CN113486580A - High-precision numerical modeling method, server and storage medium for in-service wind turbine generator - Google Patents
High-precision numerical modeling method, server and storage medium for in-service wind turbine generator Download PDFInfo
- Publication number
- CN113486580A CN113486580A CN202110749216.8A CN202110749216A CN113486580A CN 113486580 A CN113486580 A CN 113486580A CN 202110749216 A CN202110749216 A CN 202110749216A CN 113486580 A CN113486580 A CN 113486580A
- Authority
- CN
- China
- Prior art keywords
- neural network
- wind turbine
- turbine generator
- numerical modeling
- precision numerical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000013528 artificial neural network Methods 0.000 claims abstract description 87
- 239000000463 material Substances 0.000 claims abstract description 65
- 238000006073 displacement reaction Methods 0.000 claims abstract description 31
- 238000004088 simulation Methods 0.000 claims abstract description 21
- 238000012549 training Methods 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 210000002569 neuron Anatomy 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 17
- 238000004422 calculation algorithm Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 7
- 238000004364 calculation method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/06—Wind turbines or wind farms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Wind Motors (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请提供在役风电机组高精度数值建模方法、服务端及存储介质,其中,该方法包括以下步骤:获取样本数据:获取风电机组的材料参数标定值,在标定值的误差区间内抽样、处理得到材料参数样本;建立风电机组的仿真模型,仿真并输出每个材料参数样本所对应的节点位移样本;将样本数据分为训练集与测试集;搭建神经网络,将训练集中的材料参数样本作为神经网络的输入,将训练集中的节点位移样本作为所述神经网络的输出;训练神经网络,获取最优的权值及偏置信息;将训练后的神经网络反向,构建反向神经网络;将测试集中的节点位移样本输入至反向神经网络中,输出风电机组的材料参数。通过上述步骤,使得可准确、快速确定风电机组的材料参数。
The present application provides a high-precision numerical modeling method, a server and a storage medium for an in-service wind turbine, wherein the method includes the following steps: obtaining sample data: obtaining a calibration value of the material parameters of the wind turbine, sampling within the error interval of the calibration value, Process to obtain material parameter samples; build a simulation model of the wind turbine, simulate and output the node displacement samples corresponding to each material parameter sample; divide the sample data into a training set and a test set; build a neural network, and combine the material parameter samples in the training set As the input of the neural network, use the node displacement samples in the training set as the output of the neural network; train the neural network to obtain optimal weights and bias information; reverse the trained neural network to construct a reverse neural network ; Input the node displacement samples in the test set into the reverse neural network, and output the material parameters of the wind turbine. Through the above steps, the material parameters of the wind turbine can be determined accurately and quickly.
Description
技术领域technical field
本公开一般涉及风电机组技术领域,具体涉及在役风电机组高精度数值建模方法、服务端及存储介质。The present disclosure generally relates to the technical field of wind turbines, and in particular relates to a high-precision numerical modeling method, a server and a storage medium for an in-service wind turbine.
背景技术Background technique
风电机组通过风力发电,其具有可再生、环境效益好、基建周期短、装机规模灵活等优点;为了使风能成为一种可靠的能源,需要考虑到材料参数对风电机组的影响;Wind turbines generate electricity through wind, which has the advantages of renewable, good environmental benefits, short infrastructure period, flexible installed capacity, etc. In order to make wind energy a reliable energy source, it is necessary to consider the impact of material parameters on wind turbines;
风电机组在役一段时间后,会出现材料退化,此时风电机组的材料参数与出厂时标定的材料参数数值存在差异;而材料参数难以直接测量,需要将风电机组拆解测试,拆卸工序复杂且影响了正常使用;而采用间接法:例如梯度迭代,其对于复杂问题容易陷入局部最优;又例如蚁群算法、遗传算法,其往往需要庞大的工作量,效率较低。After a wind turbine has been in service for a period of time, material degradation will occur. At this time, the material parameters of the wind turbine are different from the material parameters calibrated at the factory; and the material parameters are difficult to measure directly, and the wind turbine needs to be disassembled and tested. The disassembly process is complicated and It affects the normal use; while indirect methods are used: for example, gradient iteration, which is easy to fall into local optimum for complex problems; and ant colony algorithm, genetic algorithm, which often requires huge workload and low efficiency.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术中的上述缺陷或不足,期望提供可准确、快速确定在役风电机组高精度数值建模方法、服务端及存储介质。In view of the above-mentioned defects or deficiencies in the prior art, it is expected to provide a high-precision numerical modeling method, a server and a storage medium that can accurately and quickly determine the in-service wind turbine.
第一方面,本申请提供在役风电机组高精度数值建模方法,包括以下步骤:In the first aspect, the present application provides a high-precision numerical modeling method for an in-service wind turbine, including the following steps:
获取样本数据:获取风电机组的材料参数标定值,在所述标定值的误差区间内抽样、处理得到材料参数样本;建立所述风电机组的仿真模型,仿真并输出每个所述材料参数样本所对应的节点位移样本;将所述样本数据分为训练集与测试集;Obtain sample data: obtain the material parameter calibration value of the wind turbine, sample and process the material parameter sample within the error interval of the calibration value; establish a simulation model of the wind turbine, simulate and output the data of each material parameter sample. Corresponding node displacement samples; dividing the sample data into a training set and a test set;
搭建神经网络,将所述训练集中的材料参数样本作为所述神经网络的输入,将所述训练集中的节点位移样本作为所述神经网络的输出;Building a neural network, using the material parameter samples in the training set as the input of the neural network, and using the node displacement samples in the training set as the output of the neural network;
训练神经网络,获取最优的权值及偏置信息;Train the neural network to obtain optimal weights and bias information;
将训练后的神经网络反向,构建反向神经网络;Reverse the trained neural network to construct a reverse neural network;
将所述测试集中的节点位移样本输入至所述反向神经网络中,输出所述风电机组的材料参数。The node displacement samples in the test set are input into the reverse neural network, and the material parameters of the wind turbine are output.
根据本申请实施例提供的技术方案,所述材料参数包括弹性模量、剪切模量以及泊松比。According to the technical solutions provided in the embodiments of the present application, the material parameters include elastic modulus, shear modulus and Poisson's ratio.
根据本申请实施例提供的技术方案,设置所述神经网络每层中的神经元个数,其中,为第l层神经元的个数,k为设定值;According to the technical solutions provided in the embodiments of the present application, the number of neurons in each layer of the neural network is set, in, is the number of neurons in the lth layer, and k is the set value;
定义loss函数,选择优化器,形成所述神经网络。Define the loss function, choose the optimizer, and form the neural network.
根据本申请实施例提供的技术方案,所述神经网络具体为:According to the technical solutions provided by the embodiments of the present application, the neural network is specifically:
其中,为激活函数;表示第l层的第i个神经元与第l-1层的第j个神经元相连接的权值;第l层第i个神经元的偏置。in, is the activation function; represents the weight of the connection between the i-th neuron in the l-th layer and the j-th neuron in the l-1 layer; Bias of the ith neuron in the lth layer.
根据本申请实施例提供的技术方案,所述反向神经网络具体为:According to the technical solutions provided by the embodiments of the present application, the reverse neural network is specifically:
其中,为所述反向神经网络的权值矩阵,为所述反向神经网络的偏置矩阵。in, is the weight matrix of the inverse neural network, is the bias matrix of the inverse neural network.
根据本申请实施例提供的技术方案,输出所述风电机组的材料参数后还包括以下步骤:According to the technical solutions provided in the embodiments of the present application, the following steps are further included after outputting the material parameters of the wind turbine:
将所述材料参数与所述测试集中材料参数样本进行比较,获取误差数据;Comparing the material parameters with the material parameter samples in the test set to obtain error data;
对所述误差数据进行分析,验证算法的准确性。Analyze the error data to verify the accuracy of the algorithm.
根据本申请实施例提供的技术方案,建立所述风电机组的仿真模型的方法具体为:According to the technical solutions provided by the embodiments of the present application, the method for establishing the simulation model of the wind turbine is specifically:
绘制三维部件,将所述材料参数样本对应输入至所述三维部件的数据中,将所有所述三维部件组装形成所述仿真模型。Drawing a three-dimensional component, correspondingly inputting the material parameter samples into the data of the three-dimensional component, and assembling all the three-dimensional components to form the simulation model.
根据本申请实施例提供的技术方案,仿真并输出每个所述材料参数样本所对应的节点位移样本的方法具体为:According to the technical solutions provided by the embodiments of the present application, the method for simulating and outputting the node displacement samples corresponding to each of the material parameter samples is as follows:
对所述仿真模型进行动力分析以及静力分析;Perform dynamic analysis and static analysis on the simulation model;
确定载荷以及边界条件;Determine loads and boundary conditions;
绘制网格并输出所述节点位移样本。Draw the mesh and output the nodal displacement samples.
第二方面本申请提供一种服务端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述所述在役风电机组高精度数值建模方法的步骤。Second aspect The present application provides a server, including a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor implements the above when executing the computer program. Describe the steps of a high-precision numerical modeling method for in-service wind turbines.
第三方面本申请提供一种计算机可读存储介质,所述计算机可读存储介质有计算机程序,所述计算机程序被处理器执行时实现上述所述在役风电机组高精度数值建模方法的步骤。The third aspect of the present application provides a computer-readable storage medium, the computer-readable storage medium has a computer program, and when the computer program is executed by a processor, implements the steps of the above-mentioned high-precision numerical modeling method for an in-service wind turbine .
本申请的有益效果在于:获取样本数据的过程中,通过在标定值的误差区间内抽样、处理得到材料参数样本,通过仿真模型获取节点位移样本;采用抽样处理以及仿真处理提高了算法的精度;通过将所述材料参数样本作为输入,将节点位移样本作为输出,构建并训练神经网络,使得可获取最优的权值及偏置信息;将训练后的神经网络反向,即可得到反向神经网络;此时将测试集中的节点位移样本输入至反向神经网络中,即可输出风电机组的材料参数。The beneficial effects of the present application are: in the process of acquiring the sample data, the material parameter samples are obtained by sampling and processing within the error interval of the calibration value, and the node displacement samples are obtained by the simulation model; the sampling processing and the simulation processing are used to improve the accuracy of the algorithm; By using the material parameter samples as input and the node displacement samples as output, a neural network is constructed and trained, so that the optimal weights and bias information can be obtained; the reversed neural network can be obtained by inverting the trained neural network. Neural network; at this time, the node displacement samples in the test set are input into the reverse neural network, and the material parameters of the wind turbine can be output.
上述方法中,实现了风电机组材料参数的确定,通过抽样处理、仿真处理并构建神经网络,使得可获取最优权值及偏置信息,提高了计算精度;其与遗传算法、蚁群算法等计算反求法相比,运算量小,运行速度快,提高了风电机组材料参数的计算效率。In the above method, the determination of the material parameters of the wind turbine is realized, and the optimal weight and bias information can be obtained by sampling processing, simulation processing and constructing a neural network, which improves the calculation accuracy; it is similar to genetic algorithm, ant colony algorithm, etc. Compared with the reverse calculation method, the calculation amount is small and the running speed is fast, which improves the calculation efficiency of the material parameters of the wind turbine.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本申请提供的在役风电机组高精度数值建模方法的流程图;Fig. 1 is a flowchart of a high-precision numerical modeling method for an in-service wind turbine provided by the application;
图2为图1所示步骤S500后进行算法验证的流程图。FIG. 2 is a flowchart of algorithm verification after step S500 shown in FIG. 1 .
图3为图1所示步骤S200中神经网络的结构示意图;3 is a schematic structural diagram of the neural network in step S200 shown in FIG. 1;
图4为图1所示步骤S400中反向神经网络的结构示意图;4 is a schematic structural diagram of an inverse neural network in step S400 shown in FIG. 1;
图5为本申请提供的一种服务端。FIG. 5 is a server provided by the present application.
具体实施方式Detailed ways
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。The present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the related invention, but not to limit the invention. In addition, it should be noted that, for the convenience of description, only the parts related to the invention are shown in the drawings.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
实施例1Example 1
请参考图1为本申请提供的在役风电机组高精度数值建模方法的流程图;包括以下步骤:Please refer to FIG. 1 for the flow chart of the high-precision numerical modeling method for in-service wind turbines provided for this application; it includes the following steps:
S100:获取样本数据:获取风电机组的材料参数标定值,在所述标定值的误差区间内抽样、处理得到材料参数样本;建立所述风电机组的仿真模型,仿真并输出每个所述材料参数样本所对应的节点位移样本;将所述样本数据分为训练集与测试集;S100: Obtaining sample data: obtaining the material parameter calibration value of the wind turbine, sampling and processing within the error interval of the calibration value to obtain a material parameter sample; establishing a simulation model of the wind turbine, simulating and outputting each material parameter The node displacement sample corresponding to the sample; the sample data is divided into a training set and a test set;
具体的,在所述标定值的误差区间内进行抽样的方法采用拉丁超立方抽样,所述误差区间为所述标定值的90%-110%;具体的,抽样后对数据进行归一化处理得到所述材料参数样本。Specifically, the method of sampling within the error interval of the calibration value adopts Latin hypercube sampling, and the error interval is 90%-110% of the calibration value; specifically, normalize the data after sampling A sample of the material parameters is obtained.
优选的,所述材料参数样本包括弹性模量样本、剪切模量样本以及泊松比样本。Preferably, the material parameter samples include elastic modulus samples, shear modulus samples and Poisson's ratio samples.
S200:搭建神经网络,将所述训练集中的材料参数样本作为所述神经网络的输入,将所述训练集中的节点位移样本作为所述神经网络的输出;S200: Build a neural network, use the material parameter samples in the training set as the input of the neural network, and use the node displacement samples in the training set as the output of the neural network;
S300:训练神经网络,获取最优的权值及偏置信息;S300: Train the neural network to obtain optimal weights and bias information;
具体的,训练神经网络并获取最优的权值及偏置信息的方法具体为:将所述神经网络的初始学习率选择0.01或0.001;收敛后,获取最优的权值及偏置信息;Specifically, the method for training the neural network and obtaining the optimal weight and bias information is as follows: selecting 0.01 or 0.001 for the initial learning rate of the neural network; after convergence, obtaining the optimal weight and bias information;
S400:将训练后的神经网络反向,构建反向神经网络;S400: Reverse the trained neural network to construct a reverse neural network;
S500:将所述测试集中的节点位移样本输入至所述反向神经网络中,输出所述风电机组的材料参数。S500: Input the node displacement samples in the test set into the inverse neural network, and output the material parameters of the wind turbine.
工作原理:上述获取样本数据的过程中,通过在标定值的误差区间内抽样、处理得到材料参数样本,通过仿真模型获取节点位移样本;采用抽样处理以及仿真处理提高了算法的精度;Working principle: In the above process of obtaining sample data, the material parameter samples are obtained by sampling and processing within the error interval of the calibration value, and the node displacement samples are obtained through the simulation model; the sampling processing and simulation processing are used to improve the accuracy of the algorithm;
通过将所述材料参数样本作为输入,将节点位移样本作为输出,构建并训练神经网络,使得可获取最优的权值及偏置信息;将训练后的神经网络反向,即可得到反向神经网络;此时将测试集中的节点位移样本输入至反向神经网络中,即可输出风电机组的材料参数。By using the material parameter samples as input and the node displacement samples as output, a neural network is constructed and trained, so that the optimal weights and bias information can be obtained; the reversed neural network can be obtained by inverting the trained neural network. Neural network; at this time, the node displacement samples in the test set are input into the reverse neural network, and the material parameters of the wind turbine can be output.
上述方法中,实现了风电机组材料参数的确定,通过抽样处理、仿真处理并构建神经网络,使得可获取最优权值及偏置信息,提高了计算精度;其与遗传算法、蚁群算法等计算反求法相比,运算量小,运行速度快,提高了风电机组材料参数的计算效率。In the above method, the determination of the material parameters of the wind turbine is realized, and the optimal weight and bias information can be obtained by sampling processing, simulation processing and constructing a neural network, which improves the calculation accuracy; it is similar to genetic algorithm, ant colony algorithm, etc. Compared with the reverse calculation method, the calculation amount is small and the running speed is fast, which improves the calculation efficiency of the material parameters of the wind turbine.
作为优选的,所述材料参数包括弹性模量、剪切模量以及泊松比。Preferably, the material parameters include elastic modulus, shear modulus and Poisson's ratio.
作为优选的,搭建所述神经网络的方法具体为:Preferably, the method for building the neural network is as follows:
设置所述神经网络每层中的神经元个数,其中,为第l层神经元的个数,k为设定值;Set the number of neurons in each layer of the neural network, in, is the number of neurons in the lth layer, and k is the set value;
定义loss函数,选择优化器,形成所述神经网络。Define the loss function, choose the optimizer, and form the neural network.
具体的loss可采用均方误差:The specific loss can use the mean square error:
其中,MSE(Mean Square Error)是对估计值和真实值之差取平方和的平均值,该估计值为所述神经网络输出的值,实际值为训练样本中作为输出的值。Wherein, MSE (Mean Square Error) is the average value of the sum of squares of the difference between the estimated value and the actual value, the estimated value is the value output by the neural network, and the actual value is the output value in the training sample.
具体的,所述优化器可采用Adam;Specifically, the optimizer can use Adam;
具体的,k为设定常数。由上述公式及图3所示,所述神经网络为正向喇叭网络,即所述神经网络中各层神经元个数呈等差数列,保证了神经网络的精度。Specifically, k is a set constant. As shown in the above formula and FIG. 3 , the neural network is a forward horn network, that is, the number of neurons in each layer in the neural network is an arithmetic progression, which ensures the accuracy of the neural network.
由于训练后的正向喇叭网络的权重和偏置反映了反问题中变量之间的关联,因此将训练后的正向喇叭网络反向,利用显式公式求得反向喇叭网络的权重及偏置,即可得到反向神经网络,如图4所示。Since the weights and biases of the trained forward speaker network reflect the relationship between the variables in the inverse problem, the trained forward speaker network is reversed, and the weights and biases of the reverse speaker network are obtained by using explicit formulas. After setting, the reverse neural network can be obtained, as shown in Figure 4.
作为优选的,所述神经网络具体为:Preferably, the neural network is specifically:
其中,为激活函数;表示第l层的第i个神经元与第l-1层的第j个神经元相连接的权值;第l层第i个神经元的偏置。in, is the activation function; represents the weight of the connection between the i-th neuron in the l-th layer and the j-th neuron in the l-1 layer; Bias of the ith neuron in the lth layer.
作为优选的,所述反向神经网络具体为:Preferably, the reverse neural network is specifically:
其中,为所述反向神经网络的权值矩阵,为所述反向神经网络的偏置矩阵。in, is the weight matrix of the inverse neural network, is the bias matrix of the inverse neural network.
为了便于说明本申请提供的技术方案,以材料参数(弹性模量、剪切模量以及泊松比)为例。In order to facilitate the description of the technical solutions provided in this application, material parameters (elastic modulus, shear modulus and Poisson's ratio) are taken as an example.
S100:获取样本数据:分别获取弹性模量、剪切模量以及泊松比的标定值,分别在其误差区间(标定值的90%-110%)内抽样并归一化处理得到材料参数样本;建立所述风电机组的仿真模型,仿真并输出弹性模量、剪切模量以及泊松比所对应的节点位移样本;将所述样本数据分为训练集与测试集。S100: Obtain sample data: obtain the calibration values of elastic modulus, shear modulus and Poisson's ratio, respectively, sample and normalize them within the error interval (90%-110% of the calibration value) to obtain material parameter samples ; Establish a simulation model of the wind turbine, simulate and output the elastic modulus, shear modulus and node displacement samples corresponding to Poisson's ratio; divide the sample data into a training set and a test set.
S200:搭建神经网络,将所述训练集中的材料参数样本作为所述神经网络的输入,将所述训练集中的节点位移样本作为所述神经网络的输出:S200: Build a neural network, use the material parameter samples in the training set as the input of the neural network, and use the node displacement samples in the training set as the output of the neural network:
其矩阵形式为:Its matrix form is:
将三个材料参数输入至神经网络中,即输入层(第一层)所有神经元的值可表示为其与第二层的第i个神经元的值的关系式可表示为:The three material parameters are input into the neural network, that is, the values of all neurons in the input layer (the first layer) can be expressed as its value with the ith neuron of the second layer The relation can be expressed as:
通过上述公式即可求出第二层每个神经元的值,以此类推即可求出输出层各个神经元的值,也即弹性模量、剪切模量以及泊松比所对应的节点位移的值。Through the above formula, the value of each neuron in the second layer can be obtained, and by analogy, the value of each neuron in the output layer can be obtained, that is, the nodes corresponding to the elastic modulus, shear modulus and Poisson’s ratio displacement value.
S300:训练神经网络,获取最优的权值及偏置信息;S300: Train the neural network to obtain optimal weights and bias information;
S400:将训练后的神经网络反向,构建反向神经网络;S400: Reverse the trained neural network to construct a reverse neural network;
将所述训练后的神经网络反向:Reverse the trained neural network:
将上述公式括号展开,并利用显示公式表示为:Expand the above formula in parentheses and use the display formula to express as:
通过上式即可求得反向神经网络的权值矩阵和偏置矩阵进而得到反向神经网络。The weight matrix of the reverse neural network can be obtained by the above formula and the bias matrix And then get the reverse neural network.
S500:将所述测试集中的节点位移样本输入至所述反向神经网络中,输出所述风电机组的材料参数(弹性模量、剪切模量、泊松比)。S500: Input the node displacement samples in the test set into the inverse neural network, and output the material parameters (elastic modulus, shear modulus, Poisson's ratio) of the wind turbine.
作为优选的,输出所述风电机组的材料参数后还包括以下步骤:Preferably, the following steps are further included after outputting the material parameters of the wind turbine:
S601:将输出的所述材料参数与所述测试集中材料参数样本进行比较,获取误差数据;S601: Compare the output material parameters with the material parameter samples in the test set to obtain error data;
S602:对所述误差数据进行分析,验证算法的准确性。S602: Analyze the error data to verify the accuracy of the algorithm.
作为优选的,建立所述风电机组的仿真模型的方法具体为:Preferably, the method for establishing the simulation model of the wind turbine is as follows:
绘制三维部件,将所述材料参数样本对应输入至所述三维部件的数据中,将所有所述三维部件组装形成所述仿真模型。Drawing a three-dimensional component, correspondingly inputting the material parameter samples into the data of the three-dimensional component, and assembling all the three-dimensional components to form the simulation model.
作为优选的,仿真并输出每个所述材料参数样本所对应的节点位移样本的方法具体为:Preferably, the method for simulating and outputting the nodal displacement samples corresponding to each of the material parameter samples is as follows:
对所述仿真模型进行动力分析以及静力分析;Perform dynamic analysis and static analysis on the simulation model;
确定载荷以及边界条件;Determine loads and boundary conditions;
绘制网格并输出所述节点位移样本。Draw the mesh and output the nodal displacement samples.
实施例2Example 2
请参考图5为本申请提供的服务端或服务器的计算机系统700的原理框图,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述所述在役风电机组高精度数值建模方法的步骤。Please refer to FIG. 5 for a schematic block diagram of a
如图5所示,所述计算机系统700包括中央处理单元(CPU)701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储部分加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。在RAM703中,还存储有系统操作所需的各种程序和数据。CPU 701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。As shown in FIG. 5, the
以下部件连接至I/O接口705:包括键盘、鼠标等的输入部分706;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分;包括硬盘等的存储部分708;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分709。通信部分709经由诸如因特网的网络执行通信处理。驱动器也根据需要连接至I/O接口705。可拆卸介质711,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器710上,以便于从其上读出的计算机程序根据需要被安装入存储部分708。The following components are connected to the I/O interface 705: an
特别地,根据本发明的实施例,上文参考流程图1描述的过程可以被实现为计算机软件程序。例如,本发明的实施例1包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被中央处理单元(CPU)601执行时,执行本申请的系统中限定的上述功能。In particular, according to an embodiment of the present invention, the process described above with reference to
实施例3Example 3
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质有计算机程序,所述计算机程序被处理器执行时实现如上述所述确定在役风电机组高精度数值建模方法的步骤。The present application also provides a computer-readable storage medium, the computer-readable storage medium has a computer program, and when the computer program is executed by a processor, the above-mentioned steps of determining a high-precision numerical modeling method for an in-service wind turbine are implemented. .
需要说明的是,本发明所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium shown in the present invention may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In the present invention, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. In the present invention, however, a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device . Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented in special purpose hardware-based systems that perform the specified functions or operations, or can be implemented using A combination of dedicated hardware and computer instructions is implemented.
描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现,所描述的单元也可以设置在处理器中。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。所描述的单元或模块也可以设置在处理器中,例如,可以描述为:一种处理器包括获取模块、初始化模块、数据处理模块。The units involved in the embodiments of the present invention may be implemented in a software manner, or may be implemented in a hardware manner, and the described units may also be provided in a processor. Among them, the names of these units do not constitute a limitation on the unit itself under certain circumstances. The described unit or module can also be set in the processor, for example, it can be described as: a processor includes an acquisition module, an initialization module, and a data processing module.
其中,这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定,例如,获取模块还可以被描述为“用于获取样本数据的获取模块”。The names of these units or modules do not constitute a limitation on the units or modules themselves, for example, the acquisition module can also be described as an "acquisition module for acquiring sample data".
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该电子设备执行时,使得该电子设备实现如上述实施例中在役风电机组高精度数值建模方法。As another aspect, the present application also provides a computer-readable medium. The computer-readable medium may be included in the electronic device described in the above embodiments; it may also exist alone without being assembled into the electronic device. middle. The computer-readable medium carries one or more programs, and when the one or more programs are executed by an electronic device, the electronic device implements the high-precision numerical modeling method for an in-service wind turbine in the above-mentioned embodiment.
例如,所述电子设备可以实现如图1中所示的:For example, the electronic device may implement as shown in Figure 1:
S100:获取样本数据:获取风电机组的材料参数标定值,在所述标定值的误差区间内抽样、处理得到材料参数样本;建立所述风电机组的仿真模型,仿真并输出每个所述材料参数样本所对应的节点位移样本;将所述样本数据分为训练集与测试集;S100: Obtaining sample data: obtaining the material parameter calibration value of the wind turbine, sampling and processing within the error interval of the calibration value to obtain a material parameter sample; establishing a simulation model of the wind turbine, simulating and outputting each material parameter The node displacement sample corresponding to the sample; the sample data is divided into a training set and a test set;
S200:搭建神经网络,将所述训练集中的材料参数样本作为所述神经网络的输入,将所述训练集中的节点位移样本作为所述神经网络的输出;S200: Build a neural network, use the material parameter samples in the training set as the input of the neural network, and use the node displacement samples in the training set as the output of the neural network;
S300:训练神经网络,获取最优的权值及偏置信息;S300: Train the neural network to obtain optimal weights and bias information;
S400:将训练后的神经网络反向,构建反向神经网络;S400: Reverse the trained neural network to construct a reverse neural network;
S500:将所述测试集中的节点位移样本输入至所述反向神经网络中,输出所述风电机组的材料参数。S500: Input the node displacement samples in the test set into the inverse neural network, and output the material parameters of the wind turbine.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, and should also cover the above-mentioned technical features without departing from the inventive concept. Other technical solutions formed by any combination of its equivalent features. For example, a technical solution is formed by replacing the above-mentioned features with the technical features disclosed in this application (but not limited to) with similar functions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110749216.8A CN113486580B (en) | 2021-07-01 | 2021-07-01 | High-precision numerical modeling method, server and storage medium for in-service wind turbine generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110749216.8A CN113486580B (en) | 2021-07-01 | 2021-07-01 | High-precision numerical modeling method, server and storage medium for in-service wind turbine generator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113486580A true CN113486580A (en) | 2021-10-08 |
CN113486580B CN113486580B (en) | 2022-11-01 |
Family
ID=77939449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110749216.8A Active CN113486580B (en) | 2021-07-01 | 2021-07-01 | High-precision numerical modeling method, server and storage medium for in-service wind turbine generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113486580B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480478B2 (en) * | 2016-11-30 | 2022-10-25 | Cummins Emission Solutions Inc. | Temperature estimation for sensor |
WO2023103927A1 (en) * | 2021-12-08 | 2023-06-15 | 中兴通讯股份有限公司 | Information transmission method, communication node, and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106560848A (en) * | 2016-10-09 | 2017-04-12 | 辽宁工程技术大学 | Novel neural network model for simulating biological bidirectional cognition capability, and training method |
CN111523713A (en) * | 2020-04-14 | 2020-08-11 | 中国地质大学(北京) | Method and device for predicting residual oil saturation distribution in oil field |
CN112101530A (en) * | 2020-11-10 | 2020-12-18 | 南京集成电路产业服务中心有限公司 | Neural network training method, device, equipment and storage medium |
-
2021
- 2021-07-01 CN CN202110749216.8A patent/CN113486580B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106560848A (en) * | 2016-10-09 | 2017-04-12 | 辽宁工程技术大学 | Novel neural network model for simulating biological bidirectional cognition capability, and training method |
CN111523713A (en) * | 2020-04-14 | 2020-08-11 | 中国地质大学(北京) | Method and device for predicting residual oil saturation distribution in oil field |
CN112101530A (en) * | 2020-11-10 | 2020-12-18 | 南京集成电路产业服务中心有限公司 | Neural network training method, device, equipment and storage medium |
Non-Patent Citations (4)
Title |
---|
刘威 等: "互学习神经网络训练方法研究", 《计算机学报》 * |
段书用 等: "一种新的复合材料参数精确逆向识别方法", 《2018年全国固体力学学术会议摘要集(下)》 * |
练继建 等: "基于BP神经网络的李家峡拱坝材料参数反演", 《水力发电学报》 * |
陈金富 等: "利用时空相关性的多位置多步风速预测模型", 《中国电机工程学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480478B2 (en) * | 2016-11-30 | 2022-10-25 | Cummins Emission Solutions Inc. | Temperature estimation for sensor |
WO2023103927A1 (en) * | 2021-12-08 | 2023-06-15 | 中兴通讯股份有限公司 | Information transmission method, communication node, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN113486580B (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114580647B (en) | Quantum system simulation method, computing device, device and storage medium | |
CN111694714B (en) | A method, device, device, and readable storage medium for estimating power consumption of many-core chips | |
CN112926152B (en) | Digital twin-driven thin-wall part clamping force precise control and optimization method | |
US20230062600A1 (en) | Adaptive design and optimization using physics-informed neural networks | |
JP7600149B2 (en) | System and method for simulating a quantum processor | |
CN112052958A (en) | Method, apparatus, device and computer-readable storage medium for model training | |
CN113486580B (en) | High-precision numerical modeling method, server and storage medium for in-service wind turbine generator | |
CN116450486B (en) | Modeling method, device, equipment and medium for nodes in multi-element heterogeneous computing system | |
CN112906282B (en) | Method and system for identifying working mode parameters of Sanger neural network parallel principal component extraction | |
CN113568821A (en) | A method, device, equipment, and medium for testing AI chip computing performance | |
CN113011073B (en) | One-dimensional complex hysteretic relationship construction and structural simulation method based on deep learning | |
Parisi et al. | On the use of mechanics-informed models to structural engineering systems: Application of graph neural networks for structural analysis | |
CN114638048A (en) | Three-dimensional spray pipe flow field rapid prediction and sensitivity parameter analysis method and device | |
CN117725859A (en) | Fatigue crack growth prediction method and system for aircraft fatigue damage key part | |
CN114935688B (en) | Harmonic evaluation method and system for electric arc furnace power supply system based on power segmentation | |
CN116383658A (en) | A method and device for fault diagnosis of solar panels based on BP neural network | |
Xiao et al. | Stiffness Separation Method for Reducing Calculation Time of Truss Structure Damage Identification | |
CN112131638B (en) | Wind-induced dynamic characteristic type determination method of large-span roof structure and terminal equipment | |
CN117574775A (en) | BP neural network-based dynamic stress prediction method and device for structural defect | |
US20230062268A1 (en) | System and method for fatigue response prediction | |
CN115438575B (en) | Analysis method for high-precision airfoil flow field prediction | |
CN114840924A (en) | Vehicle body curved surface simulation prediction method and system based on machine learning | |
CN111241614B (en) | Engineering structure load inversion method based on condition generation confrontation network model | |
CN114037144A (en) | Power grid engineering operation and maintenance cost prediction method and system | |
Liu et al. | Application of improved cuckoo algorithm to optimize generalized regression neural network in software quality prediction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |