CN113486956A - 目标分割系统及其训练方法、目标分割方法及设备 - Google Patents
目标分割系统及其训练方法、目标分割方法及设备 Download PDFInfo
- Publication number
- CN113486956A CN113486956A CN202110767088.XA CN202110767088A CN113486956A CN 113486956 A CN113486956 A CN 113486956A CN 202110767088 A CN202110767088 A CN 202110767088A CN 113486956 A CN113486956 A CN 113486956A
- Authority
- CN
- China
- Prior art keywords
- network
- image
- texture
- layer
- semantic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 149
- 238000012549 training Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000008447 perception Effects 0.000 claims abstract description 66
- 230000004927 fusion Effects 0.000 claims abstract description 34
- 238000011176 pooling Methods 0.000 claims abstract description 33
- 230000008602 contraction Effects 0.000 claims abstract description 13
- 230000006870 function Effects 0.000 claims description 74
- 238000007781 pre-processing Methods 0.000 claims description 32
- 238000010586 diagram Methods 0.000 claims description 28
- 238000012545 processing Methods 0.000 claims description 23
- 230000009467 reduction Effects 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 9
- 238000002372 labelling Methods 0.000 claims description 7
- 238000005457 optimization Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims description 3
- 230000037430 deletion Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 13
- 238000003709 image segmentation Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000013589 supplement Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000010339 dilation Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 101100400452 Caenorhabditis elegans map-2 gene Proteins 0.000 description 2
- 101150064138 MAP1 gene Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110767088.XA CN113486956B (zh) | 2021-07-07 | 2021-07-07 | 目标分割系统及其训练方法、目标分割方法及设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110767088.XA CN113486956B (zh) | 2021-07-07 | 2021-07-07 | 目标分割系统及其训练方法、目标分割方法及设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113486956A true CN113486956A (zh) | 2021-10-08 |
CN113486956B CN113486956B (zh) | 2022-03-25 |
Family
ID=77941745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110767088.XA Active CN113486956B (zh) | 2021-07-07 | 2021-07-07 | 目标分割系统及其训练方法、目标分割方法及设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113486956B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113689373A (zh) * | 2021-10-21 | 2021-11-23 | 深圳市慧鲤科技有限公司 | 图像处理方法、装置、设备及计算机可读存储介质 |
CN113887650A (zh) * | 2021-10-19 | 2022-01-04 | 华南理工大学 | 一种基于深度学习的图像内部纹理分类方法 |
CN114140622A (zh) * | 2021-12-06 | 2022-03-04 | 许昌三维测绘有限公司 | 一种基于双分支网络的实时显著性检测图像方法 |
CN114898110A (zh) * | 2022-04-25 | 2022-08-12 | 四川大学 | 一种基于全分辨率表示网络的医学图像分割方法 |
CN114913094A (zh) * | 2022-06-07 | 2022-08-16 | 中国工商银行股份有限公司 | 图像修复方法、装置、计算机设备、存储介质和程序产品 |
CN117475182A (zh) * | 2023-09-13 | 2024-01-30 | 江南大学 | 基于多特征聚合的立体匹配方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110020606A (zh) * | 2019-03-13 | 2019-07-16 | 北京工业大学 | 一种基于多尺度卷积神经网络的人群密度估计方法 |
CN110232394A (zh) * | 2018-03-06 | 2019-09-13 | 华南理工大学 | 一种多尺度图像语义分割方法 |
CN110427990A (zh) * | 2019-07-22 | 2019-11-08 | 浙江理工大学 | 一种基于卷积神经网络的艺术图像分类方法 |
CN110866526A (zh) * | 2018-08-28 | 2020-03-06 | 北京三星通信技术研究有限公司 | 图像分割方法、电子设备及计算机可读存储介质 |
CN111832453A (zh) * | 2020-06-30 | 2020-10-27 | 杭州电子科技大学 | 基于双路深度神经网络的无人驾驶场景实时语义分割方法 |
CN112037225A (zh) * | 2020-08-20 | 2020-12-04 | 江南大学 | 一种基于卷积神经的海洋船舶图像分割方法 |
CN112733919A (zh) * | 2020-12-31 | 2021-04-30 | 山东师范大学 | 基于空洞卷积和多尺度多分支的图像语义分割方法及系统 |
-
2021
- 2021-07-07 CN CN202110767088.XA patent/CN113486956B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110232394A (zh) * | 2018-03-06 | 2019-09-13 | 华南理工大学 | 一种多尺度图像语义分割方法 |
CN110866526A (zh) * | 2018-08-28 | 2020-03-06 | 北京三星通信技术研究有限公司 | 图像分割方法、电子设备及计算机可读存储介质 |
CN110020606A (zh) * | 2019-03-13 | 2019-07-16 | 北京工业大学 | 一种基于多尺度卷积神经网络的人群密度估计方法 |
CN110427990A (zh) * | 2019-07-22 | 2019-11-08 | 浙江理工大学 | 一种基于卷积神经网络的艺术图像分类方法 |
CN111832453A (zh) * | 2020-06-30 | 2020-10-27 | 杭州电子科技大学 | 基于双路深度神经网络的无人驾驶场景实时语义分割方法 |
CN112037225A (zh) * | 2020-08-20 | 2020-12-04 | 江南大学 | 一种基于卷积神经的海洋船舶图像分割方法 |
CN112733919A (zh) * | 2020-12-31 | 2021-04-30 | 山东师范大学 | 基于空洞卷积和多尺度多分支的图像语义分割方法及系统 |
Non-Patent Citations (5)
Title |
---|
CHANGQIAN YU ET AL.: "BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation", 《PROCEEDINGS OF THE EUROPEAN CONFERENCE ON COMPUTER VISION(ECCV)》 * |
FORREST N. IANDOLA ET AL.: "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters", 《ARXIV.ORG》 * |
YAN ZHOU ET AL.: "Review of research on lightweight convolutional neural networks", 《2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE》 * |
董洪义: "《深度学习之PyTorch物体检测实战》", 31 January 2020, 机械工业出版社 * |
高志强 等: "《深度学习 从入门到实战》", 30 June 2018, 中国铁道出版社 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113887650A (zh) * | 2021-10-19 | 2022-01-04 | 华南理工大学 | 一种基于深度学习的图像内部纹理分类方法 |
CN113887650B (zh) * | 2021-10-19 | 2024-05-24 | 华南理工大学 | 一种基于深度学习的图像内部纹理分类方法 |
CN113689373A (zh) * | 2021-10-21 | 2021-11-23 | 深圳市慧鲤科技有限公司 | 图像处理方法、装置、设备及计算机可读存储介质 |
CN113689373B (zh) * | 2021-10-21 | 2022-02-11 | 深圳市慧鲤科技有限公司 | 图像处理方法、装置、设备及计算机可读存储介质 |
CN114140622A (zh) * | 2021-12-06 | 2022-03-04 | 许昌三维测绘有限公司 | 一种基于双分支网络的实时显著性检测图像方法 |
CN114898110A (zh) * | 2022-04-25 | 2022-08-12 | 四川大学 | 一种基于全分辨率表示网络的医学图像分割方法 |
CN114913094A (zh) * | 2022-06-07 | 2022-08-16 | 中国工商银行股份有限公司 | 图像修复方法、装置、计算机设备、存储介质和程序产品 |
CN117475182A (zh) * | 2023-09-13 | 2024-01-30 | 江南大学 | 基于多特征聚合的立体匹配方法 |
CN117475182B (zh) * | 2023-09-13 | 2024-06-04 | 江南大学 | 基于多特征聚合的立体匹配方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113486956B (zh) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113486956B (zh) | 目标分割系统及其训练方法、目标分割方法及设备 | |
CN109190752B (zh) | 基于深度学习的全局特征和局部特征的图像语义分割方法 | |
CN108664981B (zh) | 显著图像提取方法及装置 | |
CN108596330B (zh) | 一种并行特征全卷积神经网络装置及其构建方法 | |
CN111696110B (zh) | 场景分割方法及系统 | |
CN111047551A (zh) | 一种基于U-net改进算法的遥感影像变化检测方法及系统 | |
CN113807355A (zh) | 一种基于编解码结构的图像语义分割方法 | |
CN112364699B (zh) | 基于加权损失融合网络的遥感图像分割方法、装置及介质 | |
CN111950453A (zh) | 一种基于选择性注意力机制的任意形状文本识别方法 | |
CN111882620B (zh) | 一种基于多尺度信息道路可行驶区域分割方法 | |
CN114943876A (zh) | 一种多级语义融合的云和云影检测方法、设备及存储介质 | |
CN113486894B (zh) | 一种卫星图像特征部件语义分割方法 | |
CN109447897B (zh) | 一种真实场景图像合成方法及系统 | |
CN113850324B (zh) | 一种基于Yolov4的多光谱目标检测方法 | |
CN115082928A (zh) | 面向复杂场景的不对称双分支实时语义分割网络的方法 | |
CN112837320A (zh) | 一种基于并行空洞卷积的遥感影像语义分割方法 | |
CN116863194A (zh) | 一种足溃疡图像分类方法、系统、设备及介质 | |
CN110633706B (zh) | 一种基于金字塔网络的语义分割方法 | |
CN116402851A (zh) | 一种复杂背景下的红外弱小目标跟踪方法 | |
CN113554655B (zh) | 基于多特征增强的光学遥感图像分割方法及装置 | |
CN114581665A (zh) | 一种基于U-net强化道路边缘信息的多尺度道路提取模型的方法 | |
CN111914596A (zh) | 车道线检测方法、装置、系统及存储介质 | |
CN117746130A (zh) | 一种基于遥感影像点状语义标签的弱监督深度学习分类方法 | |
CN113096133A (zh) | 一种基于注意力机制的语义分割网络的构建方法 | |
CN115909077A (zh) | 基于无监督光谱解混神经网络的高光谱图像变化检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: Room 1409, Floor 14, Building 1, High tech Zone Entrepreneurship Center, No. 177, Gaoxin 6th Road, Rizhao, Shandong 276801 Patentee after: Shandong Liju Robot Technology Co.,Ltd. Address before: 276808 No.99, Yuquan 2nd Road, antonwei street, Lanshan District, Rizhao City, Shandong Province Patentee before: Shandong Liju Robot Technology Co.,Ltd. |
|
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Peng Inventor after: Zhang Kai Inventor after: Wang Ren Inventor after: Ding Dongrui Inventor after: Yang Guangyuan Inventor before: Zhang Kai Inventor before: Wang Ren Inventor before: Ding Dongrui Inventor before: Yang Guangyuan |