CN113489755A - 包含联合勤务保障体系的复杂作战网络的同步能力提高方法 - Google Patents

包含联合勤务保障体系的复杂作战网络的同步能力提高方法 Download PDF

Info

Publication number
CN113489755A
CN113489755A CN202110487561.9A CN202110487561A CN113489755A CN 113489755 A CN113489755 A CN 113489755A CN 202110487561 A CN202110487561 A CN 202110487561A CN 113489755 A CN113489755 A CN 113489755A
Authority
CN
China
Prior art keywords
network
node
nodes
domain
synchronization capability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110487561.9A
Other languages
English (en)
Other versions
CN113489755B (zh
Inventor
陈晓楠
胡建敏
李亚飞
金娈
李聪
李一洲
任帆
应鹏辉
程宇伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110487561.9A priority Critical patent/CN113489755B/zh
Publication of CN113489755A publication Critical patent/CN113489755A/zh
Application granted granted Critical
Publication of CN113489755B publication Critical patent/CN113489755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Primary Health Care (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

为了研究联合勤务保障体系在作战行动中的作用,并为体系作战建立网络化的研究方法,提出了一种包含联合勤务网络的四层复杂作战网络,建立了相应的网络化模型。首先,对联合勤务保障体系进行了网络化的定义与描述,得到了认知域、信息域、物理域、联合勤务网络内每个节点的状态属性值;然后,建立了不同网络之间的涌现性模型,提出了作战链与勤务保障链的概念,通过定义涌现满足度曲线,得到了每个节点的网络涌现程度值;最后,针对同层网络和不同层网络分别提出了对应的网络体系同步能力提高方法。研究结果表明:建立的网络化模型与提高同步能力的方法合理有效,对于体系作战的量化研究有一定的实践意义。

Description

包含联合勤务保障体系的复杂作战网络的同步能力提高方法
技术领域
本发明涉及一种包含联合勤务保障体系的复杂作战网络的同步能力提高方 法。
背景技术
联合作战,是指两个以上军种部队及其他参战力量,在联合指挥机构统一指 挥下,在全域多维空间实施的作战。联合作战的指导思想和理论成果已经日趋完 善,联合作战各要素、各部门的协调融合机制已经日益成熟,联合作战“无战不 联”、“无联不胜”的观念已经深入人心,深深地融入到了现代战争体系当中。物 理域、信息域、认知域互相交织、彼此交融、共同行动,并体现在陆、海、空、 天、电、网、心、核等各个领域,反应在作战体系中的各个节点。
联合勤务保障作为联合作战的重要组成部分,因战而生,为战而生。联合勤 务保障力量和保障对象多元、保障空间多维、保障方式多样,形成一体融合、整 体筹划、高效运转的联合勤务保障体系。广义的联合勤务是指联合作战的全部勤 务活动,狭义的联合勤务是指为满足联合作战及其他联合军事行动的需要,统筹 运用人力、物力、财力、技术等资源而进行的后勤后勤与装备保障活动。
发明内容
本发明的目的是提供一种科学、高效、更体系化、更贴近实战方向的包含联 合勤务保障体系的复杂作战网络的同步能力提高方法。
本发明采用如下技术方案:
一种包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在 于,其包括如下步骤:
(1)确定认知域网络、信息域网络、物理域网络以及联合勤务网络构成的 复杂作战网络;
(2)确定认知域网络、信息域网络、物理域网络以及联合勤务的网络内节 点状态属性值;
(3)根据不同网络之间的涌现性模型,确立网络中节点的状态属性;
(4)基于中心的操作方法提高网内或网间的同步能力。
步骤(1)中,认知域网络、信息域网络、物理域网络以及联合勤务网络均 为由相互关系和节点集合共同组成的二元有向网络。
步骤(2)中,第i个节点的状态属性为该节点状态属性随时间变化情况与 其他节点对该节点影响情况之和,通过下式得到
Figure BDA0003047933740000021
其中,ci为每网络第i个节点的状态属性;
Figure BDA0003047933740000022
为状态属性因自身内在属性随时间变化规律;
Figure BDA0003047933740000023
为第j个节点对第i个节点状态属性的影响;
Figure BDA0003047933740000024
为第i个节点指向第j个节点随时间变化规律。
步骤(2)中,根据网络节点确定状态属性的特征属性,建立对应的指标体 系,进行量化评估,得到每层网络中所有节点对应的状态属性评估值。
步骤(3)中,不同网络中节点的状态属性是由节点自身的状态属性变化、 同层网络其它节点对其影响、下层网络带来的涌现程度造成的影响这三类因素共 同作用的结果,通过下式得到:
Figure BDA0003047933740000031
式中,
Figure BDA0003047933740000032
c∈{x,y,z,w},H∈{N,M,P,Q},i=1,2,...,H。
步骤(4)中,对于同层网络同步能力的提高方法为,从节点状态属性值高 的节点开始添加新的链接,从节点状态属性值低的节点开始删除链接。
步骤(4)中,不同网络之间同步能力的提高方法为,从网络节点涌现程度 值高的节点开始添加新的链接,从网络节点涌现程度值低的节点开始删除链接。
本发明的有益效果在于:作战体系的科学研究具有重要作用,联合勤务保障 和联合作战同步考虑更贴近作战实际,其网络化模型的建立与同步能力的提高的 方法有着一定的实践价值。
附图说明
图1OODA环示意图。
图2OODA环与作战域的关系图。
图3体系作战四层网络视图。
图4网间关系示意图。
图5网络涌现性示意图。
图6节点涌现程度曲线。
图7增加边数量后R值的变化。
图8减少边数量后R值的变化。
具体实施方式
1联合勤务保障体系网络化描述
“信息化联合作战就是在网络信息体系支撑下,系统与系统、体系与体系之 间的对抗,核心就是要构建科学高效的联合作战体系”。联合作战体系,就是以 网络信息体系为支撑,通过对各作战要素、作战单元、作战系统综合集成,实现 信息交互、功能耦合和能力聚焦,进而形成对敌综合优势的有机整体。
联合勤务保障体系属于联合作战体系的一部分。作战属于复杂系统范畴,复 杂系统可以用复杂网络进行描述,把复杂系统抽象为节点之间的相互关系;复杂 网络是研究复杂系统的一种科学方法,复杂网络注重于节点与节点之间的相互关 系,它是理解复杂系统特性和功能的基础。
研究联合勤务保障的复杂网络必须从其复杂性入手,反映出联合勤务保障的 各种特性,例如不确定性、涌现性、适应性、非线性等,而不能采用简单的分解 还原的分析方法。联合勤务保障网络化建模就是将联合勤务保障真实、准确的抽 象成一系列网络化数学模型,应用复杂网络的原理解决联合勤务保障问题。
1.1作战节点和作战域的关系
美国军事理论家约翰·博伊德在20世纪70年代提出了著名OODA环作战指 挥理论。他将作战过程抽象为“观察(Observe)—判断(Orient)—决策(Decide)—行 动(Act)”,依据四个节点形成的闭合网络来描述作战指挥决策、遂行作战任务, 然后根据节点与节点之间的相互作用关系来建立作战网络模型并加以分析, OODA环见图1所示。
OODA环的观察、判断、决策和行动四类作战节点与物理域、信息域、认 知域共三大作战域互相嵌套、密不可分,指挥机构对战场态势进行判断,定下决 心,判断到决定这一个过程是在认知域中完成的;下达作战命令,通过指挥链传 递给相应部队,遂行作战行动,决定到行动这一个过程是在信息域中完成的;由 遂行侦察任务的部队对作战行动进行侦察,这一阶段是在物理域中完成的;将侦 察结果反馈给指挥机构进行判断,由观察到判断这一过程是在信息域中完成的, 因此OODA环与作战维度的关系见图2。
1.2联合勤务保障在作战关系中的位置
在联合勤务的定义中可以看出,联合勤务保障目的是为了满足联合作战及其 他联合军事行动的需要,方法是统筹运用人力、物力、财力、技术等资源。联合 作战及其他联合军事行动贯穿于认知域、信息域、物理域,涵盖了判断、决定、 行动和观察各个节点,联合勤务保障也需要跳出传统的保障概念,不仅仅针对单 一的物理域进行保障,联合勤务保障针对的是全域全维全节点的全方位保障。
将联合勤务网从认知域、信息域、物理域独立出来,以体现出联合勤务保障 在作战中地位的特殊性,由物理域、信息域和认知域和联合勤务网络中不同作战 要素,按照网络化的作战指挥关系和作战编成形成的四层复杂网路构成体系作战 复杂网络体系,如图3所示。
体系作战网络的每一层的点和点之间的连接属于不同的类型,例如,有认知 域的决策与关系交互、信息域的信息交互、物理域的作战协同和联合勤务网络的 后方勤务组织联系,各个网络之间跨域连接包括认知域、信息域和物理域之间的 指挥命令下达、态势信息反馈等多种影响关系,还包括联合勤务网络对认知域、 信息域和物理域的保障,利用四层网络对体系作战进行网络化分析时,需要对体 系作战网络进行描述和建模。
1.3体系作战的各层网络描述
认知域网络由认知节点D组成,认知节点是作战指挥人员通过信息域网络 对物理域网络和联合勤务网络进行决策指挥。认知节点之间的相互关系为ED, 认知节点集合为VD,共同组成认知域二元有向网络GD
信息域网络由信息节点I组成,信息节点是通过不同的网络传递信息,作为 桥梁连接认知域网络与物理域网络、认知域与联合勤务网络。信息节点之间的相 互关系为EI,信息节点集合为VI,共同组成信息域二元有向网络GI
物理域网络由物理节点A组成,物理节点主要由火力打击等节点组成,我方 物理节点接收指挥员的命令,对敌方物理节点进行打击。物理节点之间的相互关 系为EA,物理节点集合为VA,共同组成物理域二元有向网络GA
联合勤务网络由勤务节点L组成,勤务节点通过信息域网络接收指挥员的命 令,来对认知域网络、信息域网络和物理域网络进行勤务保障。勤务节点之间的 相互关系为EL,勤务节点集合为VL,共同组成联合勤务二元有向网络GL
各层网络对应的网络的邻接矩阵为:
Figure BDA0003047933740000051
式中,aij为第i个节点指向第j个节点,存在指向关系则aij为1,否则为0, H∈{N,M,P,Q},
Figure BDA0003047933740000052
N为认知域网络中节点的数量,M为信息 域网络中节点的数量,P为物理域网络中节点的数量,Q为联合勤务网络中节点 的数量。
考虑到作战网络是时效网络,网络中节点之间的连边会随着时间出现间断性 的连接和断开。各网络的邻接矩阵为随时间变化为
Figure BDA0003047933740000053
各层每一个节点都有自身状态属性,认知域、物理域、信息域、联合勤务网 络中的节点数量和状态属性都有所不同,这里设每网络第i个节点的状态属性ci, 状态属性因自身内在属性随时间变化规律为
Figure BDA0003047933740000061
同时,在每层网络中节点间会互相影响,第j个节点对第i个节点状态属性 的影响为
Figure BDA0003047933740000062
因此,第i个节点的状态属性为该节点状态属性随时间变化情况与其他节点 对该节点影响情况之和,即
Figure BDA0003047933740000063
1.4节点状态属性的量化描述
对于认知域网络的节点来讲,状态属性可以是情报分析能力、控制协调能力、 作战指挥能力等特征属性,对于信息域网络的节点来讲,状态属性可以是信息传 输能力、抗干扰能力、信息价值等特征属性,对于物理域网络的节点来讲,状态 属性可以是火力打击能力、抗毁伤能力、节点作战能力等属性特征,对于联合勤 务网络来讲,状态属性可以是节点经济价值、勤务保障效率等特征属性。例如物 理域网络中的节点作战能力这个状态属性发生变化,会导致信息域网络中信息价 值状态属性也发生变化,从而使得认知域网络的情报分析能力状态属性发生变化, 认知域网络通过信息域网络影响勤务保障网络的勤务保障效率特征属性,使其发 生变化,勤务保障网络对其他三个网络进行勤务保障,也会相对的使得其他网络 的对应状态属性发生变化。
为了能够科学系统的描述不同网络的状态属性,需要建立指标体系,对其进 行量化评估。根据文献资料可建立对应的指标体系,并采用了模糊综合评价、层 次分析法、灰色系统分析等一系列方法得出最上层指标的评估值。
对于认知域、信息域、物理域、联合勤务网络的不同的状态属性,需要根据 状态属性的特征建立对应的指标体系,进行量化评估,最终得到每层网络中所有 节点对应的状态属性评估值。
1.5作战链与勤务保障链的描述
研究体系作战就是研究网络与网络之间的相互作用、节点与节点之间的相互 作用所带来的影响。
在体系作战中,认知节点将决策内容通过信息节点传递给物理节点,从而完 成相应的作战行动,这就是完整的一条作战链D→I→A。
物理节点的状态属性发生变化后,则通过信息节点将情报信息反馈给决策节 点进行决策,即A→I→D。
往返两条作战链可以组成一个封闭的作战环,所有作战链共同构成认知域、 信息域、物理域的三层传统作战体系。
在联合勤务保障中,认知节点将决策内容通过信息节点传递给勤务节点,勤 务节点对目标节点进行勤务保障,这就是完整的一条勤务保障链。具体细分为对 认知节点进行勤务保障D→I→L→D,对信息节点进行勤务保障 D→I→L→I,对物理节点进行勤务保障D→I→L→A,共三种类型勤务 保障链。
各层网络的网间关系如图4所示。
当认知域、信息域、物理域、联合勤务网络的四层作战体系的作战链和勤务 保障链进行信息交互时,各层节点的状态属性也随之变化。在实际推导时,需要 将网内关系和网间关系分开,例如A→I→I→D,物理节点到信息节点和信息 节点到认知节点,这两段都是网间关系连接的,信息节点到信息节点是网内关系 连接的。网内关系已经在第1.3节中表述完毕,这里需要对网间关系加以叙述, 其关系矩阵表述为
Gα=[aij]γ×μ (4)
式中,aij为下层网络第i个节点到上层网络第j个节点的连接关系,存在i指 向j的关系,则aij为1,否则为0,γ,μ∈{N,M,P,Q},α∈{DI,ID,AI,IA,IL,LI,LD,LA}, γ为下层网络的节点数量,μ为上层网络的节点数量,N为认知域中节点的数量, M为信息域中节点的数量,P为物理域中节点的数量,GDI为认知域网络指向信 息域网络的网间关系矩阵,GIA为信息域网络指向物理域网络的网间关系矩阵, GID为认知域网络指向信息域网络之间的网间关系矩阵,GAI为信息域网络指向 物理域网络的网间关系矩阵,GLI为联合勤务网络指向信息域网络的网间关系矩 阵,GIL为信息域网络指向联合勤务网络的网间关系矩阵,GLD为联合勤务网络 指向认知域网络的网间关系矩阵,GLA为联合勤务网络指向物理域网络的网间关 系矩阵。
网间关系网络同样是时效网络,网络中节点之间的连边会随着时间出现间断 性的连接和断开。对应的网间关系矩阵随时间变化为
Gα=[hα(aij,t)]γ×μ (5)
2网络体系涌现性模型
由于认知域、信息域、物理域和联合勤务网络各节点状态属性的度量单位不 同,不能够简单的进行数值运算,这就需要引入复杂网络的涌现性这一概念。涌 现性是指整体中各组成部分之间的相互作用、相互影响的特性,涌现后所得到的 结果往往不是简单的各个组成部分特性的叠加而得出的结果,而是整体大于或小 于各个组成部分之和。
这里称造成涌现的网络为下级网络,受涌现影响的网络为上级网络。例如, 随着作战的进行,物理域网络各节点的状态属性发生变化,从而涌现到信息域网 络上加以表现,信息域网络各节点的状态属性发生变化,进而涌现到认知域网络 上加以表现,这里物理域网络就是下级网络,则信息域网络就是上级网络,信息 域网络是下级网络,认知域网络就是上级网络,反之亦然,如图5所示。网络之 间的涌现反馈,是整体互相作用所引起的结果,不仅仅的是一个物理节点反馈到 信息节点上的,而是物理域网络反馈到信息域网络的结果。
下级网络节点的对应的状态属性值越强,与其他节点连接越多,则表示该节 点重要程度越大,节点相互作用后对上级网络的涌现程度越强,将沿着作战链或 勤务保障链中的作战网间关系反映到上级网络的对应节点。
这里定义两个概念,一个是涌现满足度的概念,另一个是涌现程度的概念。
2.1节点涌现满足度的描述
各个节点状态属性的变化,状态属性数值越高,表示对应的状态属性越强, 节点的重要程度越高,状态属性值低,表示节点的功能或属性不能满足作战需要, 将会对作战产生负向影响。随着状态属性数值的升高,对应节点的涌现满足度将 会逐步接近饱和状态。根据复杂网络的性质可知,节点的涌现程度是趋大型的, 即节点的状态属性越大,节点的涌现满足度越大,因此这里定义节点的涌现满足 度曲线来计算节点的涌现满足度,如图6所示。
具体函数表达式为:
Figure BDA0003047933740000091
式中,C为下级网络节点的状态属性值,E(C)为对应节点的涌现满足度。
2.2网络涌现程度的描述
涌现程度的概念反映下级网络中节点之间相互作用后的各个节点的向上涌 现能力。
这里以传统的PageRank算法为基础,找到了一种改进的涌现迭代方程中来 确定网络体系的各节点涌现程度。
PageRank算法最早是源于搜索引擎对网页的排序的算法,通过PageRank算 法得出不同网页的重要程度,对不同网页进行评价和排序。对于复杂网络中网络 节点的重要性也可以通过PageRank算法来计算确定,每一个节点的PageRank 值将是连接到这个节点的各节点PageRank值总和。
传统的PageRank算法的迭代方程为:
Figure BDA0003047933740000092
式中,L(pj)为节点pj的出度,d为阻尼因子,N是节点总数量,1-d为 随机跳往任意一个节点的概率,M(pi)为链入节点pi的所有节点的集合。
这里用节点的涌现满足度E(yj)代替参数d,由于每个节点的涌现满足度各 不相同,用E(yi)代替随机跳往另一个节点的概率
Figure BDA0003047933740000093
部分,因此将迭代方程转 化为:
Figure BDA0003047933740000094
式中,P(yi)为下层网络第i个节点的涌现程度,yi为下层网络中第i个节点 的状态属性值,E(yi)为第i个节点的涌现满足度,L(yj)为第j个节点的出度, M(yi)为链入第i个节点的所有节点的集合。
涌现程度将沿着作战链反馈给上层网络对应的节点,由此可以得出下层网络 中每个节点对上层网络的涌现程度,从而得出上层网络每一个节点的总涌现程度。
认知域网络的节点涌现程度为:
Figure BDA0003047933740000101
信息域网络的节点涌现程度为:
Figure BDA0003047933740000102
物理域网络的节点涌现程度为:
Figure BDA0003047933740000103
联合勤务网络的节点涌现程度为:
Figure BDA0003047933740000104
式中,xi为认知域网络中第i个节点的状态属性值,yi为信息域网络中第i个 节点的状态属性值,zi为物理域网络中第i个节点的状态属性值,wi为联合勤务 网络中第i个节点的状态属性值。
下层网络对上层网络的涌现程度将影响上层网络各节点自身的状态属性值, 这里设上层网络节点的状态属性值受到涌现程度的影响关系为u(x,t),则涌现后 上层网络各节点的状态属性值为
Figure BDA0003047933740000105
式中,
Figure BDA0003047933740000106
c∈{x,y,z,w},H∈{N,M,P,Q},i=1,2,...,H。
可以看出,网络中节点的状态属性是由节点自身的状态属性变化、同层网络 其它节点对其影响、下层网络带来的涌现程度造成的影响这三类因素共同作用的 结果。
3网络体系同步能力提高方法
作战是全维度全域的双方对抗,敌方以包括认知域、信息域、物理域网络节 点为目标进行打击。例如,采取攻心作战是对认知域节点的打击,制造虚假信息 是对信息域节点的打击,直接摧毁武器装备是对物理域节点的打击。
当只考虑己方作战体系,无敌方袭扰时,随之时间的推移,网络与网络之间、 网络内部节点与节点之间互相作用、相互影响,达到稳定状态。然而,当敌方对 我方网络进行打击时,我方受打击的节点状态属性会急剧降低,若我方没有勤务 保障体系进行保障,敌方源源不断的打击会导致我方节点逐步丧失作战效能,最 后网络体系完全损毁。
我方的联合勤务网络源源不断的对我方作战体系网络进行保障,使网络节点 的状态属性处于正常状态,才可以与敌方持续对抗,直至消灭敌方有生力量。
现代化作战的方向是联合作战,现代化后勤保障的方向是联合勤务保障,勤 务保障的概念覆盖方方面面,涵盖了认知域、信息域、物理域。接下来将考虑我 方网络的同步过程,并建立相应的网络同步模型。
3.1作战网络体系同步性描述
作战系统为网络,作战关系为核心,尤其在作战系统中,从某种程度上来讲, 网络链接比节点更重要。
前文主要针对的是节点的属性,而关于网络同步方面的问题更侧重于网络边 的计算,例如同层网络中节点之间的关系、不同层网络中作战链和勤务保障链等。
有文献提出可以将新边连接到最近邻平均度小的节点上,从而有效提高网络 同步能力的方法,这种方法会改变网络拓扑结构,对网络的同步演化产生一定影 响。同样的,可以通过减少某些边来使网络同步能力有所提高,也可以根据网络 的拉普拉斯矩阵得特征向量来减少边的数量,还可以在不改变网络拓扑结构的前 提下通过改变边的方向来使网络同步性提高。
对于作战系统而言,同层网络内部节点的状态属性一致,可以采取上述方法 来提高同步性;对于网间关系而言,同步过程需要考虑到作战的实际情形,由于 作战链和勤务保障链代表着作战本身的流程和方向,不能够随意改变网间关系的 方向。
3.2同层网络的同步能力提高方法
网络的同步能力可以通过对应的Laplace矩阵的特征值之比来衡量,即 R=λN2,λN和λ2分别Laplace矩阵最大和最小非零特征值矩阵。R的值越小, 网络的同步能力就会越强。以往的研究表明,在有向网络中,有两个重要的因素 影响着R的值,一个是网络的度分布,一个是网络的层次结构,有向网络的度分 布越均匀,网络的同步性就越强。同时,网络的同步性可以近似的表示为
Figure BDA0003047933740000121
其中,
Figure BDA0003047933740000122
为网络中节点的最大入度,
Figure BDA0003047933740000123
为,网络中节点的最小入度。
R的值越小,网络的同步能力就会越强。可以通过减少链入最大入度节点的 边来降低
Figure BDA0003047933740000124
或者增加链入最小入度节点的边来增加
Figure BDA0003047933740000125
从而增强网络的同步 能力。
如果只考虑网络的度分布来提高同步能力,则会使网络不能够形成有效的层 次结构。因此,如何选择添加和删除网络中链接的起点和终点是非常重要的,这 可能会影响网络的整个层次结构,从而进一步影响同步性。
这里使用第2.2节的式13求得的节点状态属性值来描述作战网络中节点的 中心性,并设计了一种基于中心的操作方法来提高网络的同步能力。基本思路是, 从节点状态属性值高的节点开始添加新的链接,从节点状态属性值低的节点开始 删除链接。
3.3不同网络之间同步能力提高方法
不同网络的网间关系由作战链和勤务保障链组成,在第2部分中讨论了网间 关系的涌现性方法。从节点涌现程度的定义上来看,涌现程度更趋向于网间关系 的边得性质,这里需要结合网间关系的实际情况,通过改进式(14)来体现节点 的涌现程度和入度之间的联系,这里定义节点涌现程度乘以节点的入度等于节点 的加权入度,即
Figure BDA0003047933740000126
其中,P(ci)为节点i的涌现程度值,i=1,2,...,H′,H′为网间关系网络节 点总数量。
则网间关系的同步性可以近似的表示为
Figure BDA0003047933740000127
其中,
Figure BDA0003047933740000128
为网络中节点的最大加权入度,
Figure BDA0003047933740000129
为,网络中节点的最小加权 入度。
同样的,R的值越小,网络的同步能力就会越强。可以通过减少链入最大加 权入度节点的边来降低
Figure BDA0003047933740000131
或者增加链入最小加权入度节点的边来增加
Figure BDA0003047933740000132
从 而增强网络的同步能力。
网间关系与网内关系不同的是,网间关系建立在节点涌现程度的基础上,网 间关系为网络间的涌现程度传递,因此这里使用第2.2节的式9-式12求得的网 络节点涌现程度值来描述网间关系中节点的中心性。基本思路是,从网络节点涌 现程度值高的节点开始添加新的链接,从网络节点涌现程度值低的节点开始删除 链接。
增减链接来提高网间网络的同步性需要考虑作战实际情况,例如,按照作战 流程D→I→A的方向进行网间传递,而不能为了增加同步性出现D→A的情 形,因此在增减链接时需要考虑对应的网间关系约束条件。
3.4同步能力分析示例
一般多层网络计算网络同步性是按照先网内后网间的方式,针对作战体系这 种特殊的多层网络,每层网络节点的属性状态性质是完全不同的,网内关系是一 个网络,网间关系也是一个网络。对于网内关系的中心性描述——节点状态属性 值和网间关系的描述——网络节点涌现程度值的关系,网络节点涌现程度值的计 算也包括节点状态属性值,节点状态属性值的计算也包含节点涌现程度值,因此 作战体系同步能力的计算按将同步进行。
这里生成了四层作战网络,并随机赋予初始节点状态属性值和相关参数,网 络特征参数如表1所示。
表1作战网络特征参数
Figure BDA0003047933740000133
得到网内关系和网间关系的R值随着边的增加与删减的变化如图7和图8 所示。
可以看出,增减特定的链接可以提高网络的同步能力,增加链接效果比减少 链接更明显。在实际作战中,节点与节点之间的关系尤为重要,增加链接更符合 作战的实际。
作战体系的同步能力对于作战来讲十分重要,而同步能力的相对大小与节点 状态属性、节点之间相互作用和网络拓扑结构都有密切关系,这里根据建立的模 型研究了改变链接数量对R值的影响,这也可以将同步能力看成指挥的能力有一 部分,指挥员必须根据作战的实际来科学决策,不断提升作战体系的整体协同能 力。

Claims (7)

1.一种包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,其包括如下步骤:
(1)确定认知域网络、信息域网络、物理域网络以及联合勤务网络构成的复杂作战网络;
(2)确定认知域网络、信息域网络、物理域网络以及联合勤务的网络内节点状态属性值;
(3)根据不同网络之间的涌现性模型,确立网络中节点的状态属性;
(4)基于中心的操作方法提高网内或网间的同步能力。
2.根据权利要求1所述的包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,步骤(1)中认知域网络、信息域网络、物理域网络以及联合勤务网络均为由相互关系和节点集合共同组成的二元有向网络。
3.根据权利要求2所述的包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,步骤(2)中第i个节点的状态属性为该节点状态属性随时间变化情况与其他节点对该节点影响情况之和,通过下式得到
Figure FDA0003047933730000011
其中,ci为每网络第i个节点的状态属性;
Figure FDA0003047933730000012
为状态属性因自身内在属性随时间变化规律;
Figure FDA0003047933730000013
为第j个节点对第i个节点状态属性的影响;
Figure FDA0003047933730000014
为第i个节点指向第j个节点随时间变化规律。
4.根据权利要求3所述的包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,步骤(2)中,根据网络节点确定状态属性的特征属性,建立对应的指标体系,进行量化评估,得到每层网络中所有节点对应的状态属性评估值。
5.根据权利要求4所述的包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,步骤(3)中,不同网络中节点的状态属性是由节点自身的状态属性变化、同层网络其它节点对其影响、下层网络带来的涌现程度造成的影响这三类因素共同作用的结果,通过下式得到:
Figure FDA0003047933730000021
式中,
Figure FDA0003047933730000022
c∈{x,y,z,w},H∈{N,M,P,Q},i=1,2,...,H。
6.根据权利要求5所述的包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,步骤(4)中,对于同层网络同步能力的提高方法为,从节点状态属性值高的节点开始添加新的链接,从节点状态属性值低的节点开始删除链接。
7.根据权利要求6所述的包含联合勤务保障体系的复杂作战网络的同步能力提高方法,其特征在于,步骤(4)中,不同网络之间同步能力的提高方法为,从网络节点涌现程度值高的节点开始添加新的链接,从网络节点涌现程度值低的节点开始删除链接。
CN202110487561.9A 2021-04-30 2021-04-30 包含联合勤务保障体系的复杂作战网络同步能力提高方法 Active CN113489755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110487561.9A CN113489755B (zh) 2021-04-30 2021-04-30 包含联合勤务保障体系的复杂作战网络同步能力提高方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110487561.9A CN113489755B (zh) 2021-04-30 2021-04-30 包含联合勤务保障体系的复杂作战网络同步能力提高方法

Publications (2)

Publication Number Publication Date
CN113489755A true CN113489755A (zh) 2021-10-08
CN113489755B CN113489755B (zh) 2024-02-06

Family

ID=77932724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110487561.9A Active CN113489755B (zh) 2021-04-30 2021-04-30 包含联合勤务保障体系的复杂作战网络同步能力提高方法

Country Status (1)

Country Link
CN (1) CN113489755B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937486A (zh) * 2010-05-06 2011-01-05 中国人民解放军理工大学 复杂系统的信息支持能力评估分析方法
CN104865844A (zh) * 2015-03-26 2015-08-26 中国电子科技集团公司第五十四研究所 一种基于分布式平台的空间信息网络综合评估演示方法
US20170011007A1 (en) * 2015-07-08 2017-01-12 National Tsing Hua University Land battle process evaluation method and system thereof
CN110929394A (zh) * 2019-11-14 2020-03-27 北京华如科技股份有限公司 基于超网络理论的联合作战体系建模方法以及存储介质
CN112600795A (zh) * 2020-11-25 2021-04-02 中国人民解放军国防科技大学 一种不完全信息下的作战网络瓦解方法及系统
CN112613665A (zh) * 2020-12-25 2021-04-06 中国人民解放军战略支援部队信息工程大学 一种战争事件过程的推演方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937486A (zh) * 2010-05-06 2011-01-05 中国人民解放军理工大学 复杂系统的信息支持能力评估分析方法
CN104865844A (zh) * 2015-03-26 2015-08-26 中国电子科技集团公司第五十四研究所 一种基于分布式平台的空间信息网络综合评估演示方法
US20170011007A1 (en) * 2015-07-08 2017-01-12 National Tsing Hua University Land battle process evaluation method and system thereof
CN110929394A (zh) * 2019-11-14 2020-03-27 北京华如科技股份有限公司 基于超网络理论的联合作战体系建模方法以及存储介质
CN112600795A (zh) * 2020-11-25 2021-04-02 中国人民解放军国防科技大学 一种不完全信息下的作战网络瓦解方法及系统
CN112613665A (zh) * 2020-12-25 2021-04-06 中国人民解放军战略支援部队信息工程大学 一种战争事件过程的推演方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ZHOUHUA PENG: ""Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems"", 《IEEE》 *
杨迎辉;李建华;王刚;南明莉;: "基于超网络的作战信息流转建模及特性分析", 复杂系统与复杂性科学, no. 03 *
胡晓峰;贺筱媛;饶德虎;: "基于复杂网络的体系作战协同能力分析方法研究", 复杂系统与复杂性科学, no. 02 *
陈晓楠,胡建敏: ""基于LightGBM算法的网络战仿真与效能评估"", 《计算机应用》 *
陈晓楠: ""计算机网络战作战效能评估研究"", 《舰船电子工程》 *

Also Published As

Publication number Publication date
CN113489755B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN110401564B (zh) 基于相对混合择优的指挥控制超网络模型构建方法
CN111478811B (zh) 一种基于双层信息流传递的网络关键点分析方法
CN110929394A (zh) 基于超网络理论的联合作战体系建模方法以及存储介质
CN111784135B (zh) 基于超网络和ooda环理论的体系作战能力量化分析方法
CN112600795B (zh) 一种不完全信息下的作战网络瓦解方法及系统
CN112702208B (zh) 一种基于关系的异质多层作战体系打击链路生成方法
Ye et al. Differentially private multi-agent planning for logistic-like problems
CN110505080B (zh) 基于混合结构的指挥控制超网络动态演化模型构建方法
CN113992375B (zh) 一种基于遗传算法的异质复杂网络防御方法
CN111369101A (zh) 一种基于双层粒子群优化的任务规划方法
Han et al. Evaluation method and optimization strategies of resilience for Air & space defense system of systems based on kill network theory and improved self-information quantity
CN113489755A (zh) 包含联合勤务保障体系的复杂作战网络的同步能力提高方法
Bitzinger et al. Chinese and Russian Military Modernization and the Fourth Industrial Revolution
CN106851689B (zh) 无线传感器及执行器网络中多因素任务分配方法
He et al. An operation planning generation and optimization method for the new intelligent combat SoS
CN111478813A (zh) 一种基于单层信息流传递的网络关键点分析方法
CN115396322B (zh) 一种基于层介数连边策略的指挥控制超网络建模方法
Liu et al. Exploring functional dependency network based order-degree analysis for resilient system-of-systems architecture design
Pan et al. A method of key links identification in command and control network based on bridging coefficient
Liu et al. Stackelberg game under asymmetric information in unmanned aerial vehicle swarm active deception defense: from a multi-layer network perspective
Junfeng Operational Task Decomposition Method based on Extended HTN Planning
CN111598392B (zh) 一种基于超网络理论的数据链网络结构可靠性评估方法
CN113112079B (zh) 基于启发式动态加深优化算法的任务分配方法
Zhang Topology Structure Model of Tactical Internet Based on Complex Network
Hou et al. Operational Network Topology Reeonfiguration Based on Foeus of Guarantee

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant