CN113485489B - 一种orc系统蒸发器出口温度的调控方法 - Google Patents

一种orc系统蒸发器出口温度的调控方法 Download PDF

Info

Publication number
CN113485489B
CN113485489B CN202110677365.8A CN202110677365A CN113485489B CN 113485489 B CN113485489 B CN 113485489B CN 202110677365 A CN202110677365 A CN 202110677365A CN 113485489 B CN113485489 B CN 113485489B
Authority
CN
China
Prior art keywords
evaporator
outlet temperature
orc system
entering
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110677365.8A
Other languages
English (en)
Other versions
CN113485489A (zh
Inventor
张佳钰
纪捷
王夫诚
秦泾鑫
朱跃伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Hefei Longzhi Electromechanical Technology Co ltd
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202110677365.8A priority Critical patent/CN113485489B/zh
Publication of CN113485489A publication Critical patent/CN113485489A/zh
Application granted granted Critical
Publication of CN113485489B publication Critical patent/CN113485489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Artificial Intelligence (AREA)
  • Power Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种ORC系统蒸发器出口温度的调控方法,首先采用移动边界法对ORC系统中的蒸发器进行建模,其中对蒸发器进行分区积分,而后根据能量守恒和质量守恒表得到蒸发器的模型;根据蒸发器模型,利用正弦余弦算法优化系统配置,其中对各种群个体根据适应度交叉操作并排序迭代,得到优化配置结果;然后根据优化配置结果调控蒸发器出口温度。本发明通过此ORC系统蒸发器出口温度的调控方法提高了系统的能源利用率、净输出功和发电效率且稳定性好。

Description

一种ORC系统蒸发器出口温度的调控方法
技术领域
本发明涉及一种ORC系统蒸发器出口温度的调控方法,属于ORC系统领域。
背景技术
随着社会进步和科学技术的不断发展,生活生产中所需要的能源消耗也逐渐增大,当前人类能源主要使用的还是石油、天然气、煤矿等不可再生资源,持续性消耗并非长久之计,且资源使用过程中造成了较高的环境负担。因此,利用可再生的生物质资源或者太阳能、风能等清洁自然资源成了能源行业发展的必然趋势。生物质锅炉的工作过程会产生大量的废气,废气中包含大量的热能未能被充分利用便排出,在浪费了资源的同时也有害于环境。
传统的ORC(有机朗肯循环发电)系统利用低温余热资源作为热源供ORC系统的后续运行,但低温余热资源的不稳定性,也会造成系统运行不稳定的问题。现有的利用生物质的ORC系统虽然在一定程度上提高了系统的能源利用率,但是其发电效率却仍然有待提高。
发明内容
发明目的:本发明目的在于提供一种通过优化ORC系统蒸发器出口温度进而提高系统的能源利用率、提高净输出功和发电效率且稳定性好的调控方法。
技术方案:本发明的ORC系统蒸发器出口温度的调控方法,包括以下步骤:
1)采用移动边界法对ORC系统中的蒸发器进行建模;
2)根据步骤1中得到的蒸发器模型,利用正弦余弦算法优化系统配置;
3)根据步骤2中所得优化配置结果调控蒸发器出口温度。
步骤1中,蒸发器的建模包括以下步骤:
11)将蒸发器分为过冷区、两相区和过热区,根据能量守恒定理和质量守恒定理,用非线性偏微分方程描述模型;
12)将步骤11中蒸发器的3个区域,利用莱布尼茨公式分别程进行积分,得到三个区域的移动边界模型;
13)根据各个区域的能量守恒和质量守恒表达式,得到蒸发器的模型。
所述蒸发器为水平直管,有机工质在管内做一维流动,且工质在管内的换热发生在径向方向。
步骤2中,正弦余弦算法优化系统配置包括以下步骤:
21)随机初始化种群数为S,随机位置为X,最大迭代次数为N,输入蒸发器的出口温度参数;
22)计算每个个体的适应度值,更新最优位置,令迭代次数T=1;
23)进入主循环,基于改进更新调节因子M和自适应权重W;
24)随机产生R的数值,R的取值范围为[0,1],若R小于交叉概率P,则进入步骤5,反之进入步骤6;
25)R小于P时,判断个体适应度值F是否小于群体平均值f(x),若F小于f(x),进入随机交叉操作,反之进入规律交叉操作更新最优位置;
26)随机产生预判变异概率Pos,取值范围为(0,N),判断变异概率Po是否小于预判变异概率Pos,若Po小于Pos,则进行变异操作,反之进入步骤7;
27)形成下一代种群,更新最优位置;
28)判断是否达到最大迭代次数N,若没有则返回步骤3,反之输出最优位置,即最优出口温度。
步骤23中,调节因子M关系式为:
Figure BDA0003121347610000021
自适应权重W关系式为:
Figure BDA0003121347610000022
其中,a为控制参数,a的取值范围为[0,1],tanh与sinh为双曲函数。
步骤24中,交叉概率P的关系式为:
Figure BDA0003121347610000023
步骤25中,随机交叉关系式为:
Figure BDA0003121347610000024
规律交叉关系式为:
Figure BDA0003121347610000025
ε=fm/(fn+fm)
其中,
Figure BDA0003121347610000026
为种群中一个个体位置,
Figure BDA0003121347610000027
为随机的另一个个体位置,fn
Figure BDA0003121347610000028
个体的适应度值,fm
Figure BDA0003121347610000029
个体的适应度值,μ为随机数,取值范围为[0,1],ε为比例系数。
步骤26中,变异概率关系式为:
Figure BDA0003121347610000031
所述ORC系统包括生物质锅炉、蒸发器、膨胀机、发电机、冷凝器、储液器和工质泵,所述生物质锅炉向蒸发器提供热能,蒸发器利用所提供热能向膨胀机输出蒸汽,带动发电机发电,膨胀机所排出的蒸汽经由冷凝器冷凝,储存于储液器中,再经由工质泵加压后,回送到蒸发器。
所述ORC系统还包括风力发电机组,风力发电机组包括风轮和齿轮变速箱,风轮通过齿轮变速箱与发电机相连。
所述ORC系统还包括余热回收子系统,余热回收子系统包括第一烟气-水换热器、吸收式热泵和第二烟气-水换热器,生物质锅炉产生的高温废气经由第一烟气-水换热器,产生高温热水供吸收式热泵工作,热网回水经由吸收式热泵和第二烟气-水换热器再次加热。
有益效果:与现有技术相比,本发明具有如下显著优点:移动边界法建模的蒸发器模型简单,阶次小,计算量小且计算精度高;通过优化调控蒸发器出口的温度,保证有机工质的完全蒸发,进而提高系统的能源利用率、发电效率和净输出功;结合风能和生物质能,较只使用了一种能源的发电系统更加稳定可靠;通过换热器-吸收泵实现了废气的余热回收,辅助供暖提高能源利用率。
附图说明
图1为本发明的方法流程图;
图2为本发明系统的结构示意图;
图3为本发明的一次能源节约率对比图;
图4为本发明的发电效率对比图;
图5为本发明的净输出功对比图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
如图1所示,本发明的ORC系统蒸发器出口温度的调控方法,包括以下步骤:
1)采用移动边界法对ORC系统中的蒸发器进行建模;
2)根据步骤1中得到的蒸发器模型,利用正弦余弦算法优化系统配置;
3)根据步骤2中所得优化配置结果调控蒸发器出口温度。
其中,步骤1中蒸发器建模的过程包括以下步骤:
11)将蒸发器分为过冷区、两相区和过热区,根据能量守恒定理和质量守恒定理,用非线性偏微分方程描述模型;
12)将步骤11中蒸发器的3个区域,利用莱布尼茨公式分别程进行积分,得到三个区域的移动边界模型;
13)根据各个区域的能量守恒和质量守恒表达式,得到蒸发器的模型。
为减少建模过程的复杂性,以上建模的过程均在所述蒸发器为水平直管,有机工质在管内做一维流动,且工质在管内的换热发生在径向方向的前提下进行。
步骤2中的正弦余弦算法优化系统配置的过程包括以下步骤:
21)随机初始化种群数为S,随机位置为X,最大迭代次数为N,输入蒸发器的出口温度参数;
22)计算每个个体的适应度值,更新最优位置,令迭代次数T=1;
23)进入主循环,基于改进更新调节因子M和自适应权重W;
24)随机产生R的数值,R的取值范围为[0,1],若R小于交叉概率P,则进入步骤5,反之进入步骤6;
25)R小于P时,判断个体适应度值F是否小于群体平均值f(x),若F小于f(x),进入随机交叉操作,反之进入规律交叉操作更新最优位置;
26)随机产生预判变异概率Pos,取值范围为(0,N),判断变异概率Po是否小于预判变异概率Pos,若Po小于Pos,则进行变异操作,反之进入步骤7;
27)形成下一代种群,更新最优位置;
28)判断是否达到最大迭代次数N,若没有则返回步骤3,反之输出最优位置,即最优出口温度。
步骤23中,调节因子M关系式为:
Figure BDA0003121347610000041
自适应权重W关系式为:
Figure BDA0003121347610000042
其中,a为控制参数,a的取值范围为[0,1]。
步骤24中,交叉概率P的关系式为:
Figure BDA0003121347610000043
步骤25中,随机交叉关系式为:
Figure BDA0003121347610000051
规律交叉关系式为:
Figure BDA0003121347610000052
ε=fm/(fn+fm)
其中,
Figure BDA0003121347610000053
为种群中一个个体位置,
Figure BDA0003121347610000054
为随机的另一个个体位置,fn
Figure BDA0003121347610000055
个体的适应度值,fm
Figure BDA0003121347610000056
个体的适应度值,μ为随机数,取值范围为[0,1],ε为比例系数。
步骤26中,变异概率关系式为:
Figure BDA0003121347610000057
如图2所示,本发明的ORC系统包括生物质锅炉1、蒸发器2、膨胀机3、发电机6、冷凝器7、储液器8和工质泵9,所述生物质锅炉1作为系统的热源,给蒸发器2提供热能,蒸发器2中的有机工质吸收获得的热能,转变成高温高压的蒸汽,输出到膨胀机3内,进行做功,以此带动发电机6发电。膨胀机3所排出的蒸汽经由冷凝器7冷凝,变成液态工质流入储存于储液器8中,再经由工质泵9加压后,回送到蒸发器2。
进一步的,ORC系统还包括风力发电机组,风力发电机组包括风轮4和齿轮变速箱5,风轮4通过齿轮变速箱5与发电机6相连,风轮4将风的动能转换为机械能,再通过齿轮变速箱5,利用风轮4传递来的机械能带动发电机6发电。
由此完成结合风能和生物质能混合利用的有机朗肯循环发电系统的环节。
再进一步的,ORC系统还包括余热回收子系统,余热回收子系统包括第一烟气-水换热器10、吸收式热泵11和第二烟气-水换热器12,生物质锅炉1产生的高温废气经由第一烟气-水换热器10,产生高温热水供吸收式热泵11工作,余热回收过程中的热网回水13经由吸收式热泵和第二烟气-水换热器12再次加热,从而实现供热的目的,输出为热负荷14,由此完成利用换热器-吸收泵进行烟气余热回收的环节。
本发明的ORC系统蒸发器出口温度的调控方法的工作原理为:利用风能和生物质能混合实现系统中发电的环节,利用换热器-吸热泵实现系统中烟气余热回收的环节,利用移动边界发实现蒸发器的建模环节,再利用正弦余弦算法优化蒸发器模型出口温度,优化系统配置。
如图3所示,本发明的ORC系统的一次能源节约率稳定保持在11.5%-12%,相较于现有生物质ORC系统的10%-11%和传统ORC系统的7%-9%的大波动,一方面能源节约率更高,另一方面更加稳定。
如图4所示,本发明的ORC系统的发电效率保持在8%-8.6%,相较于现有生物质ORC系统的7.8%-7.9%和传统ORC系统的6%-7%的较大波动,虽然波动幅度较现有生物质ORC系统稍高,但仍然比传统ORC系统的稳定性更高,且发电效率较两种ORC系统更高。
如图5所示,本发明的ORC系统的净输出功保持在161-166kw,相较于现有生物质ORC系统的155-158kw和传统ORC系统的151-155kw,本发明的ORC系统的净输出功有明显提高。

Claims (4)

1.一种ORC系统蒸发器出口温度的调控方法,其特征在于,包括以下步骤:
1)采用移动边界法对ORC系统中的蒸发器进行建模,
蒸发器的建模包括以下步骤:
11)将蒸发器分为过冷区、两相区和过热区,根据能量守恒定理和质量守恒定理,用非线性偏微分方程描述模型;
12)将步骤11中蒸发器的3个区域,利用莱布尼茨公式分别程进行积分,得到三个区域的移动边界模型;
13)根据各个区域的能量守恒和质量守恒表达式,得到蒸发器的模型;
2)根据步骤1中得到的蒸发器模型,利用正弦余弦算法优化系统配置,
正弦余弦算法优化系统配置的过程包括以下步骤:
21)随机初始化种群数为S,随机位置为X,最大迭代次数为N,输入蒸发器的出口温度参数;
22)计算每个个体的适应度值,更新最优位置,令迭代次数T=1;
23)进入主循环,更新调节因子M和自适应权重W,
调节因子M关系式为:
Figure FDA0003548900410000011
自适应权重W关系式为:
Figure FDA0003548900410000012
其中,a为控制参数,a的取值范围为[0,1];
24)随机产生R的数值,R的取值范围为[0,1],若R小于交叉概率P,则进入步骤5,反之进入步骤6;
25)R小于P时,判断个体适应度值F是否小于群体平均值f(x),若F小于f(x),进入随机交叉操作,反之进入规律交叉操作更新最优位置,
随机交叉关系式为:
Figure FDA0003548900410000013
规律交叉关系式为:
Figure FDA0003548900410000014
ε=fm/(fn+fm)
其中,
Figure FDA0003548900410000021
为种群中一个个体位置,
Figure FDA0003548900410000022
为随机的另一个个体位置,fn
Figure FDA0003548900410000023
个体的适应度值,fm
Figure FDA0003548900410000024
个体的适应度值,μ为随机数,取值范围为[0,1],ε为比例系数;
26)随机产生预判变异概率Pos,取值范围为(0,N),判断变异概率Po是否小于预判变异概率Pos,若Po小于Pos,则进行变异操作,反之进入步骤7,
变异概率关系式为:
Figure FDA0003548900410000025
27)形成下一代种群,更新最优位置;
28)判断是否达到最大迭代次数N,若没有则返回步骤3,反之输出最优位置,即最优出口温度;
3)根据步骤2中所得优化配置结果调控蒸发器出口温度。
2.根据权利要求1所述的ORC系统蒸发器出口温度的调控方法,其特征在于,所述蒸发器为水平直管,有机工质在管内做一维流动,且工质在管内的换热发生在径向方向。
3.根据权利要求1所述的ORC系统蒸发器出口温度的调控方法,其特征在于,所述步骤24中,交叉概率P的关系式为:
Figure FDA0003548900410000026
4.根据权利要求1所述的ORC系统蒸发器出口温度的调控方法,其特征在于,所述ORC系统包括生物质锅炉(1)、蒸发器(2)、膨胀机(3)、发电机(6)、冷凝器(7)、储液器(8)和工质泵(9),所述生物质锅炉(1)向蒸发器(2)提供热能,蒸发器(2)利用所提供热能向膨胀机(3)输出蒸汽,带动发电机(6)发电,膨胀机(3)所排出的蒸汽经由冷凝器(7)冷凝,储存于储液器(8)中,再经由工质泵(9)加压后,回送到蒸发器(2);所述ORC系统还包括风力发电机组和余热回收子系统,风力发电机组包括风轮(4)和齿轮变速箱(5),风轮(4)通过齿轮变速箱(5)与发电机(6)相连;余热回收子系统包括第一烟气-水换热器(10)、吸收式热泵(11)和第二烟气-水换热器(12),生物质锅炉(1)产生的高温废气经由第一烟气-水换热器(10),产生高温热水供吸收式热泵(11)工作,热网回水(13)经由吸收式热泵和第二烟气-水换热器(12)再次加热。
CN202110677365.8A 2021-06-18 2021-06-18 一种orc系统蒸发器出口温度的调控方法 Active CN113485489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110677365.8A CN113485489B (zh) 2021-06-18 2021-06-18 一种orc系统蒸发器出口温度的调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110677365.8A CN113485489B (zh) 2021-06-18 2021-06-18 一种orc系统蒸发器出口温度的调控方法

Publications (2)

Publication Number Publication Date
CN113485489A CN113485489A (zh) 2021-10-08
CN113485489B true CN113485489B (zh) 2022-05-10

Family

ID=77934003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110677365.8A Active CN113485489B (zh) 2021-06-18 2021-06-18 一种orc系统蒸发器出口温度的调控方法

Country Status (1)

Country Link
CN (1) CN113485489B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218844402U (zh) * 2021-10-27 2023-04-11 烟台杰瑞石油装备技术有限公司 移动式余热回收发电装置和燃气轮机发电设备
CN114294630A (zh) * 2021-11-30 2022-04-08 淮阴工学院 基于orc的新型系统的碳排放调控系统、方法和介质
CN115981384B (zh) * 2023-02-07 2023-09-22 淮阴工学院 一种智能生物质orc蒸发压力控制设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8419694D0 (en) * 1983-09-02 1984-09-05 Bosch Siemens Hausgeraete Heat exchanger manufacture
CA2369141A1 (en) * 1999-05-03 2001-01-04 Joseph H. Silverman Secure user identification based on ring homomorphisms
CN107797453A (zh) * 2017-10-30 2018-03-13 广东电网有限责任公司电力科学研究院 一种co2跨临界循环的余热发电系统设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018015684A (es) * 2016-06-17 2019-08-29 Magenta Therapeutics Inc Composiciones y metodos para el agotamiento de celulas cd117.
CN111898628B (zh) * 2020-06-01 2023-10-03 淮阴工学院 一种新型t-s模糊模型辨识方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8419694D0 (en) * 1983-09-02 1984-09-05 Bosch Siemens Hausgeraete Heat exchanger manufacture
CA2369141A1 (en) * 1999-05-03 2001-01-04 Joseph H. Silverman Secure user identification based on ring homomorphisms
CN107797453A (zh) * 2017-10-30 2018-03-13 广东电网有限责任公司电力科学研究院 一种co2跨临界循环的余热发电系统设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
thermal and economical optimization of a shell and tube evaporator using hybrid backtracking search sine cosine algorithm;Oguz Emrah Turgut;《Arabian Journal for Science and Engineering》;20170316;第2105页-2123页 *
太阳能驱动有机朗肯循环发电系统建模及动态特性研究;庄昆明;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20200515;第3章第2节 *

Also Published As

Publication number Publication date
CN113485489A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN113485489B (zh) 一种orc系统蒸发器出口温度的调控方法
Yang et al. Design and simulation of gas turbine-based CCHP combined with solar and compressed air energy storage in a hotel building
Yilmaz et al. Energy and exergy performance assessment of a novel solar-based integrated system with hydrogen production
Terzi Application of exergy analysis to energy systems
Zhao et al. A novel mechanism for exhaust steam waste heat recovery in combined heat and power unit
Zhang et al. Performance analysis of the coal-fired power plant with combined heat and power (CHP) based on absorption heat pumps
Hong et al. Proposed partial repowering of a coal-fired power plant using low-grade solar thermal energy
Yang et al. Research on solar aided coal-fired power generation system and performance analysis
Li et al. Safety and efficiency assessment of a solar-aided coal-fired power plant
Liu et al. A regional integrated energy system with a coal-fired CHP plant, screw turbine and solar thermal utilization: Scenarios for China
Behzadi et al. Innovative hybrid solar-waste designs for cogeneration of heat and power, an effort for achieving maximum efficiency and renewable integration
Almutairi et al. A review on applications of solar energy for preheating in power plants
Chen et al. Multi-objective optimization of a combined cooling, heating, and power system with subcooled compressed air energy storage considering off-design characteristics
Wang et al. Peak regulation performance study of the gas turbine combined cycle based combined heating and power system with gas turbine interstage extraction gas method
CN111102143A (zh) 一种地热光热复合式连续发电系统
Van Erdeweghe et al. “Preheat-parallel” configuration for low-temperature geothermally-fed CHP plants
CN113483314B (zh) 一种新型生物质有机朗肯循环系统及其系统蒸发温度优化方法
CN103075216A (zh) 布列顿-复叠式蒸汽朗肯联合循环发电装置
Tong et al. Performance study of solar tower aided supercritical CO2 coal-fired power generation system with different schemes
Katulić et al. Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids
Zhong et al. New steam turbine operational mode for a gas turbine combine cycle bottoming cycle system
Gonca Energy and exergy analyses of single and double reheat irreversible Rankine cycle
Zhang et al. Comprehensive evaluation of integrated solar combined cycle system regarding fuel-savability under unified framework
CN103089556A (zh) 紧凑型的太阳能集热技术与燃气-蒸汽联合循环装置耦合发电技术
CN112234650A (zh) 一种太阳能燃气联合循环机组热电调峰能力的计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20211008

Assignee: Nanjing Yiwei Intelligent Control Technology Co.,Ltd. Huai'an Branch

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2022980025547

Denomination of invention: A Method of Adjusting and Controlling Evaporator Outlet Temperature in ORC System

Granted publication date: 20220510

License type: Common License

Record date: 20221209

EE01 Entry into force of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20231024

Address after: 230000 B-2704, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui.

Patentee after: HEFEI LONGZHI ELECTROMECHANICAL TECHNOLOGY Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20231024

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 223000 No.1, Meicheng East Road, Huaian Economic and Technological Development Zone, Jiangsu Province

Patentee before: HUAIYIN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right