CN113512163B - 亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用 - Google Patents

亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用 Download PDF

Info

Publication number
CN113512163B
CN113512163B CN202110416656.1A CN202110416656A CN113512163B CN 113512163 B CN113512163 B CN 113512163B CN 202110416656 A CN202110416656 A CN 202110416656A CN 113512163 B CN113512163 B CN 113512163B
Authority
CN
China
Prior art keywords
tio
cof
heterojunction photocatalyst
mpda
imine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110416656.1A
Other languages
English (en)
Other versions
CN113512163A (zh
Inventor
蔡一啸
葛世洁
边树昌
王建华
吉鹏
王乐
王华平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Guowang High Technique Fiber Co ltd
Donghua University
Original Assignee
Jiangsu Guowang High Technique Fiber Co ltd
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Guowang High Technique Fiber Co ltd, Donghua University filed Critical Jiangsu Guowang High Technique Fiber Co ltd
Priority to CN202110416656.1A priority Critical patent/CN113512163B/zh
Publication of CN113512163A publication Critical patent/CN113512163A/zh
Application granted granted Critical
Publication of CN113512163B publication Critical patent/CN113512163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种亚胺型COF及其承载的TiO2基异质结光催化剂的制备和应用,亚胺型COF材料为如下式结构所示的化合物,式中,n为选自1~5的整数;
Figure DDA0003026185130000011
其制备方法为:将
Figure DDA0003026185130000012
溶于有机溶剂中,然后在保护气体的保护下加入乙酸,升温至110~130℃进行反应,制得亚胺型COF材料;在制备亚胺型COF材料的过程中直接添加TiO2进而原位生成TiO2基异质结光催化剂;TiO2基异质结光催化剂应用于降解水污染物。本发明实现了光生电子‑空穴对的有效分离和光催化性能的提高,TiO2基异质结光催化剂尤其适用于降解水污染物例如罗丹明B、甲基橙、乙酰氨基酚等,且降解效果优异。

Description

亚胺型COF及其承载的二氧化钛基异质结光催化剂的制备和 应用
技术领域
本发明属于共轭有机框架材料及光催化剂技术领域,涉及一种亚胺型COF及其承载的TiO2基异质结光催化剂的制备和应用。
背景技术
光催化技术提供了在温和条件下使用可再生太阳能促进反应的可能性,已经被发达国家尝试用于解决日益严重的水、空气、土壤等环境污染问题。光催化技术是一种非常有效的污染物降解方式,在世界范围内引起广泛关注。TiO2作为最早被发现的光催化半导体材料,由于其良好的化学稳定性、低成本、无毒和环境友好的性质,其在光催化降解领域受到了广泛的研究。但是由于TiO2光吸收波长范围较窄,仅对紫外光区响应,导致太阳光利用率低,光生载流子复合率高,量子效率低,使其规模化的环境修复应用受到限制。因此,需要寻找合适的载体或助催化剂制备复合型光催化剂以克服TiO2材料的局限性。
共价有机框架材料(COF)是一种由纯有机分子通过共价键连接而成的新型多孔晶体材料,近年来由于COF材料的多孔结构、带隙可控、结构可调、易功能化、便于载流子迁移等优点,COF材料成为无机半导体纳米颗粒可控修饰的良好载体,广泛地被应用于光催化领域。目前,在光催化降解领域缺乏廉价易得的COF来修饰TiO2,阻碍了大规模制备高效的异质结型光催化剂。云南大学相关研究人员在 2019年报道已知COF作为载体修饰Fe-TiO2复合材料用于光催化降解(J.Mater.Chem.A,2019,7, 16364-16371),进行了较为简单的染料降解。目前缺乏能够与纳米TiO2结合、纳米尺度与能级结构匹配性较好的高效COF材料及其用于水中真实微污染物治理的复合型光催化剂。
目前尽管已经存在多种物理化学方法用于水中污染物的光降解,例如,专利CN111573817 A公开了一种利用芬顿法对AAP的降解方法,此方法利用铁(Fe)和石墨化氮化碳(g-C3N4)在550°高温下进行掺杂合成,在催化剂用量为(1.0g/L)、AAP用量为100mL(50μM≈7.5mg/L)时,在氧含量7.8 mg/L条件下,开启超声对AAP进行降解,在30min中降解效率仅为90%,该处理方法一定程度上实现了对AAP的有效降解,但该方法所用催化剂材料制备需要高温,且降解时需要超声及溶液含氧,能耗较高,降解效率仍有进一步提升的空间。此外,当前报道光催化复合材料中,未发现在污染物浓度均为 10mg/L的条件下,能够在30分钟内对RhB、MO、AAP、SMX的降解效率可达到95%以上的具有普适性的光催化剂。
发明内容
本发明的目的是解决现有技术中存在的上述问题,提供一种亚胺型COF及其承载的TiO2基异质结光催化剂的制备和应用。
为达到上述目的,本发明采用的技术方案如下:
一种亚胺型COF材料(MPDA-COF),所述亚胺型COF材料为如下结构所示的化合物;
Figure BDA0003026185110000021
式中,
Figure BDA0003026185110000022
表示取代位,n为选自1~5的整数。
该COF材料能够与光催化剂TiO2制成异质结光催化剂,实现光生电子-空穴对的有效分离和光催化性能的提高,进而提高光催化降解污染物的降解效率。
作为优选的技术方案:
如上所述的一种亚胺型COF材料,n为1、2或3。
如上所述的一种亚胺型COF材料,所述亚胺型COF材料的孔径为1.0~1.5nm,比表面积为180~220 m2/g,在280~450nm紫外和近紫外光区有吸收峰,在450~800nm可见光区也有吸收峰。
本发明同时提供如上所述的一种亚胺型COF材料的制备方法,将
Figure BDA0003026185110000023
Figure BDA0003026185110000024
溶于有机溶剂中,搅拌1h形成悬浊液,然后在保护气体的保护下加入乙酸,升温至110~130℃进行反应,制得所述亚胺型COF材料;其中n为选自1~5的整数。
Figure BDA0003026185110000031
为蜜勒胺(melem),可通过商购获得。蜜勒胺也可通过如下方法制备而得:将三聚氰胺在马弗炉中焙烧而得。进一步地,蜜勒胺的制备具体包括如下方式:将三聚氰胺置于马沸炉中在400~440℃焙烧,获得淡黄色粉末,即为蜜勒胺;其中,升温速率为6~8℃/min。
亚胺型COF材料的制备方法还包括后处理步骤,该后处理步骤包括:反应结束后,离心分离产物,分别用四氢呋喃和乙醇洗涤多次,50~70℃干燥过夜。
作为优选的技术方案:
如上所述的一种亚胺型COF材料的制备方法,反应的时间为48~72h;
Figure BDA0003026185110000032
Figure BDA0003026185110000033
的投料摩尔比为3:2;乙酸与
Figure BDA0003026185110000034
的投料摩尔比为8~16:1。
如上所述的一种亚胺型COF材料的制备方法,n为1、2或3;n为1,
Figure BDA0003026185110000035
为对苯二甲醛(PDA),n为2,
Figure BDA0003026185110000036
为对联苯二醛,n为3,
Figure BDA0003026185110000037
为对三联苯二醛;
保护气体为氮气或氩气;有机溶剂为体积比为3~5:1的1,4-二氧六环与均三甲苯的混合物。
本发明还提供一种TiO2基异质结光催化剂的制备方法,先将
Figure BDA0003026185110000038
和纳米TiO2溶于有机溶剂中,搅拌1h形成悬浊液,再向悬浊液中加入
Figure BDA0003026185110000039
然后在保护气体的保护下加入乙酸,升温至110~130℃进行反应,制得TiO2基异质结光催化剂;若反应低于110℃缩聚反应所需能量不足,无法形成相应的MPDA-COF结构,影响COF结构中晶胞的形成。其中n为选自1~5的整数。在该一锅法合成过程中,
Figure BDA00030261851100000310
会通过缩聚反应形成具有亚胺结构的MPDA-COF,纳米TiO2的加入未影响MPDA-COF材料的形成并形成了异质结光催化剂,节约了材料复合步骤,且形成的MPDA-COF起到了抑制TiO2团聚的作用,促进了电荷分离。
TiO2基异质结光催化剂的制备方法还包括后处理步骤,该后处理步骤包括:反应结束后,离心分离产物,分别用四氢呋喃和乙醇洗涤多次,50~70℃干燥过夜。
作为优选的技术方案:
如上所述的一种TiO2基异质结光催化剂的制备方法,反应的时间为60~85h;若反应时间低于60h,原料无法完全反应,MPDA-COF产率会降低,影响异质结光催化剂中的MPDA-COF比例,从而影响光催化剂活性。
保护气体为氮气或氩气;有机溶剂为体积比为3~5:1的1,4-二氧六环与均三甲苯的混合物;纳米TiO2的粒径为8~20nm;悬浊液中,纳米TiO2的浓度为30~60g/L;
Figure BDA0003026185110000041
与纳米TiO2的投料摩尔比为0.024~0.096:1,
Figure BDA0003026185110000042
Figure BDA0003026185110000043
的投料摩尔比为3:2,乙酸与
Figure BDA0003026185110000044
的投料摩尔比为8~30:1。
如上所述的一种TiO2基异质结光催化剂的制备方法,TiO2基异质结光催化剂最大光吸收边缘为650 nm。
本发明另外提供一种上所述的方法制得的TiO2基异质结光催化剂的应用,应用于降解水污染物;所述水污染物包括但不限于罗丹明B(RhB)、甲基橙(MO)、乙酰氨基酚(AAP)和磺胺甲恶唑(SMX);
将TiO2基异质结光催化剂加入到浓度为5~20mg/L的RhB、MO、AAP或SMX的溶液中,对于RhB 的降解,降解效率在10分钟内达到99.8%;对于MO的降解,降解效率在30分钟达到99%,对于AAP 和SMX的降解,降解效率在60分钟内达到99%。
本发明的原理如下:
本发明创新地采用特定结构的共轭有机框架材料,主要有以下几个方面的微观特征与性能优势:首先,该共轭有机框架材料具有亚胺结构和庚嗪内核,庚嗪的π-π堆积作用及本身的半导体性质使其具有光催化性质,π-π堆积有利于电子离域,促进光生电子-空穴对的有效分离,且COF材料丰富的氮元素含量易于与TiO2的表面羟基形成分子间氢键,更加有利于异质结的形成和光催化性能的提高,进而提高光催化降解污染物的降解效率;其次,MPDA-COF的纳米棒状微观结构形成良好的载体支撑作用,既能够在微观尺度和TiO2单纳米颗粒相匹配,又能够有效抑制TiO2的团簇聚集,使TiO2纳米颗粒的有效工作尺度维持在10nm左右,抑制光生电子/空穴复合,促进载流子传输;最后,MPDA-COF与纳米TiO2的能带结构特征表明,MPDA-COF与TiO2能够形成z-scheme型异质结,促进电荷分离,提高光能利用率,进一步提高光催化降解效率。实验结果表明,本发明制得的TiO2基异质结光催化剂,在对浓度为 10mg/L的RhB的降解中,降解速率常数是纯TiO2的45倍,是MPDA-COF的33倍;在对浓度为10mg/L 的AAP的降解中,降解速率常数是纯TiO2的7倍,是MPDA-COF的50倍。
有益效果:
(1)本发明的一种亚胺型COF材料,通过π-π堆积作用,形成规则的棒状结构,有利于作为TiO2的载体;
(2)本发明的一种亚胺型COF材料的制备方法,原料廉价易得,不需高温,能耗低;
(3)本发明的一种TiO2基异质结光催化剂的制备方法,简单易行,成本低廉,不需高温,能耗低;
(4)本发明的TiO2基异质结光催化剂在降解水污染物中的应用,对常见的染料污染物(如罗丹明 b、甲基橙)以及抗生素(AAP、磺胺甲恶唑)污染物的降解效率均可达到99%以上,对水中污染物降解具有普适性;
(5)本发明的TiO2基异质结光催化剂在光催化剂的循环稳定性方面,其3次循环降解效率仍可保持在98.1%,循环稳定性优越。
附图说明
图1为本发明实施例中亚胺型COF材料的制备过程反应式;
图2为本发明实施例1的MPDA-COF-1和实施例7的MPDA/TiO2的XRD衍射图;
图3为本发明实施例1的MPDA-COF-1和实施例7的MPDA/TiO2的红外谱图;
图4为TiO2、实施例1的MPDA-COF-1和实施例7的MPDA/TiO2的紫外可见光吸收范围曲线;
图5为本发明实施例7的MPDA/TiO2的SEM图;
图6为MPDA/TiO2对RhB、MO、AAP和SMX的降解曲线;
图7为MPDA/TiO2循环使用3次的降解曲线;
图8为TiO2、实施例1的MPDA-COF-1和实施例7的MPDA/TiO2对RhB的降解曲线;
图9为TiO2、实施例1的MPDA-COF-1和实施例7的MPDA/TiO2对AAP的降解曲线;
图6~9中,Ct/C0表示实验浓度/初始浓度,能够用来表征降解效率。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本例提供一种亚胺型COF材料及其制备方法。图1为合成路线示意图。
本例的亚胺型COF材料为下式所示化合物:
Figure BDA0003026185110000061
其制备方法包括如下步骤:
(1)蜜勒胺(melem)的制备:5g三聚氰胺放入马弗炉中在425℃下焙烧4个小时,升温速率为7℃/min,得到淡黄色粉末,即为蜜勒胺melem:
Figure BDA0003026185110000062
(2)亚胺型COF材料的制备:将480mg对苯二甲醛(PDA)和520mg蜜勒胺(melem)溶于30mL 1,4- 二氧六环与均三甲苯(体积比为4∶1)的混合溶液中,室温下搅拌1h,形成均匀的悬浊液,在氮气氛围下,加入1.8mL乙酸(这里代表乙酸/melem摩尔比10:1),加热至110℃,持续72h至反应结束,有淡黄色固体产生,离心分离产物,分别用四氢呋喃和乙醇洗涤4次,60℃干燥过夜,得到产物为淡黄色粉末,即为亚胺型COF材料(简称MPDA-COF-1),孔径为1.3nm,比表面积为195m2/g。
实施例2
基本同实施例1,其区别仅在于:亚胺型COF材料的制备:将480mg对苯二甲醛(PDA)和520mg 蜜勒胺(melem)溶于30mL 1,4-二氧六环与均三甲苯(体积比为3∶1)的混合溶液中,室温下搅拌1h,形成均匀的悬浊液,在氮气氛围下,加入1..44mL乙酸,加热至120℃,持续72h至反应结束,有淡黄色固体产生,离心分离产物,分别用四氢呋喃和乙醇洗涤4次,60℃干燥过夜,得到产物为淡黄色粉末,即为亚胺型COF材料(简称MPDA-COF-2)。
实施例3
基本同实施例1,其区别仅在于:亚胺型COF材料的制备:将480mg对苯二甲醛(PDA)和520mg 蜜勒胺(melem)溶于30mL 1,4-二氧六环与均三甲苯(体积比为4∶1)的混合溶液中,室温下搅拌1h,形成均匀的悬浊液,在氮气氛围下,加入1.8mL乙酸,加热至120℃,持续72h至反应结束,有淡黄色固体产生,离心分离产物,分别用四氢呋喃和乙醇洗涤4次,60℃干燥过夜,得到产物为淡黄色粉末,即为亚胺型COF材料(简称MPDA-COF-3)。
实施例4
基本同实施例1,其区别仅在于:亚胺型COF材料的制备:将480mg对苯二甲醛(PDA)和520mg 蜜勒胺(melem)溶于30mL 1,4-二氧六环与均三甲苯(体积比为4∶1)的混合溶液中,室温下搅拌1h,形成均匀的悬浊液,在氮气氛围下,加入2.1mL乙酸,加热至120℃,持续48h至反应结束,有淡黄色固体产生,离心分离产物,分别用四氢呋喃和乙醇洗涤4次,60℃干燥过夜,得到产物为淡黄色粉末,即为亚胺型COF材料(简称MPDA-COF-4)。
实施例5
基本同实施例1,其区别仅在于:亚胺型COF材料的制备:将480mg对苯二甲醛(PDA)和520mg 蜜勒胺(melem)溶于30mL 1,4-二氧六环与均三甲苯(体积比为4∶1)的混合溶液中,室温下搅拌1h,形成均匀的悬浊液,在氮气氛围下,加入2.88mL乙酸,加热至130℃,持续48h至反应结束,有淡黄色固体产生,离心分离产物,分别用四氢呋喃和乙醇洗涤4次,60℃干燥过夜,得到产物为淡黄色粉末,即为亚胺型COF材料(简称MPDA-COF-5)。
实施例6
基本同实施例1,其区别仅在于:亚胺型COF材料的制备:将750mg对联苯二醛(BPDA)和520mg 蜜勒胺(melem)溶于30mL 1,4-二氧六环与均三甲苯(体积比为4∶1)的混合溶液中,室温下搅拌1h,形成均匀的悬浊液,在氮气氛围下,加入2.1mL乙酸,加热至130℃,持续48h至反应结束,有淡黄色固体产生,离心分离产物,分别用四氢呋喃和乙醇洗涤4次,60℃干燥过夜,得到产物为淡黄色粉末,即为亚胺型COF材料(简称MPDA-COF-6),其孔径为1.5nm比表面积为220m2/g。
实施例7
本例提供一种TiO2基异质结光催化剂(也可称为MPDA/TiO2异质结光催化剂)及其制备方法。
该MPDA/TiO2异质结光催化剂的制备方法的过程如下:
将800mg TiO2(粒径10±5nm)和96mg对苯二甲醛(PDA)溶于16mL 1,4-二氧六环与4mL均三甲苯的溶液中,常温搅拌1h后,加入102mg蜜勒胺(melem),并氮气保护换气3次,加入720μL的乙酸,温度升至120℃,反应60h,得土黄色固体,所得土黄色固体用四氢呋喃和乙醇抽滤洗涤至滤液为无色, 60℃下干燥12h,得到MPDA/TiO2异质结光催化剂。
实施例1和实施例7所制备的MPDA-COF-1和MPDA/TiO2异质结光催化剂的XRD衍射图如图2 所示。从图2可以看出,MPDA/TiO2异质结光催化剂的衍射特征峰,在25.3°、37.8°、48.0°、53.9°、 55.1°和62.8°是TiO2的特征衍射峰,由于与TiO2相比,MPDA-COF-1材料含量相对较少,在MPDA/TiO2复合材料中未观察到对应的MPDA-COF-1材料的特征峰。因此可证明,TiO2与MPDA-COF-1复合在一起并未改变TiO2自身的晶型。
实施例1与实施例7所制备的MPDA-COF-1和MPDA/TiO2异质结光催化剂的红外光谱数据如图3 所示,MPDA/TiO2异质结光催化剂的红外光谱融合了MPDA-COF-1以及纳米TiO2的特征峰,并且 MPDA-COF-1在800cm-1的伯胺N-H面外变形振动峰消失,说明MPDA-COF-1与TiO2形成异质结结构。
图4为TiO2、实施例1的MPDA-COF-1和实施例7的MPDA/TiO2的紫外可见光吸收范围曲线,可知该TiO2基异质结光催化剂可见光最大吸收边缘为650nm;
图5为本发明实施例7的MPDA/TiO2的SEM图,从SEM可以看出,MPDA-COF的棒状形貌良好分散TiO2纳米颗粒,形成良好的异质结。
实施例8
本例提供一种TiO2基异质结光催化剂(也可称为MPDA/TiO2异质结光催化剂)及其制备方法。
该MPDA/TiO2异质结光催化剂的制备方法的过程如下:
将800mg TiO2(粒径15±5nm)和64mg对苯二甲醛(PDA)溶于16mL 1,4-二氧六环与4mL均三甲苯的溶液中,常温搅拌1h后,加入68mg蜜勒胺(melem),并氮气保护换气3次,加入480μL的乙酸,温度升至130℃,反应48h,得土黄色固体,所得土黄色固体用四氢呋喃和乙醇抽滤洗涤至滤液为无色, 60℃下干燥12h,得到MPDA/TiO2异质结光催化剂。
实施例9
本例提供一种TiO2基异质结光催化剂(也可称为MPDA/TiO2异质结光催化剂)及其制备方法。
该MPDA/TiO2异质结光催化剂的制备方法的过程如下:
将1.2g TiO2(粒径15±5nm)和96mg对苯二甲醛(PDA)溶于16mL 1,4-二氧六环与4mL均三甲苯的溶液中,常温搅拌1h后,加入102mg蜜勒胺(melem),并氮气保护换气3次,加入720μL的乙酸,温度升至110℃,反应72h,得土黄色固体,所得土黄色固体用四氢呋喃和乙醇抽滤洗涤至滤液为无色, 60℃下干燥12h,得到MPDA/TiO2异质结光催化剂。
实施例10
本例提供一种TiO2基异质结光催化剂(也可称为MPDA/TiO2异质结光催化剂)及其制备方法。
该MPDA/TiO2异质结光催化剂的制备方法的过程如下:
将1.2g TiO2(粒径15±5nm)和96mg对苯二甲醛(PDA)溶于15mL 1,4-二氧六环与3mL均三甲苯的溶液中,常温搅拌1h后,加入102mg蜜勒胺(melem),并氮气保护换气3次,加入720μL的乙酸,温度升至110℃,反应72h,得土黄色固体,所得土黄色固体用四氢呋喃和乙醇抽滤洗涤至滤液为无色, 60℃下干燥12h,得到MPDA/TiO2异质结光催化剂。
实施例11
本例提供一种TiO2基异质结光催化剂(也可称为MPDA/TiO2异质结光催化剂)及其制备方法。
该MPDA/TiO2异质结光催化剂的制备方法的过程如下:
将800mg TiO2(粒径15±5nm)和128mg对苯二甲醛(PDA)溶于15mL 1,4-二氧六环与3mL均三甲苯的溶液中,常温搅拌1h后,加入138.6mg蜜勒胺(melem),并氮气保护换气3次,加入720μL的乙酸,温度升至110℃,反应72h,得土黄色固体,所得土黄色固体用四氢呋喃和乙醇抽滤洗涤至滤液为无色,60℃下干燥12h,得到MPDA/TiO2异质结光催化剂。
实施例12
称取100mg实施例7制成的MPDA/TiO2异质结光催化剂放入装有100mL浓度为10mg/L的罗丹明 B(RhB)溶液的250mL双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入离心管,用紫外分光光度计测RhB的浓度变化。由图6可见,MPDA/TiO2异质结光催化剂在10分钟内罗丹明降解效率可达99%,可见MPDA/TiO2异质结光催化剂具有较高的光催化活性。
实施例13
称取100mg实施例7制成的MPDA/TiO2异质结光催化剂放入装有100mL浓度为10mg/L的乙酰氨基酚(AAP)溶液的250mL双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入气相进样瓶,用高效液相色谱仪测试AAP的浓度变化。由图6可见,MPDA/TiO2异质结光催化剂在60分钟内AAP降解效率可达99%。在当前报道的COF材料中,未见关于水中药物微污染物的降解。
实施例14
称取100mg实施例7制成的MPDA/TiO2异质结光催化剂放入装有100mL浓度为10mg/L的MO溶液的250mL双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入气相进样瓶,用紫外分光光度计测 MO的浓度变化。由图6可见,MPDA/TiO2异质结光催化剂在60分钟内MO降解效率可达99%。
实施例15
称取100mg实施例7制成的MPDA/TiO2异质结光催化剂放入装有100mL浓度为10mg/L的SMX 溶液的250mL双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入气相进样瓶,用高效液相色谱仪测试AAP的浓度变化。由图6可见,MPDA/TiO2异质结光催化剂在60分钟内SMX降解效率可达99%。
实施例16
称取100mg实施例7制成的MPDA/TiO2异质结光催化剂放入装有100mL浓度为10mg/L的乙酰氨基酚(AAP)溶液的250mL双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入气相进样瓶,用高效液相色谱仪测试AAP的浓度变化。做3次相同的降解实验,用乙醇离心回收3次降解后的异质结光催化剂,进行第一次重复降解,同样做2次相同的降解实验,用乙醇离心回收2次降解后的异质结光催化剂,进行第二次重复降解。由图7可见,催化剂经3次循环降解,最终降解效率仍可达98.1%
实施例17
分别称取100mg的不同催化剂(纳米TiO2(15±5nm)、实施例1制成的MPDA-COF-1、实施例7 制成的MPDA/TiO2异质结光催化剂)放入装有100mL浓度为10mg/L的罗丹明B(RhB)溶液的250mL 双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入离心管,用紫外分光光度计测RhB的浓度变化。由图8可见,MPDA/TiO2异质结光催化剂在10分钟内罗丹明降解效率可达99%。TiO2,MPDA-COF-1, MPDA/TiO2对于RhB的速率常数分别为0.0479min-1,0.0643min-1,2.1639min-1,MPDA/TiO2光催化降解速率常数是纯TiO2的45倍,是亚胺型COF材料MPDA-COF-1的33倍。可见MPDA/TiO2异质结光催化剂具有较高的光催化活性。
实施例18
分别称取100mg不同催化剂(纳米TiO2(15±5nm)、实施例1制成的MPDA-COF-1、实施例7制成的MPDA/TiO2异质结光催化剂)放入装有100mL浓度为10mg/L的乙酰氨基酚(AAP)溶液的250mL 双层烧杯中,用带有420nm滤光片的300W氙灯做光源,进行光催化降解反应。暗反应时间为1h,光照以后每隔10分钟取一次样,并用0.45μm滤头过滤装入气相进样瓶,用高效液相色谱仪测试AAP的浓度变化。由图9可见,MPDA/TiO2异质结光催化剂在60分钟内AAP降解效率可达99%;TiO2, MPDA-COF-1,MPDA/TiO2对于RhB的降解速率常数分别为0.0151min-1,0.1193min-1和0.7582min-1,在对浓度为10mg/L的AAP的降解中,降解速率常数是纯TiO2的7倍,是亚胺型COF材料的50倍。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种TiO2基异质结光催化剂的制备方法,其特征在于:先将
Figure FDA0003716881450000011
和纳米TiO2溶于有机溶剂中,搅拌1h形成悬浊液,再向悬浊液中加入
Figure FDA0003716881450000012
然后在保护气体的保护下加入乙酸,升温至110~130℃进行反应,制得TiO2基异质结光催化剂;其中n为选自1~5的整数;
纳米TiO2的粒径为8~20nm;
Figure FDA0003716881450000013
与纳米TiO2的投料摩尔比为0.024~0.096:1,
Figure FDA0003716881450000014
Figure FDA0003716881450000015
的投料摩尔比为3:2,乙酸与
Figure FDA0003716881450000016
的投料摩尔比为8~30:1。
2.根据权利要求1所述的一种TiO2基异质结光催化剂的制备方法,其特征在于,反应的时间为60~85h;保护气体为氮气、氩气;有机溶剂为体积比为3~5:1的1,4-二氧六环与均三甲苯的混合物;悬浊液中,纳米TiO2的浓度为30~60g/L。
3.根据权利要求1或2所述的一种TiO2基异质结光催化剂的制备方法,其特征在于,TiO2基异质结光催化剂最大光吸收边缘为650nm。
4.一种如权利要求1~3任一项所述的方法制得的TiO2基异质结光催化剂的应用,其特征在于:应用于降解水污染物;所述水污染物包括RhB、MO、AAP和SMX;
RhB为罗丹明B,MO为甲基橙,AAP为乙酰氨基酚,SMX为磺胺甲恶唑;
将TiO2基异质结光催化剂加入到浓度为5~20mg/L的RhB、MO、AAP或SMX的溶液中,对于RhB的降解,降解效率在10分钟内达到99.8%;对于MO的降解,降解效率在30分钟达到99%,对于AAP和SMX的降解,降解效率在60分钟内达到99%。
CN202110416656.1A 2021-04-19 2021-04-19 亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用 Active CN113512163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110416656.1A CN113512163B (zh) 2021-04-19 2021-04-19 亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110416656.1A CN113512163B (zh) 2021-04-19 2021-04-19 亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用

Publications (2)

Publication Number Publication Date
CN113512163A CN113512163A (zh) 2021-10-19
CN113512163B true CN113512163B (zh) 2022-08-23

Family

ID=78061521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110416656.1A Active CN113512163B (zh) 2021-04-19 2021-04-19 亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用

Country Status (1)

Country Link
CN (1) CN113512163B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976152B (zh) * 2021-11-17 2023-04-14 辽宁科技大学 桥接型TiO2-mCm/TA/CN异质结光催化剂及其制备和应用
CN115463687A (zh) * 2022-07-28 2022-12-13 湖南大学 苯并三噻吩基共价有机框架催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967216A (zh) * 2017-04-18 2017-07-21 吉林大学 一种亚胺联接的共价有机骨架材料及其制备方法与应用
CN112604714A (zh) * 2020-11-27 2021-04-06 嘉兴哲夫埃特环保科技有限公司 一种cof@mof/m/l复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967216A (zh) * 2017-04-18 2017-07-21 吉林大学 一种亚胺联接的共价有机骨架材料及其制备方法与应用
CN112604714A (zh) * 2020-11-27 2021-04-06 嘉兴哲夫埃特环保科技有限公司 一种cof@mof/m/l复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Embedding Carbon Nitride into a Covalent Organic Framework with Enhanced Photocatalysis Performance;Junquan Pan 等;《Chem. Asian J.》;20181231;第13卷;第1674-1677页 *
g-C3N4/TiO2复合光催化剂制备及活性研究;安伟佳 等;《无机盐工业》;20190430;第51卷(第4期);第81-85页 *
Junquan Pan 等.Embedding Carbon Nitride into a Covalent Organic Framework with Enhanced Photocatalysis Performance.《Chem. Asian J.》.2018,第13卷第1674-1677页. *

Also Published As

Publication number Publication date
CN113512163A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
Lin et al. Facile fabrication of novel SiO2/g-C3N4 core–shell nanosphere photocatalysts with enhanced visible light activity
Luo et al. Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance
Wang et al. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance
Chen et al. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation
Zeng et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity
Zhang et al. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method
Yu et al. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
Qu et al. Effects of calcining temperature on photocatalysis of g-C3N4/TiO2 composites for hydrogen evolution from water
Chen et al. Nanonization of gC 3 N 4 with the assistance of activated carbon for improved visible light photocatalysis
Xu et al. Vacancy-modified gC 3 N 4 and its photocatalytic applications
Huang et al. Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation
CN113512163B (zh) 亚胺型cof及其承载的二氧化钛基异质结光催化剂的制备和应用
CN111453804B (zh) 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法
Wei et al. Facile fabrication of mesoporous g-C3N4/TiO2 photocatalyst for efficient degradation of DNBP under visible light irradiation
CN101791565A (zh) 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法
He et al. Hydrogen bond interactions within OH-CQDs/fiber-like carbon nitride for enhanced photodegradation and hydrogen evolution
Gao et al. Facile synthesis of monodisperse meso-microporous Ta 3 N 5 hollow spheres and their visible light-driven photocatalytic activity
Zhao et al. Novel carboxy-functionalized PVP-CdS nanopopcorns with homojunctions for enhanced photocatalytic hydrogen evolution
CN112619659B (zh) 一种氧化镍纳米片和钼酸铋纳米纤维异质结光催化材料及其制备方法与应用
She et al. Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
Zhang et al. Phosphorous doped graphitic-C3N4 hierarchical architecture for hydrogen production from water under visible light
Mardiroosi et al. Design and fabrication of a perylene dimiide functionalized g-C3N4@ UiO-66 supramolecular photocatalyst: Insight into enhancing the photocatalytic performance
Yang et al. In situ fabrication of reduced graphene oxide/mesoporous g-C3N4 nanosheets with excellent visible light activity
Zhou et al. N-rich covalent organic polymer in situ modified TiO2 for highly efficient photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant