CN113484387B - DNA biosensor and preparation method thereof - Google Patents
DNA biosensor and preparation method thereof Download PDFInfo
- Publication number
- CN113484387B CN113484387B CN202110710510.8A CN202110710510A CN113484387B CN 113484387 B CN113484387 B CN 113484387B CN 202110710510 A CN202110710510 A CN 202110710510A CN 113484387 B CN113484387 B CN 113484387B
- Authority
- CN
- China
- Prior art keywords
- dna
- molybdenum disulfide
- biosensor
- stranded
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims abstract description 45
- 239000002135 nanosheet Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000008367 deionised water Substances 0.000 claims abstract description 16
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000006185 dispersion Substances 0.000 claims abstract description 15
- 239000000523 sample Substances 0.000 claims abstract description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000010931 gold Substances 0.000 claims abstract description 14
- 229910052737 gold Inorganic materials 0.000 claims abstract description 14
- 241000252506 Characiformes Species 0.000 claims abstract description 11
- 238000003380 quartz crystal microbalance Methods 0.000 claims abstract description 11
- 239000000725 suspension Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 230000003068 static effect Effects 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 238000004140 cleaning Methods 0.000 claims abstract 2
- 238000001035 drying Methods 0.000 claims abstract 2
- 238000010008 shearing Methods 0.000 claims abstract 2
- 238000005406 washing Methods 0.000 claims abstract 2
- 108020004414 DNA Proteins 0.000 claims description 52
- 239000002244 precipitate Substances 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 claims description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 3
- 108020004635 Complementary DNA Proteins 0.000 claims 1
- 238000011010 flushing procedure Methods 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 108020004707 nucleic acids Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 102000053602 DNA Human genes 0.000 description 8
- 108020004682 Single-Stranded DNA Proteins 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical group [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- DEQXHPXOGUSHDX-UHFFFAOYSA-N methylaminomethanetriol;hydrochloride Chemical compound Cl.CNC(O)(O)O DEQXHPXOGUSHDX-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- -1 transition metal chalcogen compounds Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical field
本发明属于生物传感器技术领域,具体涉及一种DNA生物传感器及其制备方法。The invention belongs to the technical field of biosensors, and specifically relates to a DNA biosensor and a preparation method thereof.
背景技术Background technique
DNA作为重要的生物标志物,广泛应用于各类疾病的早期检测。石英晶体微天平是一种利用石英晶体对质量变化敏感的新型生物传感器,当晶体表面质量变化时,所吸附物质的量可以通过频率的变化加以监测,其测量精度可以达到纳克级别。由于石英晶体微天平测定的是质量变化,无需进行标记,可以简化分析操作程序,提高分析速度,因此,具有响应快、灵敏度高、特异性好、小型简便等特点,在生物医学传感技术领域吸引了业界的关注。As an important biomarker, DNA is widely used in the early detection of various diseases. Quartz crystal microbalance is a new biosensor that uses quartz crystal to be sensitive to mass changes. When the crystal surface mass changes, the amount of adsorbed material can be monitored through changes in frequency, and its measurement accuracy can reach the nanogram level. Since the quartz crystal microbalance measures mass changes and does not require labeling, it can simplify the analysis procedures and increase the analysis speed. Therefore, it has the characteristics of fast response, high sensitivity, good specificity, small size and simplicity, and is widely used in the field of biomedical sensing technology. attracted the attention of the industry.
二硫化钼纳米片作为过渡金属硫族化合物之一,具有较大的比表面积,因此,其表面会产生相对较大的静电吸引力,同时又由于钼原子和硫原子电子云分布一个倾向于在中间,一个倾向于在两端,就造成了二硫化钼纳米片层表面带上了一定的负电荷,对于单链核酸而言,由于其碱基暴露在外而易于被二硫化钼纳米片层所吸附,而对于双链核酸,由于其带负电的磷酸骨架,因为双螺旋结构而暴露在外,会对表面带负电的二硫化钼纳米片层产生较大的排斥,远远大于吸附的静电引力,所以不能被吸附。利用二硫化钼纳米片对单链核酸及双链核酸吸附作用不同这一性质,可构建基于二硫化钼纳米片检测核酸的传感方法。As one of the transition metal chalcogen compounds, molybdenum disulfide nanosheets have a large specific surface area. Therefore, their surface will produce a relatively large electrostatic attraction. At the same time, due to the electron cloud distribution of molybdenum atoms and sulfur atoms, they tend to be in In the middle, one tends to be at both ends, resulting in a certain negative charge on the surface of the molybdenum disulfide nanosheets. For single-stranded nucleic acids, since their bases are exposed, they are easily absorbed by the molybdenum disulfide nanosheets. Adsorption, and for double-stranded nucleic acids, because its negatively charged phosphate backbone is exposed due to the double helix structure, it will produce a greater repulsion to the negatively charged molybdenum disulfide nanosheets on the surface, which is far greater than the electrostatic attraction of adsorption. So it cannot be adsorbed. Taking advantage of the different adsorption properties of molybdenum disulfide nanosheets on single-stranded nucleic acids and double-stranded nucleic acids, a sensing method based on molybdenum disulfide nanosheets for detecting nucleic acids can be constructed.
目前,基于二硫化钼纳米片的传感方法中,多为基于荧光共振能量原理的检测手段,该方法需要在DNA的一端修饰荧光基团,成本高且操作繁琐。因此,开发基于二硫化钼纳米片与石英晶体微天平的新型生物传感方法可以减少成本和操作程序,具有重大意义。Currently, most of the sensing methods based on molybdenum disulfide nanosheets are detection methods based on the principle of fluorescence resonance energy. This method requires modifying a fluorescent group at one end of the DNA, which is costly and cumbersome to operate. Therefore, it is of great significance to develop new biosensing methods based on molybdenum disulfide nanosheets and quartz crystal microbalances that can reduce costs and operating procedures.
发明内容Contents of the invention
针对现有荧光传感器检测核酸的操作繁琐、成本高等问题,本发明提供了一种基于二硫化钼纳米片与石英晶体微天平制备新型生物传感器的方法。其主要原理是:当目标DNA不存在时,单链探针DNA吸附在二硫化钼纳米片表面,使二硫化钼纳米片保持分散悬浮的状态;当目标DNA存在时,被吸附在二硫化钼纳米片表面的单链探针DNA便会与其互补的目标DNA结合,形成双链DNA,并脱离二硫化钼纳米片表面,此时二硫化钼纳米片之间的互斥力减小,二硫化钼纳米片便会发生沉淀聚集的现象,晶体表面的质量增大,输出频率随之减小。In view of the problems of cumbersome operation and high cost of existing fluorescent sensors for detecting nucleic acids, the present invention provides a method for preparing a new biosensor based on molybdenum disulfide nanosheets and quartz crystal microbalance. The main principle is: when the target DNA does not exist, the single-stranded probe DNA is adsorbed on the surface of the molybdenum disulfide nanosheets, keeping the molybdenum disulfide nanosheets in a dispersed and suspended state; when the target DNA is present, it is adsorbed on the surface of the molybdenum disulfide nanosheets. The single-stranded probe DNA on the surface of the nanosheet will combine with its complementary target DNA to form double-stranded DNA and break away from the surface of the molybdenum disulfide nanosheet. At this time, the mutual repulsion between the molybdenum disulfide nanosheets decreases, and the molybdenum disulfide nanosheets The nanosheets will undergo precipitation and aggregation, the mass of the crystal surface will increase, and the output frequency will decrease.
为实现上述目的,本发明采用以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种DNA生物传感器的制备方法,包括以下步骤:A method for preparing a DNA biosensor, including the following steps:
(1)采用剪切剥离法得到二硫化钼纳米片分散液;(1) Use shear exfoliation method to obtain molybdenum disulfide nanosheet dispersion;
(2)用Piranha溶液(中文名:食人鱼溶液)清洗金电极至镜面,去离子水冲洗干净,并用惰性气体吹干,随后将金电极和石英晶体微天平的静态池组件组装在一起;(2) Use Piranha solution (Chinese name: Piranha solution) to clean the gold electrode to the mirror surface, rinse it with deionized water, and blow dry with inert gas, and then assemble the gold electrode and the static cell assembly of the quartz crystal microbalance together;
(3)向步骤(2)的静态池中先加入二硫化钼分散液,再加入单链探针DNA,混合均匀,室温孵育;(3) Add molybdenum disulfide dispersion to the static pool in step (2), then add single-stranded probe DNA, mix evenly, and incubate at room temperature;
(4)向步骤(3)得到的混悬液中加入可溶性金属盐,混合均匀,得到第一状态的免标记生物传感器;(4) Add the soluble metal salt to the suspension obtained in step (3) and mix evenly to obtain the label-free biosensor in the first state;
(5)向步骤(4)得到的混悬液中加入单链目标DNA,室温下反应,得到第二状态的免标记生物传感器。(5) Add single-stranded target DNA to the suspension obtained in step (4), and react at room temperature to obtain a label-free biosensor in the second state.
由于二硫化钼纳米片表面带一定程度的负电荷,在二硫化钼纳米片的分散液中,片和片之间有一定的排斥作用,当加入金属阳离子时,由于电荷中和作用,金属阳离子会部分的游离在片与片之间,这样会削弱片与片之间的排斥作用而使得二硫化钼纳米片之间的静电吸附起了主导作用,使得片与片的堆叠和沉积变得相对较容易;当有单链DNA存在时,由于单链DNA吸附在二硫化钼纳米片的表面,可以保护二硫化钼纳米片在高盐浓度下也不会堆叠和沉积;当有与单链探针DNA互补的目标单链DNA存在时,两者互补配对,形成双链核酸,由于双链核酸具有刚性结构,与二硫化钼纳米片之间的吸附力很弱,在高盐浓度的环境下,二硫化钼纳米片会发生堆叠和沉积。本发明利用这种性质,构建了由单链探针DNA、目标单链DNA和金属阳离子调节二硫化钼纳米片沉降程度的免标记生物传感器,实现对目标单链DNA浓度的检测。Since the surface of molybdenum disulfide nanosheets carries a certain degree of negative charge, there is a certain repulsion between the molybdenum disulfide nanosheets in the dispersion liquid of molybdenum disulfide nanosheets. When metal cations are added, the metal cations are removed due to charge neutralization. Some of them will be free between the sheets, which will weaken the repulsion between the sheets and make the electrostatic adsorption between the molybdenum disulfide nanosheets play a dominant role, making the stacking and deposition of the sheets become relative. It is easier; when there is single-stranded DNA, since the single-stranded DNA is adsorbed on the surface of the molybdenum disulfide nanosheets, it can protect the molybdenum disulfide nanosheets from stacking and deposition at high salt concentrations; when there is a single-stranded probe When the target single-stranded DNA complementary to the DNA exists, the two complement each other to form a double-stranded nucleic acid. Since the double-stranded nucleic acid has a rigid structure, the adsorption force between the double-stranded nucleic acid and the molybdenum disulfide nanosheets is very weak. In an environment with high salt concentration, , stacking and deposition of molybdenum disulfide nanosheets occur. The present invention utilizes this property to construct a label-free biosensor that regulates the sedimentation degree of molybdenum disulfide nanosheets by using single-stranded probe DNA, target single-stranded DNA and metal cations to detect the concentration of target single-stranded DNA.
优选的,步骤(1)中,二硫化钼纳米片分散液可采用剪切剥离法制备二硫化钼纳米片分散液;具体方法如下:Preferably, in step (1), the molybdenum disulfide nanosheet dispersion can be prepared by shear peeling method; the specific method is as follows:
(1-1)将2g胆酸钠粉末和10g二硫化钼粉末加入200mL去离子水中,在10000~15000rpm的转速下间歇搅拌80~90min;(1-1) Add 2g of sodium cholate powder and 10g of molybdenum disulfide powder to 200mL of deionized water, and stir intermittently at a speed of 10,000 to 15,000 rpm for 80 to 90 minutes;
(1-2)搅拌完成后,在1500rpm的转速下离心90min,并取上清液;(1-2) After stirring is completed, centrifuge at 1500 rpm for 90 minutes and take the supernatant;
(1-3)将步骤(1-2)中的上清液在10000~15000rpm的转速下离心20min,取沉淀,向沉淀中加入去离子水使沉淀溶解;(1-3) Centrifuge the supernatant in step (1-2) for 20 minutes at a speed of 10,000 to 15,000 rpm, take the precipitate, and add deionized water to the precipitate to dissolve the precipitate;
(1-4)将步骤(1-3)重复共三次,取沉淀,向沉淀中加入去离子水并超声5min,得到均匀分散的二硫化钼纳米片分散液。(1-4) Repeat step (1-3) three times in total, take the precipitate, add deionized water to the precipitate and sonicate for 5 minutes to obtain a uniformly dispersed dispersion of molybdenum disulfide nanosheets.
优选的,步骤(2)中,向金电极表面滴加新鲜配置的Piranha溶液(浓硫酸与质量百分数为30%双氧水按照体积比3:1混合配制)。Preferably, in step (2), freshly prepared Piranha solution (prepared by mixing concentrated sulfuric acid and 30% mass percent hydrogen peroxide at a volume ratio of 3:1) is dropped onto the surface of the gold electrode.
优选的,步骤(2)中,Piranha溶液在金电极表面的反应时间为15~30s,去离子水冲洗时间为30~60s。Preferably, in step (2), the reaction time of the Piranha solution on the gold electrode surface is 15 to 30 s, and the deionized water rinsing time is 30 to 60 s.
优选的,步骤(2)中,所述惰性气体为氮气。Preferably, in step (2), the inert gas is nitrogen.
优选的,步骤(3)中,向二硫化钼纳米片分散液中加入单链探针DNA,室温下反应20~60min。Preferably, in step (3), single-stranded probe DNA is added to the molybdenum disulfide nanosheet dispersion, and the reaction is carried out at room temperature for 20 to 60 minutes.
优选的,步骤(3)和步骤(5)中的单链探针DNA和单链目标DNA均溶于Tris-Hcl缓冲液中,其浓度为25nM,pH=7.4。Preferably, the single-stranded probe DNA and single-stranded target DNA in steps (3) and (5) are both dissolved in Tris-Hcl buffer, with a concentration of 25 nM and pH=7.4.
优选的,步骤(3)中,二硫化钼和单链探针DNA的孵育时间为20~60min。Preferably, in step (3), the incubation time between molybdenum disulfide and single-stranded probe DNA is 20 to 60 minutes.
优选的,步骤(4)中,所述的可溶性金属盐为NaCl。Preferably, in step (4), the soluble metal salt is NaCl.
优选的,步骤(5)中,悬浮液与单链目标DNA的反应时间为6~8h。Preferably, in step (5), the reaction time between the suspension and the single-stranded target DNA is 6 to 8 hours.
本发明还提供了一种由上述制备方法制得的DNA生物传感器。The invention also provides a DNA biosensor prepared by the above preparation method.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明的DNA生物传感器,应用范围广,可以用于特定癌症筛查、遗传工程、食品安全等方面。(1) The DNA biosensor of the present invention has a wide range of applications and can be used in specific cancer screening, genetic engineering, food safety, etc.
(2)本发明操作过程简单,成本低,无需昂贵的检测装置,且具有很好的生物相容性。(2) The present invention has simple operation process, low cost, does not require expensive detection devices, and has good biocompatibility.
(3)本发明制备简单,无需繁琐的预处理,且尺寸小,可实现高效实时检测。(3) The present invention is simple to prepare, does not require cumbersome pretreatment, is small in size, and can achieve efficient real-time detection.
附图说明Description of the drawings
图1为DNA生物传感器的检测原理示意图。Figure 1 is a schematic diagram of the detection principle of DNA biosensor.
具体实施方式Detailed ways
下面对本发明优选实施例作详细说明。The preferred embodiments of the present invention will be described in detail below.
本实施例一种DNA生物传感器的制备方法,包括以下步骤:This embodiment is a method for preparing a DNA biosensor, including the following steps:
步骤(1),采用剪切剥离法得到二硫化钼纳米片分散液;本步骤操作如下:Step (1), use shear peeling method to obtain molybdenum disulfide nanosheet dispersion; the operation of this step is as follows:
(1-1)将2g胆酸钠粉末和10g二硫化钼粉末加入200mL去离子水中,在10000~15000rpm的转速下间歇搅拌80~90min;(1-1) Add 2g of sodium cholate powder and 10g of molybdenum disulfide powder to 200mL of deionized water, and stir intermittently at a speed of 10,000 to 15,000 rpm for 80 to 90 minutes;
(1-2)搅拌完成后,在1500rpm的转速下离心90min,并取上清液;(1-2) After stirring is completed, centrifuge at 1500 rpm for 90 minutes and take the supernatant;
(1-3)将步骤(1-2)中的上清液在10000~15000rpm的转速下离心20min,取沉淀,向沉淀中加入去离子水使沉淀溶解;(1-3) Centrifuge the supernatant in step (1-2) for 20 minutes at a speed of 10,000 to 15,000 rpm, take the precipitate, and add deionized water to the precipitate to dissolve the precipitate;
(1-4)将步骤(1-3)重复3次,取沉淀,向沉淀中加入去离子水并超声5min,得到均匀分散的二硫化钼纳米片分散液。(1-4) Repeat step (1-3) three times, take the precipitate, add deionized water to the precipitate and sonicate for 5 minutes to obtain a uniformly dispersed dispersion of molybdenum disulfide nanosheets.
步骤(2),用Piranha溶液清洗金电极至镜面,去离子水冲洗干净,并用氮气吹干,随后将金电极和石英晶体微天平的静态池组件组装在一起。Step (2): Clean the gold electrode with Piranha solution to the mirror surface, rinse with deionized water, and blow dry with nitrogen. Then assemble the gold electrode and the static cell assembly of the quartz crystal microbalance together.
本步骤(2)中,向金电极表面滴加新鲜配置的Piranha溶液(浓硫酸与质量百分数为30%双氧水按照体积比3:1混合配制)。Piranha溶液在金电极表面的反应时间为15~30s,去离子水冲洗时间为30~60s。In this step (2), freshly prepared Piranha solution (concentrated sulfuric acid and 30% hydrogen peroxide by mass percentage are mixed and prepared at a volume ratio of 3:1) is dropped onto the surface of the gold electrode. The reaction time of Piranha solution on the gold electrode surface is 15 to 30 s, and the deionized water rinsing time is 30 to 60 s.
步骤(3),向步骤(2)的静态池中先加入二硫化钼分散液,再加入单链探针DNA,混合均匀,室温孵育,室温下反应20~60min。In step (3), first add molybdenum disulfide dispersion to the static pool in step (2), then add single-stranded probe DNA, mix evenly, incubate at room temperature, and react at room temperature for 20 to 60 minutes.
步骤(4),向步骤(3)得到的混悬液中加入可溶性金属盐NaCl,混合均匀,得到第一状态的免标记生物传感器。Step (4), add soluble metal salt NaCl to the suspension obtained in step (3), and mix evenly to obtain a label-free biosensor in the first state.
步骤(5),向步骤(4)得到的混悬液中加入单链目标DNA,室温下反应,反应时间为6~8h,得到第二状态的免标记生物传感器。Step (5): Add single-stranded target DNA to the suspension obtained in step (4), and react at room temperature for 6 to 8 hours to obtain a label-free biosensor in the second state.
本实施例中,步骤(3)和步骤(5)中的单链探针DNA和单链目标DNA均溶于Tris-Hcl缓冲液(中文名:三羟甲基氨基甲烷盐酸盐,购买于北京索莱宝科技有限公司,货号:T1090)中,其浓度为25nM,pH=7.4。本发明基于二硫化钼纳米片对单链DNA和双链DNA的不同亲和力,以及石英晶体微天平(Quartz Crystal Microbalance,QCM)对质量变化敏感的特性,构建出一种基于二硫化钼纳米片的免标记生物传感器,通过检测石英晶体微天平的静态池中二硫化钼纳米片的不同状态引起的金电极表面的质量变化,得到相应的频率变化,并通过这种频率变化来迅速检测特定的DNA。本发明方法操作简单,容易实现,且成本低。In this example, the single-stranded probe DNA and single-stranded target DNA in steps (3) and (5) were dissolved in Tris-Hcl buffer (Chinese name: tris-hydroxymethylaminomethane hydrochloride, purchased from (Beijing Solebao Technology Co., Ltd., product number: T1090), its concentration is 25nM, pH=7.4. The present invention constructs a molybdenum disulfide nanosheet based on the different affinities of molybdenum disulfide nanosheets to single-stranded DNA and double-stranded DNA and the sensitivity of quartz crystal microbalance (QCM) to mass changes. The label-free biosensor detects the mass changes on the gold electrode surface caused by different states of molybdenum disulfide nanosheets in the static pool of a quartz crystal microbalance, and obtains the corresponding frequency changes, and quickly detects specific DNA through this frequency change. . The method of the invention is simple to operate, easy to implement and low in cost.
以上对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。The preferred embodiments and principles of the present invention have been described in detail above. For those of ordinary skill in the art, there will be changes in the specific implementation methods based on the ideas provided by the present invention, and these changes should also be regarded as the present invention. scope of protection.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110710510.8A CN113484387B (en) | 2021-06-25 | 2021-06-25 | DNA biosensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110710510.8A CN113484387B (en) | 2021-06-25 | 2021-06-25 | DNA biosensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113484387A CN113484387A (en) | 2021-10-08 |
CN113484387B true CN113484387B (en) | 2023-09-22 |
Family
ID=77937078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110710510.8A Active CN113484387B (en) | 2021-06-25 | 2021-06-25 | DNA biosensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113484387B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117363607B (en) * | 2023-10-07 | 2024-12-17 | 清华大学深圳国际研究生院 | Application of low-dimensional nanomaterial in recognition and shearing of DNA specific sites |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183433A (en) * | 2011-02-25 | 2011-09-14 | 中国科学院化学研究所 | Method for detecting mercury ion concentration of water sample |
CN104502219A (en) * | 2014-12-18 | 2015-04-08 | 江苏大学 | Amyloid-polypeptide aggregation inhibitor as well as inhibition effect evaluation and verification method |
CN105004775A (en) * | 2015-07-08 | 2015-10-28 | 青岛大学 | Preparation method of disulfide dot/nanosheet compound DNA electrochemical probe |
CN108535207A (en) * | 2018-03-07 | 2018-09-14 | 浙江大学 | Label-free biosensor based on tungsten disulfide nano slices and its preparation method and application |
-
2021
- 2021-06-25 CN CN202110710510.8A patent/CN113484387B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183433A (en) * | 2011-02-25 | 2011-09-14 | 中国科学院化学研究所 | Method for detecting mercury ion concentration of water sample |
CN104502219A (en) * | 2014-12-18 | 2015-04-08 | 江苏大学 | Amyloid-polypeptide aggregation inhibitor as well as inhibition effect evaluation and verification method |
CN105004775A (en) * | 2015-07-08 | 2015-10-28 | 青岛大学 | Preparation method of disulfide dot/nanosheet compound DNA electrochemical probe |
CN108535207A (en) * | 2018-03-07 | 2018-09-14 | 浙江大学 | Label-free biosensor based on tungsten disulfide nano slices and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2 - polyaniline nanocomposites;Shibsankar Dutta 等;《Biochemical Engineering Journal》;第140卷;130-139 * |
Also Published As
Publication number | Publication date |
---|---|
CN113484387A (en) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110455896B (en) | Preparation method of metal organic framework composite ratio electrochemical miR3123 aptamer sensor | |
Zhou et al. | Dual-amplified strategy for ultrasensitive electrochemical biosensor based on click chemistry-mediated enzyme-assisted target recycling and functionalized fullerene nanoparticles in the detection of microRNA-141 | |
Meng et al. | Construction of an ultrasensitive electrochemical sensing platform for microRNA-21 based on interface impedance spectroscopy | |
Qi et al. | Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection | |
CN103551143B (en) | Porous platinum-graphene oxide composite nano material mimic peroxidase | |
Dai et al. | Analogous modified DNA probe and immune competition method-based electrochemical biosensor for RNA modification | |
Huang et al. | Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification | |
CN107389755B (en) | Electrochemical sensor for detecting mercury, and preparation method and application thereof | |
CN106198673A (en) | Electrochemica biological sensor based on aptamer/nanometer silver probe Yu EXO I enzyme | |
Li et al. | A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination | |
CN109211995B (en) | Hydrogen peroxide biosensor based on sulfonated carbon nanotubes and horseradish peroxidase and its preparation and application | |
CN104634779B (en) | The assay method of urase and its inhibitor based on nm of gold Mimetic enzyme | |
CN108169311B (en) | An electrochemical biosensor for detecting miRNA-122 | |
Jiang et al. | Ultrasensitive all-solid-state electrochemiluminescence platform for kanamycin detection based on the pore confinement effect of 0D g-C3N4 quantum dots/3D graphene hydrogel | |
CN110093344A (en) | A kind of application of the DNA walker and its detection UDG of endogenous enzyme triggering | |
CN113484387B (en) | DNA biosensor and preparation method thereof | |
CN107543852A (en) | A kind of Electrochemiluminescsensor sensor based on functional metal organic framework materials | |
CN105842225A (en) | Silicon-based SERS chip for quantitatively detecting lead ion concentration in actual water sample and preparation method thereof | |
Zhang et al. | Electrochemical aptasensor based on one-step synthesis of Cu2O@ aptamer nanospheres for sensitive thrombin detection | |
Tian et al. | Bipedal DNAzyme walker triggered dual-amplification electrochemical platform for ultrasensitive ratiometric biosensing of microRNA-21 | |
Li et al. | Pathogen identification: ultrasensitive nucleic acid detection via a dynamic DNA nanosystem-integrated ratiometric electrochemical sensing strategy | |
Cheng et al. | Hairpin probes based click polymerization for label-free electrochemical detection of human T-lymphotropic virus types II | |
CN116297754A (en) | Biosensor and its preparation method and application | |
CN106814118B (en) | A kind of preparation method of self-powered miRNA biosensor | |
CN104849446A (en) | Preparation method for biosensor used for detecting P53 protein based on nanoparticle amplification technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |