验、膨胀试验、收缩试验及干湿循环试验均是在不同的试验设备中单独完成,试验与试验之间并不连续,且需要反复的取样装样,多次扰动土体,试验结果误差较大;
(2)目前细粒土的膨胀试验只测量膨胀过程中试样垂直方向的变化,并不测量水平方向的变化;
(3)目前细粒土的收缩试验,大多只测量土体垂直方向上的收缩,不能测量土体收缩过程中的实时体积变化;
(4)目前细粒土的胀缩试验装置大多不能调节侧向压力的大小,不能模拟不同工程条件下土体的不同应力状态。因此,有必要设计一种高效的细粒土固结胀缩及干湿循环一体试验装置,系统的完成细粒土的固结胀缩及干湿循环试验,测得不同干湿循环条件下土体的固结性及胀缩性,从而为细粒土的胀缩性研究提供进一步的支持。
发明内容
为解决现有技术的不足或缺点,本发明提供一种高效的细粒土固结胀缩及干湿循环一体试验装置。其将固结试验、膨胀试验、收缩试验及干湿循环试验在同一装置中完成,较全面的反应不同干湿循环条件下土体的固结性和胀缩性变化,避免重复试验,节约试验时间,减少试验过程中对土体的扰动,且能控制土体的侧向压力,实时测量土体垂直和水平方向的体积变化。
为了实现上述目的,本发明涉及:一种细粒土固结胀缩及干湿循环一体试验装置,包括用于模拟温湿度风速状况的外圈容器;外圈容器为空腔结构且设有带一号阀门的进风管和带二号阀门的出风管,进风管与温湿度控制器相连,所述外圈容器内部底面上设有用于施加侧向压力的环状内圈容器,内圈容器内部形成的开敞区域设置有下透水板;下透水板上方设置有试样,试样顶面从下到上依次设置有上透水板、压盖板、加压基座及顶盖,顶盖的下端面设置有多个无荷状态位移传感器(包括一号位移传感器、二号位移传感器、三号位移传感器、四号位移传感器),加压基座上端面与外部加压机构相连,加压基座上设置有压力传感器和有荷状态位移传感计,外圈容器内壁设置有温湿度风速传感器,试样周围设置有含水率传感器,传感器、位移计、摄像头与多通道数据采集仪连接,多通道数据采集仪信号通过数据线连接计算机处理系统;
内圈容器包括刚性的多腔结构,多腔结构包括从上到下依次布置的上腔,中腔和下腔,所述上腔,中腔和下腔靠近试样的一端均为开敞结构并各自包覆独立并密封连接的橡皮膜(包括上腔橡皮膜、中腔橡皮膜、下腔橡皮膜)),多腔结构与试样之间还设置有与试样直接接触的外层橡皮膜;中腔与一号加压管道连接,上腔、下腔与二号加压管道连接,多腔结构内部可充水,为试样施加侧向压力;外层橡皮膜与试样直接接触,橡皮膜随试样一同胀缩;
进一步的,所述温湿度风速控制器包括用于调节空气温度的加热机、用于调节空气湿度的加湿器和用于调节空气流速的风机。
进一步的,所述上腔和下腔为保护腔,中腔为测量腔,中腔高度不大于试样收缩极限的高度。
进一步的,所述上透水板和下透水板采用氧化铝或不受腐蚀的金属材料制成,其渗透系数不应大于试样的渗透系数,上透水板直径应小于试样直径0.2~0.5mm。
进一步的,所述含水率传感器包括三个探头,三个探头等间距分布于试样周围,位于试样与橡皮膜之间,在内圈容器施加的围压作用下,一侧与试样紧密接触,测量试样的容积含水率,测量范围0-100%。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)使细粒土的固结试验、膨胀试验、收缩试验及干湿循环试验可在同一的试验设备中完成,试验与试验之间连续性更好;不需要反复的取样装样,试验过程中基本不扰动土体,试验结果更加精确;
(2)可以更加全面的评价细粒土在不同干湿循环条件下,土体固结性胀缩性的变化,具有广泛的应用前景;
(3)可根据试验需要设置不同干湿循环条件、固结压力及侧向压力,操作简便易行,提高试验效率、灵活度、适用性及精确度。
附图说明
图1为本发明较佳实施例的结构示意图;
图2为本发明较佳实施例多腔结构处的局部结构示意图(试样5仅显示部分);
图3为本发明较佳实施例的橡皮膜处的局部结构示意图;
图4为本发明较佳实施例试样处的局部俯视图;
图中:1-顶盖;2-加压基座;3-加压盖板;4-上透水板;5-试样;6-下透水板;7-外圈容器;8-内圈容器;9-一号加压管道;10-抽气泵;11a-一号阀门、11b-二号阀门、11c-三号阀门、11d-四号阀门;12-加热机;13-加湿器;14-风机;15-温湿度风速控制器;16-多通道数据采集仪;17-计算机处理系统;18-压力传感器;19-有荷状态位移传感计;20-无荷状态位移传感器;20a-一号位移传感器、20b-二号位移传感器、20c-三号位移传感器、20d-四号位移传感器;21-温湿度风速传感器;22a-一号含水率传感器探头、22b-二号含水率传感器探头、22c-三号含水率传感器探头;23a-一号流量传感器;23b-二号流量传感器;24-摄像头;25-多腔结构;26a-上腔橡皮膜、26b-中腔橡皮膜、26c-下腔橡皮膜;26d-外层橡皮膜;27-上腔;28-中腔;29-下腔;30-二号加压管道。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
如图1~2所示,一种细粒土固结胀缩及干湿循环一体试验装置,包括用于模拟温湿度风速状况的外圈容器7;外圈容器7为空腔结构且设有带一号阀门11a的进风管71和带二号阀门11b的出风管72,进风管71与温湿度控制器15相连,所述外圈容器7内部底面上设有用于施加侧向压力的环状内圈容器8,内圈容器8内部形成的开敞区域设置有下透水板6;下透水板6上方设置有试样5,试样5顶面从下到上依次设置有上透水板4、加压基座2及顶盖1,顶盖1的下端面设置有多个无荷状态位移传感器20,加压基座2上端面与外部加压机构相连,加压基座2上设置有压力传感器18和有荷状态位移传感计19,外圈容器7内壁设置有温湿度风速传感器21,试样5周围设置有含水率传感器22,各类传感器、位移计、摄像头24与多通道数据采集仪16连接,多通道数据采集仪16信号通过数据线连接计算机处理系统17。
优选的,上透水板4和下透水板6,采用氧化铝或不受腐蚀的金属材料制成,其渗透系数不应大于试样的渗透系数,上透水板直径应小于试样直径0.2~0.5mm;
优选的,有荷状态位移传感计19、一号位移传感器20a、二号位移传感器20b、三号位移传感器20c、四号位移传感器20d,准确度为全量程的0.2%。
请参考图2、图3,内圈容器8包括刚性的多腔结构25,多腔结构包括从上到下依次布置的上腔27,中腔28和下腔29,所述上腔27,中腔28和下腔29靠近试样5的一端均为开敞结构并各自包覆独立并密封连接的橡皮膜,多腔结构与试样5之间还设置有与试样5直接接触的外层橡皮膜26d外层橡皮膜26d随试样5一同胀缩);中腔28与一号加压管道9内置或外置加压泵)连接,上腔27、下腔29与二号加压管道30连接,多腔结构内部可充水,为试样施加侧向压力。各个腔与一号加压管道9(内置或外置加压泵)连接,内部可充水,为试样施加侧向压力。上腔27和下腔29为保护腔,中腔28为测量腔,中腔高度不大于试样收缩极限的高度。
优选的,温湿度风速控制器15包括用于调节空气温度加热机12、用于调节空气湿度加湿器13和用于调节空气流速的风机14。
请参考图4,含水率传感器22,包括三个探头一号含水率传感器探头22a,二号含水率传感器探头22b,三号含水率传感器探头22c,等间距分布于试样5周围,位于试样5与橡皮膜26之间,在内圈容器8施加的围压作用下,一侧与试样5紧密接触,测量试样的容积含水率,测量范围0-100%(如天诺环能TDR-6A土壤温湿度传感器)。
优选的,多通道数据采集仪12,采样多路并行,可同时对应多个压力传感器18,有荷状态位移传感计19、无荷状态位移传感器20、含水率传感器22、温湿度风速传感器21、一号流量传感器23a、二号流量传感器23b及摄像头24进行数据采集和通讯传输(市售多通道数据采集器,不少于32通道,如AT4516多通道数据采集仪)。
将试样5放于装置内圈容器8里部圆形位置处,试样顶底部放置透水石和滤纸,放置顺序为下透水板6,滤纸,试样5,滤纸,上透水板4。上透水板4上依次放置加压盖板3和加压基座2,盖上顶盖1,顶盖1与外部加压装置相连接。外圈容器7一侧管道与温湿度控制器15相连,作为进气口,另一侧管道与抽气泵10相连,作为出气口。内圈容器8两侧管道连接一号加压管道9。摄像头24安装于顶盖1上。含水率传感器22放置于橡皮膜26与试样5,与试样5紧密接触。
实施例2:
待测试样呈黄褐色,硬塑状态,含黑色铁锰结核,为原状土切削而成的直径61.8mm,高度20mm的环刀样,含水率为17.0%,干密度为1.77g/cm3
步骤一:将装置放置于操作平台上,连接各传感器与多通道数据采集仪16。多通道数据采集仪16与计算机处理系统17连接。
步骤二:在容器内放置下透水板6,将试样5放于下透水板6上,试样5和下透水板6之间放置薄型滤纸,试样5上依次放上薄型滤纸、上透水板4;
步骤三:打开三号阀门11c、四号阀门11d,向内圈容器中注满水,根据试验条件,保持内圈容器内水体体积不变。
步骤四:在上透水板4上安放加压盖板3和加压基座2,使加压盖板3与加压基座2中心对准。
步骤五:将装置与加压装置连接,确定需要施加的各级固结压力,开始固结。通过有荷状态位移传感计19记录试样的高度变化,压力传感器18记录施加的压力,施加每级压力后,每小时变形达0.01mm时,测定试样高度变化作为稳定标准,按照此步骤逐级加压至试验结束。
进行以上步骤可完成固结试验。
实施例3:
步骤一:同实施例2步骤一。
步骤二:同实施例2步骤二。
步骤三:同实施例2步骤三。
步骤四:盖上顶盖1,使一号位移传感器20a、二号位移传感器20b、三号位移传感器20c与上透水板4接触。
步骤五:打开一号阀门11a,关闭二号阀门11b,自下而上向容器内注入纯水,并保持水面高出试样5mm,2小时内位移计读数差值不超过0.01mm,膨胀稳定。
进行以上步骤可完成无荷膨胀试验。
实施例4:
步骤一:同实施例2中步骤一。
步骤二:同实施例2中步骤二。
步骤三:打开阀门11c、11d,向内圈容器中注满水,根据试验条件,设置一定水压,给试样施加侧向压力,上下两个保护腔的水压略大于中腔的水压。
步骤四:同实施例3中步骤四。
步骤五:打开一号阀门11a和二号阀门11b。根据试验条件,设置空气的温湿度和风速,与温湿度控制器15相连的一侧管道为进气口,另一侧与抽气泵10相连的管道为出气口,保持装置内部空气流通。
试验过程中,温湿度风速传感器21记录装置内实际通过的空气的温湿度和风速,含水率传感器22记录试样含水率变化,无荷状态位移传感器20记录试样垂直方向高度变化,摄像头24记录试样表面裂隙发展情况,设置于一号加压管道9内的一号流量传感器23a和设置于二号加压管道30内的二号流量传感器23b记录试样径向体积变化,计算得出试样任意时刻的半径值。
试验中涉及的计算公式:
试验过程中,任意时刻试样的半径值rt
Figure BDA0003031864440000091
rt——t时刻,试样的半径,cm;
r0——试样的初始半径,cm;
ΔV——t时间内,中腔测量腔的体积变化量,cm3
hm——中腔测量腔的高度,cm。
实施例5:
进行实施例2后,移除加压基座2和加压盖板3,进行实施例3中步骤四、步骤五,然后打开一号阀门11a和二号阀门11b,排出装置内的水分,再进行实施例4中的步骤五。
实施以上步骤可完成试样的固结胀缩一体试验。
实施例6:
进行实施例4的同时,改变进气口空气的温湿度风速,可进行不同条件和次数下的试样干湿循环试验。
膨胀试验过程中可实时测量膨胀过程中土体垂直方向和水平方向的变化;收缩试验过程中可实时测量土体收缩过程中垂直方向和围度的变化,得到土体在收缩过程中的体积变化;细粒土的胀缩试验过程中可调节侧向压力的大小,模拟不同深度处的地应力水平。
采用上述的一种高效的细粒土固结胀缩及干湿循环一体试验装置,其能较全面的反应干湿循环过程中,土体的结构变化,避免重复试验,减少试验时间。该装置设计结构简单,操作简便,稳定性好,各组构件经久耐用,不易耗损,实用性强,精度高,可根据试验需要设置一个或多个不同测试路径,操作简便易行,显著提高试验效率、灵活度、适用性及精确度,可以更加全面的评价不同干湿循环条件下,土体含水率变化,胀缩变化,固结特性和表面裂隙发展,具有广泛的应用前景。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种细粒土固结胀缩及干湿循环一体试验装置,其特征在于,包括用于模拟温湿度风速状况的外圈容器(7);外圈容器(7)为空腔结构且设有带一号阀门(11a)的进风管(71)和带二号阀门(11b)的出风管(72),进风管(71)与温湿度控制器(15)相连,所述外圈容器(7)内部底面上设有用于施加侧向压力的环状内圈容器(8),内圈容器(8)内部形成的开敞区域设置有下透水板(6);下透水板(6)上方设置有试样(5),试样(5)顶面从下到上依次设置有上透水板(4)、加压基座(2)及顶盖(1),顶盖(1)的下端面设置有多个无荷状态位移传感器(20),加压基座(2)上端面与外部加压机构相连,加压基座(2)上设置有压力传感器(18)和有荷状态位移传感计(19),外圈容器(7)内壁设置有温湿度风速传感器(21),试样(5)周围设置有含水率传感器(22),各类传感器、位移计、摄像头(24)与多通道数据采集仪(16)连接,多通道数据采集仪(16)信号通过数据线连接计算机处理系统(17);
内圈容器(8)包括刚性的多腔结构(25),多腔结构包括从上到下依次布置的上腔(27),中腔(28)和下腔(29),所述上腔(27),中腔(28)和下腔(29)靠近试样(5)的一端均为开敞结构并各自包覆独立并密封连接的橡皮膜,多腔结构与试样(5)之间还设置有与试样(5)直接接触的外层橡皮膜(26d);中腔(28)与一号加压管道(9)连接,上腔(27)、下腔(29)与二号加压管道(30)连接,多腔结构内部可充水,为试样施加侧向压力。
2.根据权利要求1所述的细粒土固结胀缩及干湿循环一体试验装置,其特征在于,所述温湿度风速控制器(15)包括用于调节空气温度的加热机(12)、用于调节空气湿度的加湿器(13)和用于调节空气流速的风机(14)。
3.根据权利要求1所述的细粒土固结胀缩及干湿循环一体试验装置,其特征在于,所述上腔(27)和下腔(29)为保护腔,中腔(28)为测量腔,中腔高度不大于试样收缩极限的高度。
4.根据权利要求1所述的细粒土固结胀缩及干湿循环一体试验装置,其特征在于,所述上透水板(4)和下透水板(6)采用氧化铝或不受腐蚀的金属材料制成,其渗透系数不应大于式样的渗透系数,上透水板直径应小于试样直径0.2~0.5mm。
5.根据权利要求2所述的细粒土固结胀缩及干湿循环一体试验装置,其特征在于,所述含水率传感器(22)包括三个探头,三个探头等间距分布于试样(5)周围,位于试样(5)与橡皮膜(26)之间,在内圈容器(8)施加的围压作用下,一侧与试样(5)紧密接触,测量试样的容积含水率,测量范围0-100%。
6.根据权利要求1所述的细粒土固结胀缩及干湿循环一体试验装置的试验方法,其特征在于,包括固结试验方法、无荷膨胀试验方法、试样干湿循环试验方法及固结胀缩一体试验方法。
7.根据权利要求4所述的细粒土固结胀缩及干湿循环一体试验装置的试验方法,其特征在于,所述固结试验方法包括如下步骤:
步骤一:将装置放置于操作平台上,连接各传感器与多通道数据采集仪(16);多通道数据采集仪(16)与计算机处理系统(17)连接;
步骤二:在容器内放置下透水板(6),将试样(5)放于下透水板(6)上,试样(5)和下透水板(6)之间放置薄型滤纸,试样(5)上依次放上薄型滤纸、上透水板(4);
步骤三:打开一号加压管道(9)上的三号阀门(11c)、二号加压管道(30)上的四号阀门(11d),向内圈容器中注满水,根据试验条件,保持内圈容器(8)内水体体积不变;
步骤四:在上透水板(4)上安放加压盖板(3)和加压基座(2),使加压盖板(3)与加压基座(2)中心对准;
步骤五:将装置与加压装置连接,确定需要施加的各级固结压力,开始固结;通过有荷状态位移传感计(19)记录试样的高度变化,压力传感器(18)记录施加的压力,施加每级压力后,每小时变形达0.01mm时,测定试样高度变化作为稳定标准,按照此步骤逐级加压至试验结束。
8.根据权利要求4所述的细粒土固结胀缩及干湿循环一体试验装置的试验方法,其特征在于,所述无荷膨胀试验方法包括如下步骤:
步骤一:将装置放置于操作平台上,连接各传感器与多通道数据采集仪(16);多通道数据采集仪(16)与计算机处理系统(17)连接;
步骤二:在容器内放置下透水板(6),将试样(5)放于下透水板(6)上,试样(5)和下透水板(6)之间放置薄型滤纸,试样(5)上依次放上薄型滤纸、上透水板(4);
步骤三:打开一号加压管道(9)上的三号阀门(11c)、二号加压管道(30)上的四号阀门(11d),向内圈容器中注满水,根据试验条件,保持内圈容器内水体体积不变;
步骤四:盖上顶盖(1),使无荷状态位移传感器(20)与上透水板(4)接触;
步骤五:打开一号阀门(11a),关闭二号阀门(11b),自下而上向容器内注入纯水,并保持水面高出试样5mm,2小时内无荷状态位移传感器(20)读数差值不超过0.01mm,膨胀稳定。
9.根据权利要求4所述的细粒土固结胀缩及干湿循环一体试验装置的试验方法,其特征在于,所述试样干湿循环试验方法包括如下步骤:
步骤一:将装置放置于操作平台上,连接各传感器与多通道数据采集仪(16);多通道数据采集仪(16)与计算机处理系统(17)连接;
步骤二:在容器内放置下透水板(6),将试样(5)放于下透水板(6)上,试样(5)和下透水板(6)之间放置薄型滤纸,试样(5)上依次放上薄型滤纸、上透水板(4);
步骤三:打开一号加压管道(9)上的三号阀门(11c)、二号加压管道(30)上的四号阀门(11d),向内圈容器中注满水,根据试验条件,设置一定的水压,给试样施加侧向压力,上腔(27)及下腔(29)的水压略大于中腔的水压;
步骤四:盖上顶盖(1),使无荷状态位移传感器(20)与上透水板(4)接触;
步骤五:打开一号阀门(11a)和二号阀门(11b);根据试验条件,设置空气的温湿度和风速,与温湿度控制器(15)相连的一侧管道为进气口,另一侧与抽气泵(10)相连的管道为出气口,保持装置内部空气流通;
试验过程中,温湿度风速传感器(21)记录装置内实际通过的空气的温湿度和风速,含水率传感器(22)记录试样含水率变化,无荷状态位移传感器(20)记录试样垂直方向高度变化,设置于顶盖(1)上的摄像头(24)记录试样表面裂隙发展情况,设置于一号加压管道(9)内的一号流量传感器(23a)和设置于二号加压管道(30)内的二号流量传感器(23b),记录试样径向体积变化,计算得出试样任意时刻的半径值,改变进气口空气的温湿度风速,可进行不同条件和次数下的试样干湿循环试验;
试验中涉及的计算公式:
试验过程中,任意时刻试样的半径值rt
Figure FDA0003031864430000051
rt——t时刻,试样的半径,cm;
r0——试样的初始半径,cm;
ΔV——t时间内,中腔测量腔的体积变化量,cm3
hm——中腔测量腔的高度,cm;
π——圆周率。
10.根据权利要求4所述的细粒土固结胀缩及干湿循环一体试验装置的试验方法,其特征在于所述固结胀缩一体试验方法包括如下步骤:
步骤一:将装置放置于操作平台上,连接各传感器与多通道数据采集仪(16);多通道数据采集仪(16)与计算机处理系统(17)连接;
步骤二:在容器内放置下透水板(6),将试样(5)放于下透水板(6)上,试样(5)和下透水板(6)之间放置薄型滤纸,试样(5)上依次放上薄型滤纸、上透水板(4);
步骤三:打开一号加压管道(9)上的三号阀门(11c)、二号加压管道(30)上的四号阀门(11d),向内圈容器中注满水,根据试验条件,根据试验条件,保持内圈容器内水体体积不变;
步骤四:在上透水板(4)上安放加压盖板(3)和加压基座(2),使加压盖板(3)与加压基座(2)中心对准;
步骤五:将装置与加压装置连接,确定需要施加的各级固结压力,开始固结;通过有荷状态位移传感计(19)记录试样的高度变化,压力传感器(18)记录施加的压力,施加每级压力后,每小时变形达0.01mm时,测定试样高度变化作为稳定标准,按照此步骤逐级加压至试验结束;
步骤六:移除加压基座(2)和加压盖板(3),进行实施例(3)中步骤四、步骤五,然后打开一号阀门(11a)和二号阀门(11b),排出装置内的水分,根据试验条件,设置空气的温湿度和风速,与温湿度控制器(15)相连的一侧管道为进气口,另一侧与抽气泵(10)相连的管道为出气口,保持装置内部空气流通;
试验过程中,温湿度风速传感器(21)记录装置内实际通过的空气的温湿度和风速,含水率传感器(22)记录试样含水率变化,无荷状态位移传感器(20)记录试样垂直方向高度变化,设置于顶盖(1)上的摄像头(24)记录试样表面裂隙发展情况,设置于一号加压管道(9)内的一号流量传感器(23a)和设置于二号加压管道(30)内的二号流量传感器(23b)记录试样径向体积变化,计算得出试样任意时刻的半径值;
试验中涉及的计算公式:
试验过程中,任意时刻试样的半径值rt
Figure FDA0003031864430000061
rt——t时刻,试样的半径,cm;
r0——试样的初始半径,cm;
ΔV——t时间内,中腔测量腔的体积变化量,cm3
hm——中腔测量腔的高度,cm。
CN202110432345.4A 2021-04-21 2021-04-21 一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法 Pending CN113514628A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110432345.4A CN113514628A (zh) 2021-04-21 2021-04-21 一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110432345.4A CN113514628A (zh) 2021-04-21 2021-04-21 一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法

Publications (1)

Publication Number Publication Date
CN113514628A true CN113514628A (zh) 2021-10-19

Family

ID=78061162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110432345.4A Pending CN113514628A (zh) 2021-04-21 2021-04-21 一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法

Country Status (1)

Country Link
CN (1) CN113514628A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018700A (zh) * 2021-10-26 2022-02-08 中国电力工程顾问集团华北电力设计院有限公司 一种大型土石混合土样室内压缩仪与填土变形、稳定性计算方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018700A (zh) * 2021-10-26 2022-02-08 中国电力工程顾问集团华北电力设计院有限公司 一种大型土石混合土样室内压缩仪与填土变形、稳定性计算方法

Similar Documents

Publication Publication Date Title
CN104677803B (zh) 常、变水头复合渗透测试装置
CN104007135B (zh) 土工材料体积变化测试方法
CN101893617B (zh) 一种测试限排抗水压隧道注浆圈水压折减规律的试验装置
CN104182647B (zh) 获得土壤水分特征曲线Van Genuchten模型参数的方法
CN208140705U (zh) 一种可自动采集孔压的渗透固结仪
CN111337405B (zh) 一种石墨材料的透气度的测试装置
CN102221387B (zh) 一种可直接测定土样体积变化的压力板仪
CN209745750U (zh) 煤体吸附瓦斯气体过程的变形量-吸附量同步测试装置
CN108896403B (zh) 测定粗颗粒土橡皮膜嵌入量的三轴试验装置及方法
CN110231270A (zh) 一种混凝土气体径向渗透性能测试装置及方法
CN113514628A (zh) 一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法
CN205607820U (zh) 一种可测体变的柔性壁渗透仪
CN216309983U (zh) 一种细粒土固结胀缩及干湿循环一体试验装置
JP2004012136A (ja) 岩盤等の浸透率測定方法及び浸透率測定装置
CN209821099U (zh) 基于核磁共振的多功能致密气储层动态参数联测装置
CN114720655A (zh) 同时测量岩心不同赋存状态气体产出特征的系统及方法
CN111610131B (zh) 一种土壤孔隙度无损测定装置及其方法
CN112556917A (zh) 一种利用测压装置进行测压的方法
CN111855527A (zh) 一种损伤混凝土气体渗透性检测装置及方法
CN112986124A (zh) 模拟深层环境侵蚀与材料性能劣化的实时评价装置及方法
CN113624654A (zh) 岩石孔隙度测量装置及方法
CN201773046U (zh) 一种岩土体风化力学特性测试仪
CN110672495A (zh) 一种基于低场磁共振技术的水泥基材料水分渗透率的预测方法
CN113008986B (zh) 一种模拟应力-干湿循环耦合作用的泥岩自愈监测装置
CN114608911A (zh) 一种测试非饱和土体渗气性的试验装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination