CN113504558B - 一种考虑道路几何约束的地面无人车辆定位方法 - Google Patents
一种考虑道路几何约束的地面无人车辆定位方法 Download PDFInfo
- Publication number
- CN113504558B CN113504558B CN202110797145.9A CN202110797145A CN113504558B CN 113504558 B CN113504558 B CN 113504558B CN 202110797145 A CN202110797145 A CN 202110797145A CN 113504558 B CN113504558 B CN 113504558B
- Authority
- CN
- China
- Prior art keywords
- road
- vehicle
- constraint
- moment
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000009499 grossing Methods 0.000 claims abstract description 20
- 238000001914 filtration Methods 0.000 claims abstract description 11
- 238000012952 Resampling Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 43
- 238000005259 measurement Methods 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000007499 fusion processing Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/393—Trajectory determination or predictive tracking, e.g. Kalman filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种考虑道路几何约束的地面无人车辆定位方法,包括以下步骤:首先对道路几何约束进行离线建模,利用搭载高精度传感器的采集车对道路信息进行采集,融合多个传感器的观测信息,利用拓展卡尔曼平滑算法进行平滑处理,对平滑处理后的数据进行重采样并利用三次B样条曲线进行拟合,将其作为道路几何约束;在线定位时,利用自适应卡尔曼滤波算法获得初步定位结果,借助牛顿法求解初步定位结果距离道路约束曲线最近的投影点,将其作为修正后的定位结果。本发明可以提高GNSS信号不佳时的地面无人车辆定位精度。
Description
技术领域
本发明属于智能交通领域,具体涉及一种考虑道路几何约束的地面无人车辆定位方法。
背景技术
地面无人驾驶车辆被认为在改善道路安全、提高交通运行效率等方面有着巨大的潜力,近年来得到了广泛关注与研究。目前利用RTK-GNSS和高精度INS进行组合导航定位的无人车辆在理想工况下可以实现满足行驶要求的厘米级定位。但是高精度INS价格十分昂贵,同时在城市环境下,高大建筑物遮挡GNSS信号时,组合导航的定位精度变差,不足以保证车辆的安全行驶。
发明内容
针对现有技术的不足,本发明提供一种考虑道路几何约束的地面无人车辆定位方法。
本发明的目的是通过以下技术方案来实现的:
一种考虑道路几何约束的地面无人车辆定位方法,包括,首先道路几何约束建模,然后考虑道路几何约束的在线定位。
进一步的,包括以下步骤:首先对道路几何约束建模,利用搭载高精度传感器的采集车对道路信息进行采集,融合多个传感器的观测信息,利用拓展卡尔曼平滑算法进行平滑处理,对平滑处理后的数据进行重采样并利用三次B样条曲线进行拟合,将其作为道路几何约束;在线定位时,利用自适应卡尔曼滤波算法获得初步定位结果,借助牛顿法求解初步定位结果距离道路约束曲线最近的投影点,将其作为修正后的定位结果。
具体的,包括以下步骤:
(1)道路几何约束离线建模,具体包括:
利用搭载RTK-GPS、IMU、轮速传感器的试验车采集道路信息,RTK-GPS在信号良好的情况下提供厘米级全局定位结果,同时利用IMU和轮速传感器提供的车辆运动信息进行局部航迹推算,以校正RTK-GPS信号不良时的定位结果。对采集得到的RTK-GPS、IMU及轮速信息,离线利用离散拓展卡尔曼平滑算法进行平滑处理。
k时刻系统状态xk可以表示成上一时刻系统状态xk-1、系统输入uk-1及系统模型噪声wk-1的非线性函数:
xk=fk-1(xk-1,uk-1,wk-1)
具体的:
式中,ψk、ψk-1、Xk、Xk-1、Yk、Yk-1分别为k时刻及k-1时刻车辆的航向、横向位置、纵向位置;T为时间间隔;r、V分别为车辆的横摆角速度、速度;系统模型噪声wk-1服从高斯分布wk-1~(0,Qk-1)。
k时刻系统状态的量测模型可以表示为:
yk=Hkxk+vk
其中,yk为系统状态的量测值;Hk为观测矩阵、vk为观测噪声,其服从高斯分布vk~(0,Rk)。
具体的:
式中,分别为GPS传感器关于航向、横向位置、纵向位置的测量值。
执行离散拓展卡尔曼平滑,得到平滑处理后行驶轨道的定位信息。以起始出发处为参考原点,将位置坐标从WGS-84坐标系转换成NED坐标系,然后将位置坐标pi=(xi,yi)转化成表示相对于参考原点位移的相对坐标(0,si)。si可以由下式计算得到:
考虑到采集车辆在采集数据时不可能保持匀速运动,因此对相对坐标(0,si)以0.1m为固定间隔进行重新采样,并利用三次B样条曲线进行拟合,得到一条可以描述道路几何结构的参数化曲线。
步骤2、考虑道路几何约束的在线定位,具体包括:
基于自适应卡尔曼滤波算法对车载RTK-GPS、IMU、轮速传感器获取的信息进行融合处理,得到初步无约束定位结果自适应卡尔曼滤波算法包含预测、更新以及噪声自适应调整三个阶段,基于k-1时刻的系统后验状态估计及协方差矩阵估计对k时刻的系统状态进行最优估计,并自适应调整k时刻噪声的协方差矩阵,其表达式为:
式中,是k时刻系统的先验估计,/>是k-1时刻系统的后验估计,Ak-1、Bk-1、uk-1分别是k-1时刻系统的状态转移矩阵、输入矩阵、输入向量,Pk是k时刻系统先验估计的协方差矩阵,/>是k-1时刻系统后验估计的协方差矩阵,Ck是k时刻系统观测矩阵,/>及/>分别是k-1时刻系统噪声和观测噪声的后验估计,yk是k时刻的观测输入,/>分别是k时刻系统状态的后验估计及其协方差矩阵,/>分别是k时刻系统噪声和观测噪声的后验估计,/>分别是历元k的新息协方差矩阵和残差序列的协方差矩阵。
车辆行驶时道路几何结构施加在车辆状态xk上的约束信息可以表示为:
xk∈Ck
式中,Ck是车辆系统状态需要满足的约束集,即步骤(1)中建立的表征道路几何结构的曲线。
将初步定位结果向表征道路几何约束的曲线上进行投影,利用牛顿法找到初步定位结果距离道路约束曲线最近的投影点,得出考虑道路约束的定位结果/>即:
本发明的有益效果是:(1)考虑地面无人车辆在行驶时受到道路几何结构约束这一个特性,提高地面无人车辆在GNSS信号不佳时的定位精度。
附图说明
图1为本发明的道路几何约束离线建模流程图;
图2为本发明的考虑道路几何约束的在线定位示意图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
本发明提出的一种考虑道路几何约束的地面无人车辆定位方法,包括两个步骤:道路几何约束离线建模、考虑道路几何约束的在线定位。
参照图1,道路几何约束离线建模,具体包括:
利用搭载RTK-GPS、IMU、轮速传感器的试验车采集道路信息,RTK-GPS在信号良好的情况下提供厘米级全局定位结果,同时利用IMU和轮速传感器提供的车辆运动信息进行局部航迹推算,以校正RTK-GPS信号不良时的定位结果。对采集得到的RTK-GPS、IMU及轮速信息,离线利用离散拓展卡尔曼平滑算法进行平滑处理。
k时刻系统状态xk可以表示成上一时刻系统状态xk-1、系统输入uk-1及系统模型噪声wk-1的非线性函数:
xk=fk-1(xk-1,uk-1,wk-1)
具体的:
式中,ψk、ψk-1、Xk、Xk-1、Yk、Yk-1分别为k时刻及k-1时刻车辆的航向、横向位置、纵向位置;T为时间间隔;r、V分别为车辆的横摆角速度、速度;系统模型噪声wk-1服从高斯分布wk-1~(0,Qk-1)。
k时刻系统状态的量测模型可以表示为:
yk=Hkxk+vk
其中,yk为系统状态的量测值;Hk为观测矩阵、vk为观测噪声,其服从高斯分布vk~(0,Rk)。
具体的:
式中,分别为GPS传感器关于航向、横向位置、纵向位置的测量值。
执行离散拓展卡尔曼平滑,得到平滑处理后行驶轨道的定位信息。以起始出发处为参考原点,将位置坐标从WGS-84坐标系转换成NED坐标系,然后将位置坐标pi=(xi,yi)转化成表示相对于参考原点位移的相对坐标(0,si)。si可以由下式计算得到:
考虑到采集车辆在采集数据时不可能保持匀速运动,因此对相对坐标(0,si)以0.1m为固定间隔进行重新采样,并利用三次B样条曲线进行拟合,得到一条可以描述道路几何结构的参数化曲线。
参考图2,考虑道路几何约束的在线定位,具体包括:
基于自适应卡尔曼滤波算法对车载RTK-GPS、IMU、轮速传感器获取的信息进行融合处理,得到初步无约束定位结果自适应卡尔曼滤波算法包含预测、更新以及噪声自适应调整三个阶段,基于k-1时刻的系统后验状态估计及协方差矩阵估计对k时刻的系统状态进行最优估计,并自适应调整k时刻噪声的协方差矩阵,其表达式为:
式中,是k时刻系统的先验估计,/>是k-1时刻系统的后验估计,Ak-1、Bk-1、uk-1分别是k-1时刻系统的状态转移矩阵、输入矩阵、输入向量,Pk是k时刻系统先验估计的协方差矩阵,/>是k-1时刻系统后验估计的协方差矩阵,Ck是k时刻系统观测矩阵,/>及/>分别是k-1时刻系统噪声和观测噪声的后验估计,yk是k时刻的观测输入,/>分别是k时刻系统状态的后验估计及其协方差矩阵,/>分别是k时刻系统噪声和观测噪声的后验估计,/>分别是历元k的新息协方差矩阵和残差序列的协方差矩阵。
车辆行驶时道路几何结构施加在车辆状态xk上的约束信息可以表示为:
xk∈Ck
式中,Ck是车辆系统状态需要满足的约束集,即步骤(1)中建立的表征道路几何结构的曲线。
将初步定位结果向表征道路几何约束的曲线上进行投影,利用牛顿法找到初步定位结果距离道路约束曲线最近的投影点,得出考虑道路约束的定位结果/>即:
系统模型为:
xk=fk-1(xk-1,uk-1,wk-1)
具体的:
式中,ψk、ψk-1、Xk、Xk-1、Yk、Yk-1分别为k时刻及k-1时刻车辆的航向、横向位置、纵向位置;T为时间间隔;r、V分别为车辆的横摆角速度、速度;wk-1为系统模型噪声,服从高斯分布wk-1~(0,Qk-1)。
测量模型为:
yk=Hkxk+vk
具体的:
式中,分别为GPS传感器关于航向、横向位置、纵向位置的测量值;vk为测量系统噪声,服从高斯分布vk~(0,Rk)。
系统初始状态的期望值和协方差通过随机获取得到,即:
执行离散拓展卡尔曼平滑,得到平滑处理后行驶轨道的定位信息。以起始出发处为参考原点,将位置坐标从WGS-84坐标系转换成ENU坐标系,然后将位置坐标pi=(xi,yi)转化成表示相对于参考原点位移的相对坐标(0,si)。其中:
考虑到采集车辆在采集数据时不可能保持匀速运动,因此对相对坐标(0,si)以0.1m为固定间隔进行重新采样,并利用三次B样条曲线进行拟合,得到一条可以描述道路几何结构的参数化曲线。
参照图2,考虑道路几何约束的在线定位,具体包括:
基于自适应卡尔曼滤波算法对车载RTK-GPS、IMU、轮速传感器获取的信息进行融合处理,得到初步无约束定位结果自适应卡尔曼滤波算法包含预测、更新以及噪声自适应调整三个阶段,基于k-1时刻的系统后验状态估计及协方差矩阵估计对k时刻的系统状态进行最优估计,并自适应调整k时刻噪声的协方差矩阵,其表达式为:
式中,是k时刻系统的先验估计,/>是k-1时刻系统的后验估计,Ak-1、Bk-1、uk-1分别是k-1时刻系统的状态转移矩阵、输入矩阵、输入向量,Pk是k时刻系统先验估计的协方差矩阵,/>是k-1时刻系统后验估计的协方差矩阵,Ck是k时刻系统观测矩阵,/>及/>分别是k-1时刻系统噪声和观测噪声的后验估计,yk是k时刻的观测输入,/>分别是k时刻系统状态的后验估计及其协方差矩阵,/>分别是k时刻系统噪声和观测噪声的后验估计,/>分别是历元k的新息协方差矩阵和残差序列的协方差矩阵。
车辆行驶时道路几何结构施加在车辆状态xk上的约束信息可以表示为:
xk∈Ck
式中,Ck是车辆系统状态需要满足的约束集,即步骤(1)中建立的表征道路几何结构的曲线。
将初步定位结果向表征道路几何约束的曲线上进行投影,利用牛顿法找到初步定位结果距离道路约束曲线最近的投影点,得出考虑道路约束的定位结果/>
以上所述是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应该看作是对其他实施例的排除,而可用于其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
Claims (1)
1.一种考虑道路几何约束的地面无人车辆定位方法,其特征在于,包括,首先道路几何约束建模,然后考虑道路几何约束的在线定位;
包括以下步骤:首先对道路几何约束建模,利用搭载高精度传感器的采集车对道路信息进行采集,融合多个传感器的观测信息,利用拓展卡尔曼平滑算法进行平滑处理,对平滑处理后的数据进行重采样并利用三次B样条曲线进行拟合,将其作为道路几何约束;在线定位时,利用自适应卡尔曼滤波算法获得初步定位结果,借助牛顿法求解初步定位结果距离道路约束曲线最近的投影点,将其作为修正后的定位结果;
所述的道路几何约束建模,具体包括:
利用搭载RTK-GPS、IMU、轮速传感器的试验车采集道路信息,RTK-GPS在信号良好的情况下提供厘米级全局定位结果,同时利用IMU和轮速传感器提供的车辆运动信息进行局部航迹推算,以校正RTK-GPS信号不良时的定位结果;对采集得到的RTK-GPS、IMU及轮速信息,离线利用离散拓展卡尔曼平滑算法进行平滑处理;
k时刻系统状态xk表示成上一时刻系统状态xk-1、系统输入uk-1及系统模型噪声wk-1的非线性函数:
xk=fk-1(xk-1,uk-1,wk-1)
具体的:
式中,ψk、ψk-1、Xk、Xk-1、Yk、Yk-1分别为k时刻及k-1时刻车辆的航向、横向位置、纵向位置;T为时间间隔;r、V分别为车辆的横摆角速度、速度;系统模型噪声wk-1服从高斯分布wk-1~(0,Qk-1);
k时刻系统状态的量测模型表示为:
yk=Hkxk+vk
其中,yk为系统状态的量测值;Hk为观测矩阵、vk为观测噪声,其服从高斯分布vk~(0,Rk);
具体的:
式中,分别为GPS传感器关于航向、横向位置、纵向位置的测量值;
执行离散拓展卡尔曼平滑,得到平滑处理后行驶轨道的定位信息;以起始出发处为参考原点,将位置坐标从WGS-84坐标系转换成NED坐标系,然后将位置坐标pi=(xi,yi)转化成表示相对于参考原点位移的相对坐标(0,si);si由下式计算得到:
考虑到采集车辆在采集数据时不可能保持匀速运动,因此对相对坐标(0,si)以0.1m为固定间隔进行重新采样,并利用三次B样条曲线进行拟合,得到一条描述道路几何结构的参数化曲线;
所述的在线定位,具体包括:
基于自适应卡尔曼滤波算法对车载RTK-GPS、IMU、轮速传感器获取的信息进行融合处理,得到初步无约束定位结果自适应卡尔曼滤波算法包含预测、更新以及噪声自适应调整三个阶段,基于k-1时刻的系统后验状态估计及协方差矩阵估计对k时刻的系统状态进行最优估计,并自适应调整k时刻噪声的协方差矩阵,其表达式为:
式中,是k时刻系统的先验估计,/>是k-1时刻系统的后验估计,Ak-1、Bk-1、uk-1分别是k-1时刻系统的状态转移矩阵、输入矩阵、输入向量,Pk是k时刻系统先验估计的协方差矩阵,/>是k-1时刻系统后验估计的协方差矩阵,Ck是k时刻系统观测矩阵,/>及/>分别是k-1时刻系统噪声和观测噪声的后验估计,yk是k时刻的观测输入,/>分别是k时刻系统状态的后验估计及其协方差矩阵,/>分别是k时刻系统噪声和观测噪声的后验估计,分别是历元k的新息协方差矩阵和残差序列的协方差矩阵;
车辆行驶时道路几何结构施加在车辆状态xk上的约束信息表示为:
xk∈Ck
式中,Ck是车辆系统状态需要满足的约束集,即步骤(1)中建立的表征道路几何结构的曲线;
将初步定位结果向表征道路几何约束的曲线上进行投影,利用牛顿法找到初步定位结果距离道路约束曲线最近的投影点,得出考虑道路约束的定位结果/>即:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110797145.9A CN113504558B (zh) | 2021-07-14 | 2021-07-14 | 一种考虑道路几何约束的地面无人车辆定位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110797145.9A CN113504558B (zh) | 2021-07-14 | 2021-07-14 | 一种考虑道路几何约束的地面无人车辆定位方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113504558A CN113504558A (zh) | 2021-10-15 |
CN113504558B true CN113504558B (zh) | 2024-02-27 |
Family
ID=78013272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110797145.9A Active CN113504558B (zh) | 2021-07-14 | 2021-07-14 | 一种考虑道路几何约束的地面无人车辆定位方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113504558B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114509086B (zh) * | 2022-02-15 | 2022-11-25 | 湖南大学无锡智能控制研究院 | 智能车辆在连续弯道场景下的最优轨迹规划方法及系统 |
CN114896829B (zh) * | 2022-07-14 | 2022-09-30 | 山西虚拟现实产业技术研究院有限公司 | 一种超差电表定位方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101793528A (zh) * | 2009-01-26 | 2010-08-04 | 通用汽车环球科技运作公司 | 使用传感器融合来估计车道路径的系统和方法 |
CN103744096A (zh) * | 2013-12-23 | 2014-04-23 | 北京邮电大学 | 一种多信息融合的定位方法和装置 |
CN103786723A (zh) * | 2012-10-30 | 2014-05-14 | 谷歌公司 | 控制车辆横向车道定位 |
CN106093994A (zh) * | 2016-05-31 | 2016-11-09 | 山东大学 | 一种基于自适应加权混合卡尔曼滤波的多源联合定位方法 |
CN109275121A (zh) * | 2018-08-20 | 2019-01-25 | 浙江工业大学 | 一种基于自适应扩展卡尔曼滤波的车辆轨迹跟踪方法 |
CN110296709A (zh) * | 2019-07-23 | 2019-10-01 | 南京邮电大学 | 基于自适应里程计模型的车载定位导航方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112818727A (zh) * | 2019-11-18 | 2021-05-18 | 华为技术有限公司 | 一种道路约束确定方法及装置 |
-
2021
- 2021-07-14 CN CN202110797145.9A patent/CN113504558B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101793528A (zh) * | 2009-01-26 | 2010-08-04 | 通用汽车环球科技运作公司 | 使用传感器融合来估计车道路径的系统和方法 |
CN103786723A (zh) * | 2012-10-30 | 2014-05-14 | 谷歌公司 | 控制车辆横向车道定位 |
CN103744096A (zh) * | 2013-12-23 | 2014-04-23 | 北京邮电大学 | 一种多信息融合的定位方法和装置 |
CN106093994A (zh) * | 2016-05-31 | 2016-11-09 | 山东大学 | 一种基于自适应加权混合卡尔曼滤波的多源联合定位方法 |
CN109275121A (zh) * | 2018-08-20 | 2019-01-25 | 浙江工业大学 | 一种基于自适应扩展卡尔曼滤波的车辆轨迹跟踪方法 |
CN110296709A (zh) * | 2019-07-23 | 2019-10-01 | 南京邮电大学 | 基于自适应里程计模型的车载定位导航方法 |
Non-Patent Citations (2)
Title |
---|
多传感器信息融合的自动驾驶车辆定位与速度估计;彭文正;敖银辉;黄晓涛;王鹏飞;;传感技术学报(第08期);全文 * |
状态约束卡尔曼滤波的导航定位精度分析;周晓敏;刘海颖;蒋鑫;夏露;;测绘科学(第04期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113504558A (zh) | 2021-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11002859B1 (en) | Intelligent vehicle positioning method based on feature point calibration | |
CN110411462B (zh) | 一种gnss/惯导/车道线约束/里程计多源融合方法 | |
CN106840179B (zh) | 一种基于多传感器信息融合的智能车定位方法 | |
CN102538781B (zh) | 基于机器视觉和惯导融合的移动机器人运动姿态估计方法 | |
CN113504558B (zh) | 一种考虑道路几何约束的地面无人车辆定位方法 | |
CN104061899B (zh) | 一种基于卡尔曼滤波的车辆侧倾角与俯仰角估计方法 | |
EP2856273B1 (en) | Pose estimation | |
CN101464152B (zh) | 一种sins/gps组合导航系统自适应滤波方法 | |
CN110779521A (zh) | 一种多源融合的高精度定位方法与装置 | |
CN103885076B (zh) | 基于gps的农业机械导航的多传感器信息融合方法 | |
CN112083726A (zh) | 一种面向园区自动驾驶的双滤波器融合定位系统 | |
CN106052691B (zh) | 激光测距移动制图中闭合环误差纠正方法 | |
CN113405545B (zh) | 定位方法、装置、电子设备及计算机存储介质 | |
CN112147651B (zh) | 一种异步多车协同目标状态鲁棒估计方法 | |
US20160231432A1 (en) | Method for determining a current position of a motor vehicle in a geodetic coordinate system and motor vehicle | |
CN112578394B (zh) | 附有几何约束的LiDAR/INS融合定位与制图方法 | |
CN111751857A (zh) | 一种车辆位姿的估算方法、装置、存储介质及系统 | |
CN112326990A (zh) | 一种作业车辆测速方法及系统 | |
CN112710301A (zh) | 一种自动驾驶车辆高精度定位方法和系统 | |
CN109975848B (zh) | 基于rtk技术的移动测量系统精度优化方法 | |
Welte et al. | Four-wheeled dead-reckoning model calibration using RTS smoothing | |
CN113008229B (zh) | 一种基于低成本车载传感器的分布式自主组合导航方法 | |
CN115060257A (zh) | 一种基于民用级惯性测量单元的车辆变道检测方法 | |
CN114915913A (zh) | 一种基于滑窗因子图的uwb-imu组合室内定位方法 | |
CN118129746A (zh) | 一种gnss/惯性/视觉的车辆组合导航方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |