CN113495275A - Passive positioning method, system and application for vertical synthetic aperture of single hydrophone - Google Patents

Passive positioning method, system and application for vertical synthetic aperture of single hydrophone Download PDF

Info

Publication number
CN113495275A
CN113495275A CN202110563538.3A CN202110563538A CN113495275A CN 113495275 A CN113495275 A CN 113495275A CN 202110563538 A CN202110563538 A CN 202110563538A CN 113495275 A CN113495275 A CN 113495275A
Authority
CN
China
Prior art keywords
target
depth
distance
vertical
hydrophone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110563538.3A
Other languages
Chinese (zh)
Other versions
CN113495275B (en
Inventor
王好忠
王良
高伟
李小雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202110563538.3A priority Critical patent/CN113495275B/en
Publication of CN113495275A publication Critical patent/CN113495275A/en
Application granted granted Critical
Publication of CN113495275B publication Critical patent/CN113495275B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明属于水中目标探测技术领域,公开了一种单水听器垂直合成孔径被动定位方法、系统及应用,构建单水听器合成垂直孔径策略与声场模型;定义速度代价函数,进行目标径向运动速度估计;定义距离‑深度模糊度函数,预估目标距离和深度;定义距离代价函数,提高目标距离和深度估计精度,得到最优目标位置。针对长孔径垂直阵存在的设计复杂度高、布放困难、姿态不易控制等问题,本发明利用垂直运动单个水听器实现垂直阵合成孔径,结合垂直阵匹配场被动定位方法,估计水下目标位置和运动速度;在降低系统设计和布设复杂度的前提条件下,充分发挥垂直阵目标探测的优势,为水下运动平台探测目标提供新思路,为改善运动平台探测能力提供技术支持。

Figure 202110563538

The invention belongs to the technical field of underwater target detection, and discloses a passive positioning method, system and application of a single hydrophone vertical synthetic aperture, constructing a single hydrophone synthetic vertical aperture strategy and a sound field model; Motion velocity estimation; define distance-depth ambiguity function to estimate target distance and depth; define distance cost function to improve target distance and depth estimation accuracy, and obtain optimal target position. Aiming at the problems of high design complexity, difficult deployment, and difficult attitude control of long-aperture vertical arrays, the present invention utilizes a single hydrophone to vertically move to realize the vertical array synthetic aperture, and combines the vertical array matching field passive positioning method to estimate underwater targets. Position and movement speed; under the premise of reducing the complexity of system design and layout, give full play to the advantages of vertical array target detection, provide new ideas for underwater moving platforms to detect targets, and provide technical support for improving the detection capabilities of moving platforms.

Figure 202110563538

Description

一种单水听器垂直合成孔径被动定位方法、系统及应用A passive positioning method, system and application of a single hydrophone vertical synthetic aperture

技术领域technical field

本发明属于水中目标探测技术领域,尤其涉及一种单水听器垂直合成孔径 被动定位方法、系统及应用。The invention belongs to the technical field of underwater target detection, and in particular relates to a single hydrophone vertical synthetic aperture passive positioning method, system and application.

背景技术Background technique

目前,水中目标辐射噪声多集中于低频段,声波波长较长,无论是目标方 位分辨能力,还是目标定位精度,都对声纳孔径提出了更高的要求。相对于单 水听器或短孔径基阵,长基阵声纳系统在设计复杂度和工程布放难度都有明显 提高,因此基于单水听器或者短阵的合成孔径声纳被动探测技术在水声对抗和 目标探测定位中得到广泛应用。At present, the radiated noise of targets in water is mostly concentrated in the low frequency band, and the wavelength of the sound wave is long. Whether it is the target azimuth resolution ability or the target positioning accuracy, higher requirements are put forward for the sonar aperture. Compared with a single hydrophone or a short aperture array, the design complexity and engineering deployment difficulty of a long array sonar system are significantly improved. Therefore, the passive detection technology of synthetic aperture sonar based on a single hydrophone or a short array is widely used. It is widely used in underwater acoustic countermeasures and target detection and positioning.

国内外学者对基于垂直阵的匹配场被动定位方法也做了大量的理论和实验 研究,研究结果表明:垂直阵相对于水平阵在低频目标探测和定位中具有一定 的优势。但是实际应用中,由于垂直阵在布放及姿态控制方面存在较大劣势, 尤其对于运动载体,并且在深海环境下,也很难保证垂直阵的有效孔径。Scholars at home and abroad have also done a lot of theoretical and experimental research on the matching field passive localization method based on vertical array. The research results show that compared with horizontal array, vertical array has certain advantages in low-frequency target detection and localization. However, in practical applications, since the vertical array has great disadvantages in deployment and attitude control, especially for moving carriers, and in the deep sea environment, it is difficult to ensure the effective aperture of the vertical array.

(1)长孔径垂直阵设计复杂度高、工程实用性差(1) Long aperture vertical array has high design complexity and poor engineering practicability

长孔径垂直阵存在的设计复杂度高、布放困难、姿态不易控制等问题,尤 其是对运动载体而言,长孔径垂直阵的布放几乎不可能,这也限制了垂直阵的 应用。单水听器合成孔径可以简化系统设计复杂度,提高探测系统的机动性和 灵活性。Long-aperture vertical arrays have problems such as high design complexity, difficult deployment, and difficult attitude control. Especially for moving carriers, the deployment of long-aperture vertical arrays is almost impossible, which also limits the application of vertical arrays. A single hydrophone synthetic aperture can simplify the system design complexity and improve the maneuverability and flexibility of the detection system.

(2)水下运动探测平台缺乏有效垂直阵列合成技术(2) The underwater motion detection platform lacks effective vertical array synthesis technology

目前基于运动小平台的分布式探测方式被广泛关注和应用,多平台协作需 要信息传输,单平台探测能力有限。为了提高单平台的探测能力,有必要开展 基于垂向运动单平台的垂直合成孔径技术研究,充分发挥垂直阵在水中目标探 测应用中的优势。At present, distributed detection methods based on small motion platforms have been widely concerned and applied. Multi-platform cooperation requires information transmission, and the detection capability of a single platform is limited. In order to improve the detection capability of a single platform, it is necessary to carry out research on vertical synthetic aperture technology based on a single platform with vertical motion, and give full play to the advantages of vertical arrays in the application of underwater target detection.

目前水下滑翔机、UUV、波浪滑翔机、潜标浮标系统等水下运动小平台被 广泛应用与水中目标探测领域,利用水下运动探测平台的垂向移动信息以及移 动过程中获取的声学数据,通过垂直合成孔径技术充分开发阵列处理在声探测 中的优势,为运动小平台提供新的探测手段,进而提高运动平台的声探测能力。At present, small underwater platforms such as underwater gliders, UUVs, wave gliders, and submersible buoy systems are widely used in the field of underwater target detection. Using the vertical movement information of the underwater movement detection platform and the acoustic data obtained during the movement, through The vertical synthetic aperture technology fully exploits the advantages of array processing in acoustic detection, provides new detection methods for small moving platforms, and improves the acoustic detection capabilities of moving platforms.

虽然水平合成孔径技术及其相应定位方法相对成熟,但是垂直合成孔径定 位方法目前公开报道较少。因此,垂直合成孔径也为水下运动平台探测水中目 标提供一种新思路。Although the horizontal synthetic aperture technology and its corresponding positioning methods are relatively mature, there are few public reports on the vertical synthetic aperture positioning method. Therefore, the vertical synthetic aperture also provides a new idea for the underwater motion platform to detect underwater targets.

通过上述分析,现有技术存在的问题及缺陷为:Through the above analysis, the existing problems and defects in the prior art are:

(1)长孔径垂直阵存在的设计复杂度高、布放困难、姿态不易控制等问题, 尤其对运动载体而言,长孔径垂直阵的布放几乎不可能,限制了垂直阵的应用。(1) Long-aperture vertical arrays have problems such as high design complexity, difficult deployment, and difficult attitude control. Especially for moving carriers, the deployment of long-aperture vertical arrays is almost impossible, which limits the application of vertical arrays.

(2)水下运动探测平台缺乏有效垂直阵列合成技术,多平台协作需要信息 传输,单平台探测能力有限。(2) The underwater motion detection platform lacks effective vertical array synthesis technology, information transmission is required for multi-platform cooperation, and the detection capability of a single platform is limited.

(3)关于垂直合成孔径定位方法目前公开报道较少。(3) There are few public reports about the vertical synthetic aperture positioning method.

解决以上问题及缺陷的难度为:The difficulty of solving the above problems and defects is as follows:

(1)运动平台无法携带垂直阵,垂直阵只能以潜浮标和固定平台方式工作, 而运动平台是声纳系统的主要载体,运动平台垂直阵探测技术需要另辟蹊径。(1) The moving platform cannot carry the vertical array. The vertical array can only work in the form of submersible buoys and fixed platforms. The moving platform is the main carrier of the sonar system. The vertical array detection technology of the moving platform needs to find another way.

(2)目前合成孔径技术多用于水平方向,针对水下运动平台的垂直合成孔 径技术亟待开发。(2) At present, the synthetic aperture technology is mostly used in the horizontal direction, and the vertical synthetic aperture technology for the underwater sports platform needs to be developed urgently.

(3)设计模基匹配的单水听器垂直合成孔径方法,实现速度和距离+深度 “1+2”维参数估计算法是实现被动定位的关键。(3) Designing a single-hydrophone vertical synthetic aperture method of mode base matching, and realizing the "1+2" dimension parameter estimation algorithm of speed and distance + depth is the key to realize passive positioning.

解决以上问题及缺陷的意义为:The significance of solving the above problems and defects is:

(1)在降低垂直阵系统设计和布设复杂度的前提下,充分发挥垂直阵目标 探测的优势,适用于UUV、AUV、滑翔机等多种平台。(1) Under the premise of reducing the complexity of vertical array system design and deployment, the advantages of vertical array target detection can be fully utilized, and it is suitable for UUV, AUV, glider and other platforms.

(2)符合目前小平台探测技术发展趋势,为运动小平台提供新的探测手段, 为提高单个水下小平台探测能力提供技术支持。(2) In line with the current development trend of small platform detection technology, it provides new detection methods for moving small platforms, and provides technical support for improving the detection capability of a single underwater small platform.

(3)单水听器垂直合成孔径处理可有效减少信息传输量,为多平台协作减 轻数据通信压力。(3) The vertical synthetic aperture processing of a single hydrophone can effectively reduce the amount of information transmission and reduce the pressure of data communication for multi-platform cooperation.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明提供了一种单水听器垂直合成孔径被动 定位方法、系统及应用,旨在解决长孔径垂直阵存在的设计复杂度高、布放困 难、姿态不易控制等问题。Aiming at the problems existing in the prior art, the present invention provides a single hydrophone vertical synthetic aperture passive positioning method, system and application, aiming to solve the problems of high design complexity, difficult deployment and difficult attitude control of long aperture vertical arrays. And other issues.

本发明是这样实现的,一种单水听器垂直合成孔径被动定位方法,所述单 水听器垂直合成孔径被动定位方法包括以下步骤:The present invention is realized like this, a kind of single hydrophone vertical synthetic aperture passive positioning method, described single hydrophone vertical synthetic aperture passive positioning method comprises the following steps:

步骤一,构建单水听器合成垂直孔径策略与声场模型;提供单水听器垂直 合成孔径被动定位的理论基础和匹配处理的正演声场模型。The first step is to construct a single hydrophone synthetic vertical aperture strategy and sound field model; provide the theoretical basis for the passive positioning of the single hydrophone vertical synthetic aperture and a forward sound field model for matching processing.

步骤二,定义速度代价函数,估计目标径向运动速度;通过测量环境数据 和声场模型计算,利用模基匹配和寻优算法,获取目标运动信息,并为目标距 离-深度预估提供先验信息。Step 2: Define the velocity cost function and estimate the radial motion velocity of the target; by measuring the environmental data and calculating the sound field model, using the model-based matching and optimization algorithm, the target motion information is obtained, and the a priori information is provided for the target distance-depth estimation .

步骤三,定义距离-深度模糊度函数,预估目标距离和深度;在已知径向运 动速度的前提下,结合传统匹配场处理思路,提供预估目标距离和深度的模糊 度函数,是下一步精确估计目标位置的前提。Step 3: Define the distance-depth ambiguity function, and estimate the target distance and depth; on the premise of known radial motion velocity, combined with the traditional matching field processing idea, provide the ambiguity function for estimating the target distance and depth, which is as follows: The premise of accurately estimating the target position in one step.

步骤四,定义距离估计代价函数,提高目标距离估计精度,得到最优目标 位置估计结果;利用目标距离-深度模糊度函数,进一步定义距离估计代价函数, 减少旁瓣和多值性影响,提高距离估计精度,并给出最优目标位置估计结果。Step 4: Define the cost function of distance estimation, improve the accuracy of target distance estimation, and obtain the optimal target position estimation result; use the target distance-depth ambiguity function to further define the cost function of distance estimation, reduce the influence of side lobes and multi-values, and improve the distance Estimate the accuracy and give the optimal target position estimation result.

进一步,步骤一中,所述构建单水听器合成垂直孔径策略与声场模型,包 括:Further, in step 1, described constructing single hydrophone synthetic vertical aperture strategy and sound field model, including:

假设目标沿与目标和水听器的水平连线夹角θ方向做匀速运动,速度为V, 径向运动速度v=Vcosθ,目标辐射圆频率为ω的简谐信号;无指向性水听器在深 度方向做匀速运动,移动速度为u。水听器在0时刻的深度为z0,在T时刻移动的 海底深度H。以0时刻的水听器为参考点,假设目标的未知水平距离为r0,目标 深度为zs,在几何上可以近似等效为目标是静止的,水听器垂向运动速度为u, 水平运动速度为-v。Assume that the target moves at a constant speed along the angle θ between the horizontal line connecting the target and the hydrophone, the velocity is V, the radial velocity v=Vcosθ, and the target radiates a simple harmonic signal with a circular frequency of ω; the non-directional hydrophone Do a uniform motion in the depth direction, and the moving speed is u. The depth of the hydrophone at time 0 is z 0 , and the depth H of the ocean floor at time T moves. Taking the hydrophone at time 0 as the reference point, assuming that the unknown horizontal distance of the target is r 0 and the target depth is z s , it can be approximately equivalent geometrically that the target is stationary, and the vertical velocity of the hydrophone is u, Horizontal movement speed is -v.

如果已知海洋环境信息,计算得到简正波本征波数kn和本征函数Φn(z),水 听器在t∈[0,T]时间内接收的声压解析信号为:If the marine environment information is known, the normal wave eigenwave number k n and the eigenfunction Φ n (z) are calculated, and the sound pressure analysis signal received by the hydrophone in the time t∈[0,T] is:

Figure BDA0003079997820000041
Figure BDA0003079997820000041

其中,

Figure BDA0003079997820000042
in,
Figure BDA0003079997820000042

如果以运动目标作为参考点,水听器的移动轨迹可以合成一条倾斜的线列 阵,阵元水平间距为ΔR=vcosθΔt,垂直间距为ΔZ=uΔt,Δt为垂直阵合成采样时 间。第n个等效阵元,即第n个采样时刻接收的信号为:If the moving target is used as the reference point, the movement trajectory of the hydrophone can be synthesized into an inclined line array. The horizontal spacing of the array elements is ΔR=vcosθΔt, the vertical spacing is ΔZ=uΔt, and Δt is the vertical array synthesis sampling time. The n-th equivalent array element, that is, the signal received at the n-th sampling time is:

Figure BDA0003079997820000043
Figure BDA0003079997820000043

进一步,所述海洋环境信息的获取方法为:在水听器下放期间附带温度压 力传感器,测量温度剖面和水听器在不同时刻的实际深度。Further, the method for obtaining the marine environment information is as follows: attaching a temperature and pressure sensor during the lowering of the hydrophone to measure the temperature profile and the actual depth of the hydrophone at different times.

进一步,步骤二中,所述目标径向运动速度估计,包括:Further, in step 2, the target radial motion velocity estimation includes:

类似于加权波数形成处理,设定目标移动速度区间v'∈[V1,V2],以exp(-ikmv't)为“导向”矢量,第m号简正波的本征函数Φm(z0+ut)为加权矢量做如下处理:Similar to the weighted wave number forming process, set the target moving speed interval v'∈[V 1 ,V 2 ], take exp(-ik m v't) as the "steering" vector, the eigenfunction Φ m of the mth normal wave (z 0 +ut) does the following for the weighted vector:

Figure BDA0003079997820000044
Figure BDA0003079997820000044

在(3)式数值积分时,时间步长要满足vΔt<λ,即合成孔径的水平间距小 于声波波长。不失一般性,令z0=0,uT=H,H为水体深度。In the numerical integration of formula (3), the time step should satisfy vΔt<λ, that is, the horizontal spacing of the synthetic aperture is smaller than the wavelength of the acoustic wave. Without loss of generality, let z 0 =0, uT = H, and H is the depth of the water body.

根据简正波的正交性可知,当n=m,v’=v时,|Fm|取最大值。According to the orthogonality of normal waves, when n=m and v'=v, |F m | takes the maximum value.

定义确定目标运动速度的代价函数:Define the cost function that determines the speed of the target movement:

Figure BDA0003079997820000051
Figure BDA0003079997820000051

代价函数的最大值对应于目标径向移动速度的估计值:The maximum value of the cost function corresponds to an estimate of the radial velocity of the target:

Figure BDA0003079997820000052
Figure BDA0003079997820000052

进一步,步骤三中,所述定义距离-深度模糊度函数,包括:Further, in step 3, the defined distance-depth ambiguity function includes:

把(3)式写作矩阵形式:Write equation (3) in matrix form:

F=MS (6)F=MS (6)

其中,in,

F=[F1(v),F1(v),......,FN(v)]TF=[F 1 (v),F 1 (v),...,F N (v)] T ;

Figure BDA0003079997820000053
Figure BDA0003079997820000053

Figure BDA0003079997820000054
Figure BDA0003079997820000054

则有:Then there are:

S=M-1F (8)S = M -1 F (8)

定义估计目标距离和深度(r-z)的模糊度函数为:The ambiguity function that defines the estimated target distance and depth (r-z) is:

Figure BDA0003079997820000055
Figure BDA0003079997820000055

把(7)式代入(9)式,当r=r0时,模糊度函数可以近似表示为:Substituting equation (7) into equation (9), when r=r0, the ambiguity function can be approximately expressed as:

Figure BDA0003079997820000056
Figure BDA0003079997820000056

模糊度函数RD最大值对应的距离和深度为目标距离和深度:The distance and depth corresponding to the maximum value of the ambiguity function RD are the target distance and depth:

Figure BDA0003079997820000057
Figure BDA0003079997820000057

进一步,步骤四中,所述定义距离估计代价函数,包括:Further, in step 4, the defined distance estimation cost function includes:

跟匹配场处理方法类似,利用(11)式估计声源位置,在r-z模糊度平面内 出现多个极大值,为了更好的判断真实位置,归一化代价函数|RD(r,z)|为:Similar to the matching field processing method, Equation (11) is used to estimate the position of the sound source, and multiple maxima appear in the r-z ambiguity plane. In order to better judge the real position, the normalized cost function |RD(r,z) | is:

Figure BDA0003079997820000058
Figure BDA0003079997820000058

定义距离代价函数,考察不同距离处深度估计的准确度:Define the distance cost function to examine the accuracy of depth estimation at different distances:

Figure BDA0003079997820000061
Figure BDA0003079997820000061

其中,

Figure BDA0003079997820000062
in,
Figure BDA0003079997820000062

则距离的估计值为:Then the estimated distance is:

Figure BDA0003079997820000063
Figure BDA0003079997820000063

最优目标位置估计结果为:The optimal target position estimation result is:

(rs,zs)=(rmax,zmax(rmax)) (15)(r s ,z s )=(r max ,z max (r max )) (15)

本发明的另一目的在于提供一种应用所述的单水听器垂直合成孔径被动定 位方法的单水听器垂直合成孔径被动定位系统,所述单水听器垂直合成孔径被 动定位系统包括:Another object of the present invention is to provide a single hydrophone vertical synthetic aperture passive positioning system applying the single hydrophone vertical synthetic aperture passive positioning method, and the single hydrophone vertical synthetic aperture passive positioning system comprises:

模型构建模块,用于构建单水听器合成垂直孔径策略与声场模型;Model building module for building a single hydrophone synthetic vertical aperture strategy and sound field model;

运动速度估计模块,用于通过定义速度估计代价函数,进行目标径向运动 速度估计;The motion velocity estimation module is used to estimate the radial motion velocity of the target by defining the velocity estimation cost function;

目标位置预估模块,用于通过定义距离-深度模糊度函数,预估目标距离和 深度;The target position estimation module is used to estimate the target distance and depth by defining the distance-depth ambiguity function;

目标位置估计模块,用于通过定义距离估计代价函数,提高目标距离和深 度估计精度,得到最优目标位置估计结果。The target position estimation module is used to improve the target distance and depth estimation accuracy by defining the distance estimation cost function, and obtain the optimal target position estimation result.

本发明的另一目的在于提供一种计算机设备,所述计算机设备包括存储器 和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行 时,使得所述处理器执行如下步骤:Another object of the present invention is to provide a computer device, the computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following step:

(1)构建单水听器合成垂直孔径策略与声场模型;(1) Build a synthetic vertical aperture strategy and sound field model for a single hydrophone;

(2)定义速度估计代价函数,估计目标径向运动速度;(2) Define the speed estimation cost function to estimate the radial motion speed of the target;

(3)定义距离-深度模糊度函数,预估目标距离和深度;(3) Define the distance-depth ambiguity function to estimate the target distance and depth;

(4)定义距离估计代价函数,提高目标距离和深度估计精度,得到最优目 标位置。(4) Define the cost function of distance estimation, improve the accuracy of target distance and depth estimation, and obtain the optimal target position.

本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序, 所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:Another object of the present invention is to provide a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor performs the following steps:

(1)构建单水听器合成垂直孔径策略与声场模型;(1) Build a synthetic vertical aperture strategy and sound field model for a single hydrophone;

(2)定义速度估计代价函数,估计目标径向运动速度;(2) Define the speed estimation cost function to estimate the radial motion speed of the target;

(3)定义距离-深度模糊度函数,预估目标距离和深度;(3) Define the distance-depth ambiguity function to estimate the target distance and depth;

(4)定义距离估计代价函数,提高目标距离和深度估计精度,得到最优目 标位置。(4) Define the cost function of distance estimation, improve the accuracy of target distance and depth estimation, and obtain the optimal target position.

本发明的另一目的在于提供一种信息数据处理终端,所述信息数据处理终 端用于实现所述的单水听器垂直合成孔径被动定位系统。Another object of the present invention is to provide an information data processing terminal for implementing the single hydrophone vertical synthetic aperture passive positioning system.

结合上述的所有技术方案,本发明所具备的优点及积极效果为:理论和实 验研究表明基于垂直阵的被动定位技术在低频水下声学目标被动探测与定位中 具有一定优势。针对长孔径垂直阵存在的设计复杂度高、布放困难、姿态不易 控制等问题,本发明利用垂直运动的单个水听器实现垂直阵合成孔径,结合垂 直阵匹配场被动定位方法,估计水下目标位置和运动速度等信息。本发明在降 低系统设计和布设复杂度的前提条件下,充分发挥垂直阵目标探测的优势,为 水下运动平台探测目标提供新思路,为改善运动平台的探测能力提供技术支持。 同时,本发明提供的单水听器垂直合成孔径被动定位方法还具有以下效果:Combined with all the above technical solutions, the advantages and positive effects of the present invention are as follows: theoretical and experimental studies show that the passive positioning technology based on vertical array has certain advantages in passive detection and positioning of low-frequency underwater acoustic targets. Aiming at the problems of high design complexity, difficult deployment, and difficult attitude control of long-aperture vertical arrays, the present invention utilizes a single hydrophone that moves vertically to realize the vertical array synthetic aperture, and combines the vertical array matching field passive positioning method to estimate underwater Information such as target position and movement speed. Under the premise of reducing the complexity of system design and layout, the present invention gives full play to the advantages of vertical array target detection, provides new ideas for the detection of targets of the underwater moving platform, and provides technical support for improving the detection capability of the moving platform. Meanwhile, the single hydrophone vertical synthetic aperture passive positioning method provided by the present invention also has the following effects:

(1)系统设计复杂度低(1) Low system design complexity

基于单水听器垂直阵合成孔径的被动定位系统设计复杂度低,相比于长孔 径垂直阵探测系统,该方法仅需要一个水听器或几个水听器构成的短基阵。The passive positioning system based on a single hydrophone vertical array synthetic aperture has low design complexity. Compared with the long aperture vertical array detection system, this method only needs one hydrophone or a short array composed of several hydrophones.

(2)适用于多种安装平台(2) Suitable for a variety of installation platforms

垂直阵合成孔径配以压力传感器和载体水文绞车(或者其它吊车)工作。 船载绞车、水下无人运动平台,潜标浮标系统。The vertical array synthetic aperture is matched with pressure sensor and carrier hydrology winch (or other crane). Ship-borne winch, underwater unmanned motion platform, submersible buoy system.

(3)探测方式多样化(3) Diversified detection methods

既可以单基地工作,也可以分布式协作。无论是船载方式,还是搭载水下 无人平台或潜标浮标系统,可以实现多平台协作模式,适用于大范围分布式探 测,大大提高了探测系统的机动性和灵活性。It can work on a single base or in distributed collaboration. Whether it is a ship-borne method or an underwater unmanned platform or a submersible buoy system, it can realize a multi-platform cooperation mode, which is suitable for large-scale distributed detection, which greatly improves the mobility and flexibility of the detection system.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所 需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下 还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following will briefly introduce the accompanying drawings that need to be used in the embodiments of the present invention. Obviously, the drawings described below are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例提供的单水听器垂直合成孔径被动定位方法流程图。FIG. 1 is a flowchart of a method for passively positioning a vertical synthetic aperture of a single hydrophone according to an embodiment of the present invention.

图2是本发明实施例提供的单水听器垂直合成孔径被动定位系统结构框图;2 is a structural block diagram of a single hydrophone vertical synthetic aperture passive positioning system provided by an embodiment of the present invention;

图中:1、模型构建模块;2、运动速度估计模块;3、目标参数计算模块; 4、目标位置估计模块。In the figure: 1. Model building module; 2. Movement velocity estimation module; 3. Target parameter calculation module; 4. Target position estimation module.

图3是本发明实施例提供的单水听器垂直阵合成孔径示意图。FIG. 3 is a schematic diagram of a vertical array synthetic aperture of a single hydrophone provided by an embodiment of the present invention.

图3(a)是本发明实施例提供的目标以速度v沿与目标-水听器连线夹角θ方 向做匀速直线运动,目标移动的同时水听器以速度u沿深度方向做匀速直线运 动的示意图。Fig. 3 (a) is that the target provided by the embodiment of the present invention moves at a constant speed along the direction of the included angle θ between the target and the hydrophone, and the hydrophone moves at a constant speed along the depth direction at a speed u while the target moves. Schematic diagram of the movement.

图3(b)是本发明实施例提供的合成孔径,假设目标固定,根据不同时刻水听 器所在的深度和相对目标的距离可以合成一条倾斜的线列阵的示意图,阵元水 平间距为ΔR=vΔt,垂直间距为ΔZ=uΔt,Δt为合成孔径采样时间。Figure 3(b) is a schematic diagram of a synthetic aperture provided by an embodiment of the present invention. Assuming that the target is fixed, an inclined linear array can be synthesized according to the depth of the hydrophone at different times and the distance from the target. The horizontal spacing of the array elements is ΔR =vΔt, the vertical spacing is ΔZ=uΔt, and Δt is the synthetic aperture sampling time.

图4是本发明实施例提供的目标与水听器相对位置和运动状态俯视图。FIG. 4 is a top view of the relative position and motion state of the target and the hydrophone provided by an embodiment of the present invention.

图5是本发明实施例提供的目标径向速度估计结果示意图(速度5m/s)。FIG. 5 is a schematic diagram of a target radial velocity estimation result (velocity 5 m/s) provided by an embodiment of the present invention.

图6是本发明实施例提供的目标距离-深度估计结果示意图(距离6km,深 度30m)。Fig. 6 is a schematic diagram of a target distance-depth estimation result provided by an embodiment of the present invention (distance 6km, depth 30m).

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例, 对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以 解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

针对现有技术存在的问题,本发明提供了一种单水听器垂直合成孔径被动 定位方法、系统及应用,下面结合附图对本发明作详细的描述。In view of the problems existing in the prior art, the present invention provides a method, system and application for passive positioning of a single hydrophone vertical synthetic aperture. The present invention will be described in detail below with reference to the accompanying drawings.

如图1所示,本发明实施例提供的单水听器垂直合成孔径被动定位方法包 括以下步骤:As shown in Figure 1, the single hydrophone vertical synthetic aperture passive positioning method provided by the embodiment of the present invention comprises the following steps:

S101,构建单水听器合成垂直孔径策略与声场模型;S101, build a single hydrophone synthetic vertical aperture strategy and sound field model;

S102,定义速度估计代价函数,进行目标径向运动速度估计;S102, define a speed estimation cost function, and perform target radial motion speed estimation;

S103,定义距离-深度模糊度函数,预估目标距离和深度;S103, define a distance-depth ambiguity function, and estimate the target distance and depth;

S104,定义距离估计代价函数,提高距离和深度估计精度,得到最优目标 位置估计结果。S104, define a distance estimation cost function, improve the distance and depth estimation accuracy, and obtain an optimal target position estimation result.

如图2所示,本发明实施例提供的单水听器垂直合成孔径被动定位系统包 括:As shown in Figure 2, the single hydrophone vertical synthetic aperture passive positioning system provided by the embodiment of the present invention includes:

模型构建模块1,用于构建单水听器合成垂直孔径策略与声场模型;Model building module 1, used to build a single hydrophone synthetic vertical aperture strategy and sound field model;

运动速度估计模块2,用于通过定义速度估计代价函数,进行目标径向运动 速度估计;The motion speed estimation module 2 is used to estimate the radial motion speed of the target by defining the cost function of speed estimation;

目标参数计算模块3,用于通过定义距离-深度模糊度函数,预估目标距离 和深度;The target parameter calculation module 3 is used to estimate the target distance and depth by defining a distance-depth ambiguity function;

目标位置估计模块4,用于通过定义距离估计代价函数,提高距离和深度估 计精度,得到最优目标位置估计结果。The target position estimation module 4 is used to improve the distance and depth estimation accuracy by defining the distance estimation cost function, and obtain the optimal target position estimation result.

下面结合实施例对本发明的技术方案作进一步描述。The technical solutions of the present invention will be further described below in conjunction with the embodiments.

实施例1Example 1

理论和实验研究表明基于垂直阵的被动定位技术在低频水下声学目标被动 探测与定位中具有一定优势。针对长孔径垂直阵存在的设计复杂度高、布放困 难、姿态不易控制等问题,利用垂直运动的单个水听器实现垂直阵合成孔径, 结合垂直阵匹配场被动定位方法,估计水下目标位置和运动速度等信息。在降 低系统设计和布设复杂度的前提条件下,充分发挥垂直阵目标探测的优势,为 水下运动平台探测目标提供新思路,为改善运动平台的探测能力提供技术支持。Theoretical and experimental studies show that the passive localization technology based on vertical array has certain advantages in passive detection and localization of low-frequency underwater acoustic targets. In view of the problems of high design complexity, difficult deployment, and difficult attitude control of long-aperture vertical arrays, a single hydrophone that moves vertically is used to realize the vertical array synthetic aperture, and combined with the passive positioning method of the vertical array matching field, the underwater target position is estimated. and movement speed. Under the premise of reducing the complexity of system design and layout, the advantages of vertical array target detection are given full play, new ideas are provided for the detection of targets of underwater moving platforms, and technical support is provided for improving the detection capabilities of moving platforms.

本发明实施例提供的单水听器垂直合成孔径被动定位方法包括:The passive positioning method for the vertical synthetic aperture of a single hydrophone provided by the embodiment of the present invention includes:

步骤1:单水听器合成垂直孔径策略与声场模型Step 1: Single-hydrophone synthetic vertical aperture strategy and sound field model

为了简化垂直合成孔径模型,这里考虑水平不变的分层介质波导,利用简 正波方法分析讨论垂直合成孔径的基本原理。假设目标沿与目标和水听器的水 平连线夹角θ方向做匀速运动,速度为V,径向运动速度v=Vcosθ,目标辐射圆频 率为ω的简谐信号;无指向性水听器在深度方向做匀速运动,移动速度为u。水 听器在0时刻的深度为z0,在T时刻移动的海底深度H。假设目标的未知水平距离 (以0时刻的水听器为参考点)为r0,目标深度为zs,如图3(a)所示。这在几何上 可以近似等效为目标是静止的,水听器垂向运动速度为u,水平运动速度为-v, 如图3(b)所示。图4为目标和水听器位置关系的俯视图。In order to simplify the vertical synthetic aperture model, the layered dielectric waveguide with constant level is considered here, and the basic principle of the vertical synthetic aperture is analyzed and discussed by using the normal wave method. Assume that the target moves at a uniform speed along the angle θ between the target and the horizontal line connecting the target and the hydrophone, the velocity is V, the radial velocity v=Vcosθ, and the target radiates a simple harmonic signal with a circular frequency of ω; the non-directional hydrophone Do a uniform motion in the depth direction, and the moving speed is u. The depth of the hydrophone at time 0 is z 0 , and the depth H of the ocean floor at time T moves. Assume that the unknown horizontal distance of the target (with the hydrophone at time 0 as the reference point) is r 0 , and the depth of the target is z s , as shown in Figure 3(a). This can be approximately equivalent geometrically as the target is stationary, the vertical motion speed of the hydrophone is u, and the horizontal motion speed is -v, as shown in Fig. 3(b). Figure 4 is a top view of the positional relationship between the target and the hydrophone.

如果已知海洋环境信息(可以在水听器下放期间附带温度压力传感器,测 量温度剖面和水听器在不同时刻的实际深度),可以计算得到简正波本征波数kn和本征函数Φn(z),水听器在t∈[0,T]时间内接收的声压解析信号为:If the marine environment information is known (a temperature and pressure sensor can be attached during the deployment of the hydrophone to measure the temperature profile and the actual depth of the hydrophone at different times), the normal wave eigenwave number k n and the eigenfunction Φ n can be calculated ( z), the sound pressure analysis signal received by the hydrophone in the time t∈[0,T] is:

Figure BDA0003079997820000101
Figure BDA0003079997820000101

其中,

Figure BDA0003079997820000102
如果以运动目标作为参考点,水听器的移动 轨迹可以合成一条倾斜的线列阵,阵元水平间距为ΔR=vcosθΔt,垂直间距为 ΔZ=uΔt,Δt为垂直阵合成采样时间,如图3(b)所示。第n个等效阵元(第n个采样 时刻)接收的信号为:in,
Figure BDA0003079997820000102
If the moving target is used as the reference point, the movement trajectory of the hydrophone can be synthesized into an inclined line array. The horizontal spacing of the array elements is ΔR=vcosθΔt, the vertical spacing is ΔZ=uΔt, and Δt is the vertical array synthesis sampling time, as shown in Figure 3 (b). The signal received by the n-th equivalent array element (the n-th sampling time) is:

Figure BDA0003079997820000103
Figure BDA0003079997820000103

步骤2:目标径向运动速度估计方法Step 2: Target radial motion velocity estimation method

类似于加权波数形成处理,设定目标移动速度区间v'∈[V1,V2],以exp(-ikmv't)为“导向”矢量,第m号简正波的本征函数Φm(z0+ut)为加权矢量做如下处理:Similar to the weighted wave number forming process, set the target moving speed interval v'∈[V 1 ,V 2 ], take exp(-ik m v't) as the "steering" vector, the eigenfunction Φ m of the mth normal wave (z 0 +ut) does the following for the weighted vector:

Figure BDA0003079997820000111
Figure BDA0003079997820000111

为防止栅瓣出现,在(3)式数值积分时,时间步长要满足vΔt<λ,即合成 孔径的水平间距小于声波波长。不失一般性,令z0=0,uT=H,H为水体深度。In order to prevent the occurrence of grating lobes, in the numerical integration of equation (3), the time step should satisfy vΔt<λ, that is, the horizontal spacing of the synthetic aperture is smaller than the wavelength of the acoustic wave. Without loss of generality, let z 0 =0, uT = H, and H is the depth of the water body.

根据简正波的正交性可知,当n=m,v’=v时,|Fm|取最大值。定义确定目标 运动速度的代价函数:According to the orthogonality of normal waves, when n=m and v'=v, |F m | takes the maximum value. Define the cost function that determines the speed of the target movement:

Figure BDA0003079997820000112
Figure BDA0003079997820000112

代价函数的最大值对应于目标径向移动速度的估计值:The maximum value of the cost function corresponds to an estimate of the radial velocity of the target:

Figure BDA0003079997820000113
Figure BDA0003079997820000113

步骤3:距离-深度模糊度函数Step 3: Distance-Depth Ambiguity Function

把(3)式写作矩阵形式:Write equation (3) in matrix form:

F=MS (6)F=MS (6)

其中,in,

F=[F1(v),F1(v),......,FN(v)]TF=[F 1 (v),F 1 (v),...,F N (v)] T ;

Figure BDA0003079997820000114
Figure BDA0003079997820000114

Figure BDA0003079997820000115
Figure BDA0003079997820000115

则有:Then there are:

S=M-1F (8)S = M -1 F (8)

定义估计目标距离和深度(r-z)的模糊度函数为:The ambiguity function that defines the estimated target distance and depth (r-z) is:

Figure BDA0003079997820000116
Figure BDA0003079997820000116

把(7)式代入(9)式,当r=r0时,模糊度函数可以近似表示为:Substituting equation (7) into equation (9), when r=r0, the ambiguity function can be approximately expressed as:

Figure BDA0003079997820000121
Figure BDA0003079997820000121

模糊度函数RD最大值对应的距离和深度为目标距离和深度。The distance and depth corresponding to the maximum value of the ambiguity function RD are the target distance and depth.

Figure BDA0003079997820000122
Figure BDA0003079997820000122

步骤4:距离估计代价函数Step 4: Distance Estimation Cost Function

跟匹配场处理方法类似,利用(11)式估计声源位置,在r-z模糊度平面内 出现多个极大值,为了更好的判断真实位置,归一化代价函数|RD(r,z)|为:Similar to the matching field processing method, Equation (11) is used to estimate the position of the sound source, and multiple maxima appear in the r-z ambiguity plane. In order to better judge the real position, the normalized cost function |RD(r,z) | for:

Figure BDA0003079997820000123
Figure BDA0003079997820000123

为了考察不同距离处深度估计的准确度,定义距离代价函数:In order to examine the accuracy of depth estimation at different distances, a distance cost function is defined:

Figure BDA0003079997820000124
Figure BDA0003079997820000124

其中

Figure BDA0003079997820000125
in
Figure BDA0003079997820000125

则距离的估计值为:Then the estimated distance is:

Figure RE-GDA0003223316580000126
Figure RE-GDA0003223316580000126

最优目标位置估计结果为:The optimal target position estimation result is:

(rs,zs)=(rmax,zmax(rmax)) (15)(r s ,z s )=(r max ,z max (r max )) (15)

实施例2:仿真算例Example 2: Simulation example

仿真环境为Pekeris波导,水体均匀,深度60m,声速为1500m/s,密度 1.024g/cm3;海底为液态半无限空间,密度为1.7g/cm3,声速为1650m/s,衰减 系数为0.3dB/λ。声源频率1000Hz,其共有15阶传播模态简正波。设目标深度 为30m,目标沿目标-水听器连线径向匀速运动,速度为v=5m/s,水听器垂直移 动速度为u=1m/s,初始距离为r0=6km。目标移动速度搜索区间[0m/s,10m/s],间 隔0.5m/s。为防止栅瓣出现,在(2)式数值积分时,时间步长要满足vΔt<λ, 即合成孔径的水平间距小于声波波长,本算例令Δt=0.1s,一般情况下实验数据 采样时间间隔远小于0.1s,满足抑制栅瓣的条件。The simulation environment is Pekeris waveguide, the water body is uniform, the depth is 60m, the speed of sound is 1500m/s, and the density is 1.024g/cm 3 ; the seabed is a liquid semi-infinite space, the density is 1.7g/cm 3 , the speed of sound is 1650m/s, and the attenuation coefficient is 0.3 dB/λ. The frequency of the sound source is 1000 Hz, and it has a total of 15 normal waves of propagation modes. Set the target depth to 30m, the target to move at a uniform radial speed along the target-hydrophone connection line, the speed is v=5m/s, the vertical movement speed of the hydrophone is u=1m/s, and the initial distance is r 0 =6km. The target moving speed search interval [0m/s, 10m/s], the interval is 0.5m/s. In order to prevent the occurrence of grating lobes, in the numerical integration of equation (2), the time step should satisfy vΔt < λ, that is, the horizontal spacing of the synthetic aperture is smaller than the wavelength of the acoustic wave. In this example, Δt = 0.1s. In general, the sampling time of experimental data is The interval is much less than 0.1s, which satisfies the condition of suppressing grating lobes.

图5为利用公式(5)估计的目标径向运动速度结果;图6为利用公式(11) 估计的目标距离-深度模糊度函数结果,最大值对应的距离和深度分别为6km和 30m。Figure 5 is the result of the target radial motion velocity estimated by formula (5); Figure 6 is the result of the target distance-depth ambiguity function estimated by formula (11). The distance and depth corresponding to the maximum value are 6km and 30m, respectively.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组 合来实现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程 序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指 令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可 以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算 机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向 另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、 计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)或 无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据 中心进行传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用 介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。 所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、 或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in whole or in part in the form of a computer program product, the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on a computer, all or part of the processes or functions described in accordance with the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.)). The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more available mediums integrated. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明 的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的 保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art is within the technical scope disclosed by the present invention, and all within the spirit and principle of the present invention Any modifications, equivalent replacements and improvements made within the scope of the present invention should be included within the protection scope of the present invention.

Claims (10)

1.一种单水听器垂直合成孔径被动定位方法,其特征在于,所述单水听器垂直合成孔径被动定位方法包括:1. a single hydrophone vertical synthetic aperture passive positioning method, is characterized in that, described single hydrophone vertical synthetic aperture passive positioning method comprises: 构建单水听器合成垂直孔径策略与声场模型;Build a single hydrophone synthetic vertical aperture strategy and sound field model; 定义速度估计代价函数,估计目标径向运动速度;Define the velocity estimation cost function to estimate the radial velocity of the target; 定义距离-深度模糊度函数,预估目标距离和深度;Define the distance-depth ambiguity function to estimate the target distance and depth; 定义距离估计代价函数,提高目标距离和深度估计精度,得到最优目标位置。Define the cost function of distance estimation, improve the accuracy of target distance and depth estimation, and obtain the optimal target position. 2.如权利要求1所述的单水听器垂直合成孔径被动定位方法,其特征在于,所述构建单水听器合成垂直孔径策略与声场模型,包括:目标沿与目标和水听器的水平连线夹角θ方向做匀速运动,速度为V,径向运动速度v=Vcosθ,目标辐射圆频率为ω的简谐信号;无指向性水听器在深度方向做匀速运动,移动速度为u;水听器在0时刻的深度为z0,在T时刻移动的海底深度H;以0时刻的水听器为参考点,假设目标的未知水平距离为r0,目标深度为zs,在几何上近似等效为目标是静止的,水听器垂向运动速度为u,水平运动速度为-v;2. The single hydrophone vertical synthetic aperture passive positioning method as claimed in claim 1, is characterized in that, described constructing single hydrophone synthetic vertical aperture strategy and sound field model, comprise: target is along with target and hydrophone. The horizontal connecting line makes a uniform motion in the direction of the angle θ, the speed is V, the radial motion speed v=Vcosθ, and the target radiates a simple harmonic signal with a circular frequency ω; the non-directional hydrophone moves uniformly in the depth direction, and the moving speed is u; the depth of the hydrophone at time 0 is z 0 , and the depth H of the seabed moving at time T; taking the hydrophone at time 0 as the reference point, assuming that the unknown horizontal distance of the target is r 0 , and the depth of the target is z s , The approximate equivalent geometrically is that the target is stationary, the vertical motion speed of the hydrophone is u, and the horizontal motion speed is -v; 如果已知海洋环境信息,计算得到简正波本征波数kn和本征函数Φn(z),水听器在t∈[0,T]时间内接收的声压解析信号为:If the marine environment information is known, the normal wave eigenwave number k n and the eigenfunction Φ n (z) are calculated, and the sound pressure analysis signal received by the hydrophone in the time t∈[0,T] is:
Figure FDA0003079997810000011
Figure FDA0003079997810000011
其中,
Figure FDA0003079997810000012
in,
Figure FDA0003079997810000012
如果以运动目标作为参考点,水听器的移动轨迹合成一条倾斜的线列阵,阵元水平间距为ΔR=vcosθΔt,垂直间距为ΔZ=uΔt,Δt为垂直阵合成采样时间;第n个等效阵元,即第n个采样时刻接收的信号为:If the moving target is used as the reference point, the movement trajectory of the hydrophone is synthesized into an inclined line array, the horizontal spacing of the array elements is ΔR=vcosθΔt, the vertical spacing is ΔZ=uΔt, and Δt is the vertical array synthesis sampling time; nth etc. The effective array element, that is, the signal received at the nth sampling time is:
Figure FDA0003079997810000013
Figure FDA0003079997810000013
3.如权利要求2所述的单水听器垂直合成孔径被动定位方法,其特征在于,所述海洋环境信息的获取方法为:在水听器下放期间附带温度压力传感器,测量温度剖面和水听器在不同时刻的实际深度。3. The single-hydrophone vertical synthetic aperture passive positioning method as claimed in claim 2, wherein the acquisition method of the marine environment information is: a temperature and pressure sensor is attached during the laying down of the hydrophone, and the temperature profile and the hydrophone are measured. The actual depth of the listener at different times. 4.如权利要求1所述的单水听器垂直合成孔径被动定位方法,其特征在于,所述目标径向运动速度估计,包括:目标移动速度区间v'∈[V1,V2],以exp(-ikmv't)为“导向”矢量,第m号简正波的本征函数Φm(z0+ut)为加权矢量做如下处理:4. The method for passive positioning of a single hydrophone vertical synthetic aperture according to claim 1, wherein the estimation of the target radial motion speed comprises: a target moving speed interval v'∈[V 1 ,V 2 ], Taking exp(-ik m v't) as the "steering" vector, and the eigenfunction Φ m (z 0 +ut) of the m-th normal wave as the weighting vector, do the following processing:
Figure FDA0003079997810000021
Figure FDA0003079997810000021
在数值积分时,时间步长要满足vΔt<λ,即合成孔径的水平间距小于声波波长;不失一般性,令z0=0,uT=H,H为水体深度;In the numerical integration, the time step should satisfy vΔt<λ, that is, the horizontal spacing of the synthetic aperture is smaller than the wavelength of the acoustic wave; without loss of generality, let z 0 =0, uT = H, and H is the depth of the water body; 根据简正波的正交性可知,当n=m,v’=v时,|Fm|取最大值;According to the orthogonality of normal waves, when n=m, v'=v, |F m | takes the maximum value; 定义确定目标运动速度的代价函数:Define the cost function that determines the speed of the target movement:
Figure FDA0003079997810000022
Figure FDA0003079997810000022
代价函数的最大值对应于目标径向移动速度的估计值:The maximum value of the cost function corresponds to an estimate of the radial velocity of the target:
Figure FDA0003079997810000023
Figure FDA0003079997810000023
5.如权利要求1所述的单水听器垂直合成孔径被动定位方法,其特征在于,所述定义距离-深度模糊度函数,包括:5. The single hydrophone vertical synthetic aperture passive positioning method of claim 1, wherein the defined distance-depth ambiguity function comprises: 把式
Figure FDA0003079997810000024
写作矩阵形式:
skill
Figure FDA0003079997810000024
Writing matrix form:
F=MS;F = MS; 其中,in, F=[F1(v),F1(v),......,FN(v)]TF=[F 1 (v),F 1 (v),...,F N (v)] T ;
Figure FDA0003079997810000031
Figure FDA0003079997810000031
Figure FDA0003079997810000032
Figure FDA0003079997810000032
则有:Then there are: S=M-1F;S = M -1 F; 定义估计目标距离和深度(r-z)的模糊度函数为:The ambiguity function that defines the estimated target distance and depth (r-z) is:
Figure FDA0003079997810000033
Figure FDA0003079997810000033
把式F=[F1(v),F1(v),......,FN(v)]T代入式
Figure FDA0003079997810000034
当r=r0时,模糊度函数近似表示为:
Substitute the formula F=[F 1 (v),F 1 (v),...,F N (v)] T into the formula
Figure FDA0003079997810000034
When r=r 0 , the ambiguity function is approximately expressed as:
Figure FDA0003079997810000035
Figure FDA0003079997810000035
模糊度函数RD最大值对应的距离和深度为目标距离和深度:The distance and depth corresponding to the maximum value of the ambiguity function RD are the target distance and depth:
Figure FDA0003079997810000036
Figure FDA0003079997810000036
6.如权利要求1所述的单水听器垂直合成孔径被动定位方法,其特征在于,步骤四中,所述定义距离估计代价函数,包括:6. The single hydrophone vertical synthetic aperture passive positioning method as claimed in claim 1, wherein in step 4, the defined distance estimation cost function comprises: 跟匹配场处理方法类似,利用式
Figure FDA0003079997810000037
估计声源位置,在r-z模糊度平面内出现多个极大值,为了提高距离和深度估计精度,归一化代价函数|RD(r,z)|为:
Similar to the matching field processing method, using the formula
Figure FDA0003079997810000037
To estimate the position of the sound source, multiple maxima appear in the rz ambiguity plane. In order to improve the accuracy of distance and depth estimation, the normalized cost function |RD(r,z)| is:
Figure FDA0003079997810000038
Figure FDA0003079997810000038
定义距离代价函数,考察不同距离处深度估计的准确度:Define the distance cost function to examine the accuracy of depth estimation at different distances:
Figure FDA0003079997810000039
Figure FDA0003079997810000039
其中,
Figure FDA00030799978100000310
in,
Figure FDA00030799978100000310
则距离的估计值为:Then the estimated distance is:
Figure FDA0003079997810000041
Figure FDA0003079997810000041
最优目标位置估计结果为:The optimal target position estimation result is: (rs,zs)=(rmax,zmax(rmax))。( rs , z s )=(r max , z max (r max )).
7.一种实施权利要求1~6任意一项所述的单水听器垂直合成孔径被动定位方法的单水听器垂直合成孔径被动定位系统,其特征在于,所述单水听器垂直合成孔径被动定位系统包括:7 . A single hydrophone vertical synthetic aperture passive positioning system for implementing the single hydrophone vertical synthetic aperture passive positioning method according to any one of claims 1 to 6 , wherein the single hydrophone vertical synthetic aperture Aperture passive positioning systems include: 模型构建模块,用于构建单水听器合成垂直孔径策略与声场模型;Model building module for building a single hydrophone synthetic vertical aperture strategy and sound field model; 运动速度估计模块,用于通过定义速度估计代价函数,进行目标径向运动速度估计;The motion velocity estimation module is used to estimate the target radial motion velocity by defining the velocity estimation cost function; 目标位置预估模块,用于通过定义距离-深度模糊度函数,预估目标距离和深度;The target position estimation module is used to estimate the target distance and depth by defining the distance-depth ambiguity function; 目标位置估计模块,用于通过定义距离估计代价函数,提高目标距离和深度估计精度,得到最优目标位置估计结果。The target position estimation module is used to improve the target distance and depth estimation accuracy by defining the distance estimation cost function, and obtain the optimal target position estimation result. 8.一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:8. A computer device, characterized in that the computer device comprises a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor is caused to perform the following steps: (1)构建单水听器合成垂直孔径策略与声场模型;(1) Build a synthetic vertical aperture strategy and sound field model for a single hydrophone; (2)定义速度估计代价函数,估计目标径向运动速度;(2) Define the speed estimation cost function to estimate the radial motion speed of the target; (3)定义距离-深度模糊度函数,预估目标距离和深度;(3) Define the distance-depth ambiguity function to estimate the target distance and depth; (4)定义距离估计代价函数,提高目标距离和深度估计精度,得到最优目标位置。(4) Define the cost function of distance estimation, improve the accuracy of target distance and depth estimation, and obtain the optimal target position. 9.一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:9. A computer-readable storage medium storing a computer program, when the computer program is executed by a processor, the processor is caused to perform the following steps: (1)构建单水听器合成垂直孔径策略与声场模型;(1) Build a synthetic vertical aperture strategy and sound field model for a single hydrophone; (2)定义速度估计代价函数,估计目标径向运动速度;(2) Define the cost function of velocity estimation to estimate the radial velocity of the target; (3)定义距离-深度模糊度函数,预估目标距离和深度;(3) Define the distance-depth ambiguity function to estimate the target distance and depth; (4)定义距离估计代价函数,提高目标距离和深度估计精度,得到最优目标位置。(4) Define the cost function of distance estimation, improve the accuracy of target distance and depth estimation, and obtain the optimal target position. 10.一种信息数据处理终端,其特征在于,所述信息数据处理终端用于实现如权利要求7所述的单水听器垂直合成孔径被动定位系统。10 . An information data processing terminal, wherein the information data processing terminal is used to implement the single hydrophone vertical synthetic aperture passive positioning system according to claim 7 .
CN202110563538.3A 2021-05-24 2021-05-24 Single hydrophone vertical synthetic aperture passive positioning method, system and application Active CN113495275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110563538.3A CN113495275B (en) 2021-05-24 2021-05-24 Single hydrophone vertical synthetic aperture passive positioning method, system and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110563538.3A CN113495275B (en) 2021-05-24 2021-05-24 Single hydrophone vertical synthetic aperture passive positioning method, system and application

Publications (2)

Publication Number Publication Date
CN113495275A true CN113495275A (en) 2021-10-12
CN113495275B CN113495275B (en) 2024-08-23

Family

ID=77997529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110563538.3A Active CN113495275B (en) 2021-05-24 2021-05-24 Single hydrophone vertical synthetic aperture passive positioning method, system and application

Country Status (1)

Country Link
CN (1) CN113495275B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299156A (en) * 2023-05-26 2023-06-23 中国海洋大学 A Hydrophone Vertical Array Element Position Estimation Method and Its Optimization Strategy

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198844A (en) * 1993-12-28 1995-08-01 Mitsubishi Precision Co Ltd Underwater object position measuring apparatus, target position measuring apparatus and remotely dropping apparatus
US20080316862A1 (en) * 2007-06-25 2008-12-25 Bernecky W Robert Point Source Localization Sonar System and Method
CN104091048A (en) * 2014-06-19 2014-10-08 哈尔滨工程大学 Underwater target depth measuring method adopting passive vertical double-vector hydrophones
CN104765037A (en) * 2015-04-22 2015-07-08 国家深海基地管理中心 Underwater target positioning robust method based on short perpendicular array
CN104793212A (en) * 2015-04-23 2015-07-22 国家深海基地管理中心 Method for active-sonar remote detection by means of sound wave sub-bottom reflection
US9869752B1 (en) * 2016-04-25 2018-01-16 Ocean Acoustical Services And Instrumentation Systems, Inc. System and method for autonomous joint detection-classification and tracking of acoustic signals of interest
CN108226933A (en) * 2017-12-28 2018-06-29 西北工业大学 A kind of deep-sea broadband target depth method of estimation based on speckle pattern interferometry structure
CN109828266A (en) * 2018-11-01 2019-05-31 西北工业大学 A kind of moving target depth sorting method suitable for the negative spring layer condition in shallow sea
CN109975812A (en) * 2017-12-27 2019-07-05 中国科学院声学研究所 A kind of sound source depth of explosive sound and the calculation method of sound source level
CN110824429A (en) * 2019-10-28 2020-02-21 西北工业大学 Passive localization method of broadband sound source using asynchronous vertical array in deep sea environment
CN110824428A (en) * 2019-11-06 2020-02-21 哈尔滨工程大学 Vertical vector array underwater sound ray matching passive positioning method
CN111273297A (en) * 2019-03-06 2020-06-12 哈尔滨工程大学 A depth estimation method for horizontally moving targets based on AR wavenumber spectrum
CN112415474A (en) * 2020-10-21 2021-02-26 中国海洋大学 Acoustic passive localization method of target in water with linear difference frequency matching field, medium
CN112415467A (en) * 2020-11-06 2021-02-26 中国海洋大学 Single-vector subsurface buoy target positioning implementation method based on neural network

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198844A (en) * 1993-12-28 1995-08-01 Mitsubishi Precision Co Ltd Underwater object position measuring apparatus, target position measuring apparatus and remotely dropping apparatus
US20080316862A1 (en) * 2007-06-25 2008-12-25 Bernecky W Robert Point Source Localization Sonar System and Method
CN104091048A (en) * 2014-06-19 2014-10-08 哈尔滨工程大学 Underwater target depth measuring method adopting passive vertical double-vector hydrophones
CN104765037A (en) * 2015-04-22 2015-07-08 国家深海基地管理中心 Underwater target positioning robust method based on short perpendicular array
CN104793212A (en) * 2015-04-23 2015-07-22 国家深海基地管理中心 Method for active-sonar remote detection by means of sound wave sub-bottom reflection
US9869752B1 (en) * 2016-04-25 2018-01-16 Ocean Acoustical Services And Instrumentation Systems, Inc. System and method for autonomous joint detection-classification and tracking of acoustic signals of interest
CN109975812A (en) * 2017-12-27 2019-07-05 中国科学院声学研究所 A kind of sound source depth of explosive sound and the calculation method of sound source level
CN108226933A (en) * 2017-12-28 2018-06-29 西北工业大学 A kind of deep-sea broadband target depth method of estimation based on speckle pattern interferometry structure
CN109828266A (en) * 2018-11-01 2019-05-31 西北工业大学 A kind of moving target depth sorting method suitable for the negative spring layer condition in shallow sea
CN111273297A (en) * 2019-03-06 2020-06-12 哈尔滨工程大学 A depth estimation method for horizontally moving targets based on AR wavenumber spectrum
CN110824429A (en) * 2019-10-28 2020-02-21 西北工业大学 Passive localization method of broadband sound source using asynchronous vertical array in deep sea environment
CN110824428A (en) * 2019-11-06 2020-02-21 哈尔滨工程大学 Vertical vector array underwater sound ray matching passive positioning method
CN112415474A (en) * 2020-10-21 2021-02-26 中国海洋大学 Acoustic passive localization method of target in water with linear difference frequency matching field, medium
CN112415467A (en) * 2020-11-06 2021-02-26 中国海洋大学 Single-vector subsurface buoy target positioning implementation method based on neural network

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
CARRIERE, O 等: "Range-dependent acoustic tomography by oceanic feature modeling for the monitoring of upwelling (Cabo Frio, Brazil)", OCEANS\'10 IEEE SYDNEY, 14 October 2010 (2010-10-14) *
QUAN SUN 等: "Position estimations of acoustic sensors based on matching multipath arrival time differences in shallow water", GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 8 October 2020 (2020-10-08) *
付学志;刘忠;崔麦会;: "垂直长基线阵被动目标定位的缩比试验", 数据采集与处理, no. 06, 15 November 2013 (2013-11-15) *
余;惠俊英;陈凯;桑恩方;: "基于甚低频声干涉结构的目标径向运动速度估计", 兵工学报, no. 09, 15 September 2010 (2010-09-15) *
刘志坤;刘忠;付学志;罗亚松;: "基于矢量水听器的水下目标定位系统", 火力与指挥控制, no. 12, 15 December 2011 (2011-12-15) *
吴艳群;胡永明;: "基于单矢量水听器的水面目标运动分析", 声学技术, vol. 29, no. 04, 31 August 2010 (2010-08-31) *
李晓曼;张明辉;张海刚;朴胜春;刘亚琴;周建波;: "一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法", 物理学报, vol. 66, no. 09, 31 May 2017 (2017-05-31) *
李楠松;朴胜春;: "单矢量水听器被动测距方法研究", 仪器仪表学报, no. 10, 15 October 2015 (2015-10-15) *
李楠松;朴胜春;邢传玺;: "单矢量水听器对海面目标高分辨定位方法研究", 传感器与微系统, no. 02, 20 February 2015 (2015-02-20) *
贾雨晴;苏林;郭圣明;马力;: "基于简正波分解的不同阵列匹配场定位性能分析", 物理学报, no. 17, 20 August 2018 (2018-08-20) *
郭李;宋志杰;王良;: "基于深海会聚区声强匹配处理的声源定位方法", 声学技术, no. 03, 15 June 2012 (2012-06-15) *
韩冷: "匹配场被动定位声呐参数优化技术研究", 中国优秀硕士学位论文全文数据库工程科技Ⅱ辑, no. 03, 15 March 2018 (2018-03-15) *
高天赋,陈耀明,杨怡青: "短垂直阵简正波匹配的声源定位", 声学学报(中文版), vol. 21, no. 1, 31 August 1996 (1996-08-31) *
黄勇;李宇;黄海宁;: "主、被动拖曳线列阵远程目标定位", 电子与信息学报, no. 03, 20 March 2007 (2007-03-20) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299156A (en) * 2023-05-26 2023-06-23 中国海洋大学 A Hydrophone Vertical Array Element Position Estimation Method and Its Optimization Strategy
CN116299156B (en) * 2023-05-26 2023-08-15 中国海洋大学 A Hydrophone Vertical Array Element Position Estimation Method and Its Optimization Strategy

Also Published As

Publication number Publication date
CN113495275B (en) 2024-08-23

Similar Documents

Publication Publication Date Title
CN108828522B (en) Underwater target radiation noise measurement method formed by utilizing vertical array LCMV wave beams
CN104749568B (en) A kind of sorting technique of the Shallow Water Target depth based on hydrophone array
CN203714144U (en) Buoy device based on acoustics and GPS (global positioning system) intelligent positioning
CN111239829A (en) Towed controllable source electromagnetic and underwater sound composite underwater target detection system and method
CN105929385B (en) Target depth resolution method based on LOFAR spectrogram analysis of dual hydrophones
CN108181651A (en) A kind of deep-sea geoacoustic inversion method based on reliable acoustic path
KR101740157B1 (en) Optimal Search Position/Depth Determination Method using SONOBUOY
CN111323752B (en) A method for sound source localization in the transition zone between far and near fields
CN109319074B (en) Multi-orthogonal signal emission unmanned submersible vehicle sound guiding and recycling system
CN114925496B (en) A Method for Forecasting Marine Environmental Noise
CN114280541B (en) Target passive positioning method based on deep-sea distributed vertical linear array
CN110703202B (en) Underwater Pulse Acoustic Localization System Based on Multiacoustic Wave Glider and Surface Unmanned Vehicle
WO2023213052A1 (en) Deep-sea sound source localization method, computer device and storage medium
CN112099019A (en) An underwater sound vector detection device
Hodgkiss et al. Direct measurement and matched-field inversion approaches to array shape estimation
CN111551942B (en) Underwater autonomous vehicle docking method based on deconvolution algorithm
CN113495275A (en) Passive positioning method, system and application for vertical synthetic aperture of single hydrophone
Jenkins et al. Bayesian optimization with Gaussian process surrogate model for source localization
CN108572349B (en) Sound source depth setting method based on model calculation under deep sea environment
CN111679248B (en) Target azimuth and distance combined sparse reconstruction positioning method based on seabed horizontal L-shaped array
Hossain et al. Three dimensional (3D) underwater sensor network architectures for intruder localization using EM wave
Zhang et al. Steering acoustic intensity estimator using a single acoustic vector hydrophone
CN211741599U (en) Towed controllable source electromagnetic and underwater acoustic composite underwater target detection system
CN113126029A (en) Multi-sensor pulse sound source positioning method suitable for deep sea reliable acoustic path environment
CN106054196B (en) The acoustics localization method and device of a kind of airdrome scene target

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant