CN113479258A - Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle - Google Patents

Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle Download PDF

Info

Publication number
CN113479258A
CN113479258A CN202110783048.4A CN202110783048A CN113479258A CN 113479258 A CN113479258 A CN 113479258A CN 202110783048 A CN202110783048 A CN 202110783048A CN 113479258 A CN113479258 A CN 113479258A
Authority
CN
China
Prior art keywords
steering
motor
steering motor
equation
steer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110783048.4A
Other languages
Chinese (zh)
Other versions
CN113479258B (en
Inventor
邹松春
赵万忠
梁为何
王春燕
张寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202110783048.4A priority Critical patent/CN113479258B/en
Publication of CN113479258A publication Critical patent/CN113479258A/en
Application granted granted Critical
Publication of CN113479258B publication Critical patent/CN113479258B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

The invention discloses a tracking and synchronous control method of a double-motor steer-by-wire system of an intelligent vehicle, wherein the double-motor steer-by-wire system of the intelligent vehicle comprises a steering wheel corner sensor, a vehicle speed sensor, a variable transmission ratio module and a steering execution module; a steering motor A and a steering motor B in a steering execution module are controlled by a corner ring and a current ring in a double closed loop mode, wherein the corner ring is controlled by a second-order auto-disturbance-rejection controller, and the current ring is controlled by a sliding mode controller, so that the tracking performance of the dual-motor steer-by-wire system is enhanced; in addition, a cross coupling synchronous control structure is adopted between the steering motor A and the steering motor B, the actual rotation angle difference of the steering motor A and the steering motor B is acquired, and a compensation current signal obtained by a synchronous controller is transmitted to current loops of the steering motor A and the steering motor B, so that the rotation angle inconsistency between the steering motor A and the steering motor B is eliminated, and the synchronization performance of the dual-motor steer-by-wire system is enhanced.

Description

Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle
Technical Field
The invention relates to the field of automobile auxiliary driving, in particular to a tracking and synchronous control method for a dual-motor steer-by-wire system of an intelligent automobile.
Background
The steer-by-wire eliminates partial mechanical connection between a steering wheel and wheels, and realizes the decoupling of the force transmission characteristic and the angular transmission characteristic of the steering system instead of electronic connection. However, the conventional steer-by-wire system only has one steering motor, the electronic connection system has reliability and safety problems, and how to enhance the reliability and safety of the steer-by-wire system is a problem which needs to be solved urgently in the research field of the steer-by-wire system.
The dual-motor steer-by-wire system adopting the two steering motors can improve the reliability and safety of the steering system from hardware, and once one motor fails, the other motor can normally complete a steering command. In addition, the dual-motor steer-by-wire system can reduce the load of a single motor, thereby improving the service life of the steering motor.
However, the dual-motor steer-by-wire system has the characteristics of strong coupling, nonlinearity, multivariable and the like, and due to factors such as load disturbance, parameter perturbation, model mismatch and the like, the motors have the problems of serious tracking and poor synchronization, so that the steering efficiency, and the service lives of the steering motors and the steering gear are influenced. There is a need to enhance the dual motor steer-by-wire system tracking control and synchronization control.
Disclosure of Invention
The invention aims to solve the technical problem of providing a tracking and synchronous control method of a dual-motor steer-by-wire system of an intelligent vehicle aiming at the defects involved in the background technology.
The invention adopts the following technical scheme for solving the technical problems:
a tracking and synchronous control method for a double-motor steer-by-wire system of an intelligent vehicle comprises a steering wheel corner sensor, a vehicle speed sensor, a variable transmission ratio module and a steering execution module;
the steering wheel angle sensor is used for acquiring a steering wheel angle signal and transmitting the steering wheel angle signal to the variable transmission ratio module;
the speed sensor is used for acquiring a speed signal of the intelligent vehicle and transmitting the speed signal to the variable transmission ratio module;
the transmission ratio changing module is used for calculating target rotation angles of two steering motors of the intelligent vehicle according to the obtained steering wheel rotation angle signal and the obtained vehicle speed signal and transmitting the target rotation angles to the steering execution module;
the steering execution module comprises a steering motor A, a speed reducer A, a transmission gear A, a steering motor B, a speed reducer B, a transmission gear B, a rack, a left steering tie rod and a right steering tie rod, wherein the steering motor A is connected with a rotating shaft of the transmission gear A through the speed reducer A, and the steering motor B is connected with a rotating shaft of the transmission gear B through the speed reducer B; the transmission gear A and the transmission gear B are meshed with the rack; the left end and the right end of the rack are fixedly connected with the left steering tie rod and the right steering tie rod respectively; the left steering tie rod and the right steering tie rod are respectively and correspondingly connected with a left steering wheel and a right steering wheel of the intelligent vehicle; the types of the steering motor A and the steering motor B are the same;
the tracking and synchronous control method of the dual-motor steer-by-wire system of the intelligent vehicle comprises the following steps:
the steering motor A and the steering motor B are controlled by a corner ring and a current ring in a double closed loop mode, wherein the corner ring is controlled by a second-order active disturbance rejection controller, and the current ring is controlled by a sliding mode controller, so that the tracking performance of the dual-motor steer-by-wire system is enhanced;
the second-order active disturbance rejection controller of the corner loop comprises a third-order extended state observer and a state error feedback control law;
a cross coupling synchronous control structure is adopted between the steering motor A and the steering motor B, the actual rotation angle difference of the steering motor A and the steering motor B is acquired, and a compensation current signal obtained through a synchronous controller is sent to current loops of the steering motor A and the steering motor B, so that the rotation angle inconsistency between the steering motor A and the steering motor B is eliminated, and the synchronization performance of the dual-motor steer-by-wire system is enhanced.
As a further optimization scheme of the tracking and synchronous control method of the intelligent vehicle double-motor wire control steering system, the establishment of the third-order extended state observer of the corner ring second-order active disturbance rejection controller comprises the following steps:
step A.1), establishing a steering motor kinematic equation:
Figure BDA0003157917000000021
wherein J is moment of inertia; b is the viscous friction coefficient; ktIs a torque coefficient; t isLIs the load torque; theta is the rotation angle of the motor; i.e. iaIs the current of the motor;
step A.2), writing a steering motor kinematic equation into a standard form of second-order active disturbance rejection control:
Figure BDA0003157917000000022
in the formula, f is the total disturbance of the system corner ring;
Figure BDA0003157917000000023
respectively, a torque coefficient K of a counter-steering motortEstimation of the moment of inertia J; y is the rotation angle of the motor; b0An estimate of the system control gain; u is the controller output;
step a.3), defining state variables:
Figure BDA0003157917000000024
step a.4), writing equation (2) into state space form:
Figure BDA0003157917000000031
in the formula (I), the compound is shown in the specification,
Figure BDA0003157917000000032
is a state variable of the system and is,
Figure BDA0003157917000000033
C=[1 0 0],D=[0 0 0],F=[0 0 0];
step A.5), establishing a third-order extended state observer to estimate the total disturbance of the system:
Figure BDA0003157917000000034
wherein z is [ z ]1,z2,z3]TIs a state variable of the extended observer; l ═ beta1β2β3]TIs an observation gain matrix;
step A.6), substituting A, B, L and C into a formula (5) to obtain a state space form of the third-order extended state observer:
Figure BDA0003157917000000035
step a.7), equation (5) is simplified to obtain:
Figure BDA0003157917000000036
step a.8), subtracting equation (7) from equation (4):
Figure BDA0003157917000000037
step a.9), defining two system state variable errors as x-z ═ e, equation (8) is rewritten as:
Figure BDA0003157917000000038
step A.10), the matrix A-LC is stabilized with e → 0, thus enabling z → x, and the matrix A-LC is stabilized provided that the roots of the characteristic polynomials have negative real parts, the characteristic polynomials of the matrix A-LC being:
Figure BDA0003157917000000039
in the formula, s is Laplace operator;
step A.11), establishing a characteristic equation which has stable performance and can provide a stable transition process, wherein the expression is as follows:
(s+ω0)3=s3+3ω0s2+3ω0 2s+ω0 3 (11)
in the formula, ω0Is the observer bandwidth;
step A.12), combining equations (10) and (11) to obtain β1=3ω0、β2=3ω0 2、β3=ω0 3Thus, the third order extended state observer is:
Figure BDA0003157917000000041
as a further optimization scheme of the tracking and synchronous control method of the intelligent vehicle double-motor steer-by-wire system, the establishment of the state error feedback control law of the corner loop second-order active disturbance rejection controller comprises the following steps:
step B.1), the state error feedback control law is as follows:
Figure BDA0003157917000000042
in the formula, kp、kdProportional control gain and differential control gain respectively; r is a parameter of the systemTest input, u is controller output, u0Is the output of the state error feedback control law;
step B.2), the three-order extended state observer meets the following conditions:
Figure BDA0003157917000000043
step b.3), combining equations (2), (13), (14) to obtain:
Figure BDA0003157917000000044
step b.4), laplace transform of equation (15) yields:
Figure BDA0003157917000000045
step b.5), rewrite equation (16) into the transfer function form:
Figure BDA0003157917000000046
step B.6), according to the pole allocation method, the pole of the equation (17) is allocated to the closed loop bandwidth omegacThe method comprises the following steps:
Figure BDA0003157917000000047
step B.7), according to equation (17) and equation (18), we get
Figure BDA0003157917000000048
kd=2ωcTherefore, the state error feedback control law is:
Figure BDA0003157917000000051
as a further optimization scheme of the tracking and synchronous control method of the intelligent vehicle double-motor steer-by-wire system, the compensation current calculation method of the synchronous controller comprises the following steps:
i′=k(θ12) (20)
in the formula, theta1、θ2Actual turning angles of a steering motor A and a steering motor B are respectively; i' is the compensation current output by the synchronous controller.
Compared with the prior art, the invention adopting the technical scheme has the following technical effects:
a steering motor A and a steering motor B in a steering execution module are controlled by a corner ring and a current ring in a double closed loop mode, wherein the corner ring is controlled by a second-order active disturbance rejection controller, so that the problems of poor motor tracking performance and poor robustness caused by factors such as external load disturbance, motor parameter perturbation and control model mismatch can be effectively solved; in addition, a cross coupling synchronous control structure is adopted between the steering motor A and the steering motor B, the actual rotation angle difference of the steering motor A and the steering motor B is acquired, and a compensation current signal obtained by a synchronous controller is transmitted to current loops of the steering motor A and the steering motor B, so that the rotation angle inconsistency between the steering motor A and the steering motor B is eliminated, and the synchronization performance between the double motors is enhanced; therefore, the method has wide market application prospect.
Drawings
FIG. 1 is a schematic diagram of tracking and synchronization control of a dual-motor steer-by-wire system of an intelligent vehicle of the present invention;
FIG. 2 is a schematic diagram of the steering motor corner ring second-order active disturbance rejection control and current loop sliding mode control according to the present invention.
Detailed Description
The technical scheme of the invention is further explained in detail by combining the attached drawings:
the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, components are exaggerated for clarity.
The invention discloses a tracking and synchronous control method of a double-motor steer-by-wire system of an intelligent vehicle, wherein the double-motor steer-by-wire system of the intelligent vehicle comprises a steering wheel corner sensor, a vehicle speed sensor, a variable transmission ratio module and a steering execution module;
the steering wheel angle sensor is used for acquiring a steering wheel angle signal and transmitting the steering wheel angle signal to the variable transmission ratio module;
the speed sensor is used for acquiring a speed signal of the intelligent vehicle and transmitting the speed signal to the variable transmission ratio module;
the transmission ratio changing module is used for calculating target rotation angles of two steering motors of the intelligent vehicle according to the obtained steering wheel rotation angle signal and the obtained vehicle speed signal and transmitting the target rotation angles to the steering execution module;
the steering execution module comprises a steering motor A, a speed reducer A, a transmission gear A, a steering motor B, a speed reducer B, a transmission gear B, a rack, a left steering tie rod and a right steering tie rod, wherein the steering motor A is connected with a rotating shaft of the transmission gear A through the speed reducer A, and the steering motor B is connected with a rotating shaft of the transmission gear B through the speed reducer B; the transmission gear A and the transmission gear B are meshed with the rack; the left end and the right end of the rack are fixedly connected with the left steering tie rod and the right steering tie rod respectively; the left steering tie rod and the right steering tie rod are respectively and correspondingly connected with a left steering wheel and a right steering wheel of the intelligent vehicle; the types of the steering motor A and the steering motor B are the same;
as shown in fig. 1 and 2, the tracking and synchronization control method for the dual-motor steer-by-wire system of the intelligent vehicle comprises the following steps:
the tracking and synchronous control method of the dual-motor steer-by-wire system of the intelligent vehicle comprises the following steps:
the steering motor A and the steering motor B are controlled by a corner ring and a current ring in a double closed loop mode, wherein the corner ring is controlled by a second-order active disturbance rejection controller, and the current ring is controlled by a sliding mode controller, so that the tracking performance of the dual-motor steer-by-wire system is enhanced;
the second-order active disturbance rejection controller of the corner loop comprises a third-order extended state observer and a state error feedback control law;
a cross coupling synchronous control structure is adopted between the steering motor A and the steering motor B, the actual rotation angle difference of the steering motor A and the steering motor B is acquired, and a compensation current signal obtained through a synchronous controller is sent to current loops of the steering motor A and the steering motor B, so that the rotation angle inconsistency between the steering motor A and the steering motor B is eliminated, and the synchronization performance of the dual-motor steer-by-wire system is enhanced.
In FIGS. 1 and 2, [ theta ] isswIs the steering wheel angle; theta*The reference rotation angles of a steering motor A and a steering motor B are obtained; v is the vehicle speed; theta1Is the actual turning angle of a steering motor A; theta2The actual rotation degree of the steering motor B is obtained; i.e. i1Is the actual current of the steering motor A; i.e. i2Is the actual current of the steering motor B; i. the compensating current output by the synchronous controller; deltafIs a wheel corner; t isL1Is the load torque of steering motor a; t isL2Is the load torque of steering motor B; u. ofd1Is the input voltage of the steering motor A; u. ofd2In the diagram of the input voltage of the steering motor B, J is the moment of inertia; b is the viscous friction coefficient; ktIs a torque coefficient; keIs the back electromotive force coefficient; omega is the angular speed of the motor; r is a stator resistor; l is the equivalent inductance of the stator winding; i.e. iaIs the motor current; t isLIs the load torque; theta is the rotation angle of the motor; z is a radical of1,z2,z3Is a state variable of the extended observer;
Figure BDA0003157917000000061
an estimate of the system control gain;
Figure BDA0003157917000000062
for steering motor torque coefficient KtAn estimated value of (d);
Figure BDA0003157917000000063
is an estimate of the moment of inertia J.
The establishment of the third-order extended state observer of the second-order active disturbance rejection controller of the corner loop comprises the following steps:
step A.1), establishing a steering motor kinematic equation:
Figure BDA0003157917000000064
wherein J is moment of inertia; b is the viscous friction coefficient; ktIs a torque coefficient; t isLIs the load torque; theta is the rotation angle of the motor; i.e. iaIs the current of the motor;
step A.2), writing a steering motor kinematic equation into a standard form of second-order active disturbance rejection control:
Figure BDA0003157917000000071
in the formula, f is the total disturbance of the system corner ring;
Figure BDA0003157917000000072
respectively, a torque coefficient K of a counter-steering motortEstimation of the moment of inertia J; y is the rotation angle of the motor; b0An estimate of the system control gain; u is the controller output;
step a.3), defining state variables:
Figure BDA0003157917000000073
step a.4), writing equation (2) into state space form:
Figure BDA0003157917000000074
in the formula (I), the compound is shown in the specification,
Figure BDA0003157917000000075
is a state variable of the system and is,
Figure BDA0003157917000000076
C=[1 0 0],D=[0 0 0],F=[0 0 0];
step A.5), establishing a third-order extended state observer to estimate the total disturbance of the system:
Figure BDA0003157917000000077
wherein z is [ z ]1,z2,z3]TIs a state variable of the extended observer; l ═ beta1 β2 β3]TIs an observation gain matrix;
step A.6), substituting A, B, L and C into a formula (5) to obtain a state space form of the third-order extended state observer:
Figure BDA0003157917000000078
step a.7), equation (5) is simplified to obtain:
Figure BDA0003157917000000079
step a.8), subtracting equation (7) from equation (4):
Figure BDA0003157917000000081
step a.9), defining two system state variable errors as x-z ═ e, equation (8) is rewritten as:
Figure BDA0003157917000000082
step A.10), the matrix A-LC is stabilized with e → 0, thus enabling z → x, and the matrix A-LC is stabilized provided that the roots of the characteristic polynomials have negative real parts, the characteristic polynomials of the matrix A-LC being:
Figure BDA0003157917000000083
in the formula, s is Laplace operator;
step A.11), establishing a characteristic equation which has stable performance and can provide a stable transition process, wherein the expression is as follows:
(s+ω0)3=s3+3ω0s2+3ω0 2s+ω0 3 (11)
in the formula, ω0Is the observer bandwidth;
step A.12), combining equations (10) and (11) to obtain β1=3ω0、β2=3ω0 2、β3=ω0 3Thus, the third order extended state observer is:
Figure BDA0003157917000000084
the establishment of the state error feedback control law of the second-order active disturbance rejection controller of the corner loop comprises the following steps:
step B.1), the state error feedback control law is as follows:
Figure BDA0003157917000000085
in the formula, kp、kdProportional control gain and differential control gain respectively; r is the reference input of the system, u is the controller output, u is the reference input of the system0Is the output of the state error feedback control law;
step B.2), the three-order extended state observer meets the following conditions:
Figure BDA0003157917000000086
step b.3), combining equations (2), (13), (14) to obtain:
Figure BDA0003157917000000091
step b.4), laplace transform of equation (15) yields:
Figure BDA0003157917000000092
step b.5), rewrite equation (16) into the transfer function form:
Figure BDA0003157917000000093
step B.6), according to the pole allocation method, the pole of the equation (17) is allocated to the closed loop bandwidth omegacThe method comprises the following steps:
Figure BDA0003157917000000094
step B.7), according to equation (17) and equation (18), we get
Figure BDA0003157917000000095
kd=2ωcTherefore, the state error feedback control law is:
Figure BDA0003157917000000096
the compensation current calculation method of the synchronous controller comprises the following steps:
i′=k(θ12) (20)
in the formula, theta1、θ2Actual turning angles of a steering motor A and a steering motor B are respectively; i' is the compensation current output by the synchronous controller.
It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the prior art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The above-mentioned embodiments, objects, technical solutions and advantages of the present invention are further described in detail, it should be understood that the above-mentioned embodiments are only illustrative of the present invention and are not intended to limit the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (4)

1. A tracking and synchronous control method for a double-motor steer-by-wire system of an intelligent vehicle comprises a steering wheel corner sensor, a vehicle speed sensor, a variable transmission ratio module and a steering execution module;
the steering wheel angle sensor is used for acquiring a steering wheel angle signal and transmitting the steering wheel angle signal to the variable transmission ratio module;
the speed sensor is used for acquiring a speed signal of the intelligent vehicle and transmitting the speed signal to the variable transmission ratio module;
the transmission ratio changing module is used for calculating target rotation angles of two steering motors of the intelligent vehicle according to the obtained steering wheel rotation angle signal and the obtained vehicle speed signal and transmitting the target rotation angles to the steering execution module;
the steering execution module comprises a steering motor A, a speed reducer A, a transmission gear A, a steering motor B, a speed reducer B, a transmission gear B, a rack, a left steering tie rod and a right steering tie rod, wherein the steering motor A is connected with a rotating shaft of the transmission gear A through the speed reducer A, and the steering motor B is connected with a rotating shaft of the transmission gear B through the speed reducer B; the transmission gear A and the transmission gear B are meshed with the rack; the left end and the right end of the rack are fixedly connected with the left steering tie rod and the right steering tie rod respectively; the left steering tie rod and the right steering tie rod are respectively and correspondingly connected with a left steering wheel and a right steering wheel of the intelligent vehicle; the types of the steering motor A and the steering motor B are the same;
the method is characterized in that the tracking and synchronous control method of the dual-motor steer-by-wire system of the intelligent vehicle comprises the following processes:
the steering motor A and the steering motor B are controlled by a corner ring and a current ring in a double closed loop mode, wherein the corner ring is controlled by a second-order active disturbance rejection controller, and the current ring is controlled by a sliding mode controller, so that the tracking performance of the dual-motor steer-by-wire system is enhanced;
the second-order active disturbance rejection controller of the corner loop comprises a third-order extended state observer and a state error feedback control law;
a cross coupling synchronous control structure is adopted between the steering motor A and the steering motor B, the actual rotation angle difference of the steering motor A and the steering motor B is acquired, and a compensation current signal obtained through a synchronous controller is sent to current loops of the steering motor A and the steering motor B, so that the rotation angle inconsistency between the steering motor A and the steering motor B is eliminated, and the synchronization performance of the dual-motor steer-by-wire system is enhanced.
2. The tracking and synchronous control method of the intelligent vehicle double-motor steer-by-wire system according to claim 1, wherein the establishment of the third order extended state observer of the corner ring second order active disturbance rejection controller comprises the following steps:
step A.1), establishing a steering motor kinematic equation:
Figure FDA0003157916990000011
wherein J is moment of inertia; b is the viscous friction coefficient; ktIs a torque coefficient; t isLIs the load torque; theta is the rotation angle of the motor; i.e. iaIs the current of the motor;
step A.2), writing a steering motor kinematic equation into a standard form of second-order active disturbance rejection control:
Figure FDA0003157916990000021
in the formula, f is the total disturbance of the system corner ring;
Figure FDA0003157916990000022
respectively, a torque coefficient K of a counter-steering motortEstimation of the moment of inertia J; y is the rotation angle of the motor; b0An estimate of the system control gain; u is the controller output;
step a.3), defining state variables:
Figure FDA0003157916990000023
step a.4), writing equation (2) into state space form:
Figure FDA0003157916990000024
in the formula (I), the compound is shown in the specification,
Figure FDA0003157916990000025
is a state variable of the system and is,
Figure FDA0003157916990000026
C=[1 0 0],D=[0 0 0],F=[0 0 0];
step A.5), establishing a third-order extended state observer to estimate the total disturbance of the system:
Figure FDA0003157916990000027
wherein z is [ z ]1,z2,z3]TIs a state variable of the extended observer; l ═ beta1 β2 β3]TIs an observation gain matrix;
step A.6), substituting A, B, L and C into a formula (5) to obtain a state space form of the third-order extended state observer:
Figure FDA0003157916990000028
step a.7), equation (5) is simplified to obtain:
Figure FDA0003157916990000029
step a.8), subtracting equation (7) from equation (4):
Figure FDA0003157916990000031
step a.9), defining two system state variable errors as x-z ═ e, equation (8) is rewritten as:
Figure FDA0003157916990000032
step A.10), the matrix A-LC is stabilized with e → 0, thus enabling z → x, and the matrix A-LC is stabilized provided that the roots of the characteristic polynomials have negative real parts, the characteristic polynomials of the matrix A-LC being:
Figure FDA0003157916990000033
in the formula, s is Laplace operator;
step A.11), establishing a characteristic equation which has stable performance and can provide a stable transition process, wherein the expression is as follows:
(s+ω0)3=s3+3ω0s2+3ω0 2s+ω0 3 (11)
in the formula, ω0Is the observer bandwidth;
step A.12), combining equations (10) and (11) to obtain β1=3ω0、β2=3ω0 2、β3=ω0 3Thus, the third order extended state observer is:
Figure FDA0003157916990000034
3. the tracking and synchronous control method of the intelligent vehicle double-motor steer-by-wire system according to claim 1, wherein the establishment of the state error feedback control law of the corner loop second-order active disturbance rejection controller comprises the following steps:
step B.1), the state error feedback control law is as follows:
Figure FDA0003157916990000035
in the formula, kp、kdProportional control gain and differential control gain respectively; r is the reference input of the system, u is the controller output, u is the reference input of the system0Is the output of the state error feedback control law;
step B.2), the three-order extended state observer meets the following conditions:
Figure FDA0003157916990000036
step b.3), combining equations (2), (13), (14) to obtain:
Figure FDA0003157916990000041
step b.4), laplace transform of equation (15) yields:
Figure FDA0003157916990000042
step b.5), rewrite equation (16) into the transfer function form:
Figure FDA0003157916990000043
step B.6), according to the pole allocation method, the pole of the equation (17) is allocated to the closed loop bandwidth omegacThe method comprises the following steps:
Figure FDA0003157916990000044
step B.7), according to equation (17) and equation (18), we get
Figure FDA0003157916990000045
kd=2ωcTherefore, the state error feedback control law is:
Figure FDA0003157916990000046
4. the tracking and synchronous control method of the intelligent vehicle double-motor steer-by-wire system according to claim 1, wherein the compensation current calculation method of the synchronous controller is as follows:
i′=k(θ12) (20)
in the formula, theta1、θ2Actual turning angles of a steering motor A and a steering motor B are respectively; i' being synchronous controlThe compensation current output by the converter.
CN202110783048.4A 2021-07-12 2021-07-12 Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle Active CN113479258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110783048.4A CN113479258B (en) 2021-07-12 2021-07-12 Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110783048.4A CN113479258B (en) 2021-07-12 2021-07-12 Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle

Publications (2)

Publication Number Publication Date
CN113479258A true CN113479258A (en) 2021-10-08
CN113479258B CN113479258B (en) 2022-04-22

Family

ID=77937942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110783048.4A Active CN113479258B (en) 2021-07-12 2021-07-12 Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle

Country Status (1)

Country Link
CN (1) CN113479258B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2622434A (en) * 2022-09-16 2024-03-20 Zf Automotive Uk Ltd A dual motor drive assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045835A1 (en) * 2005-09-24 2007-03-29 Zf Lenksysteme Gmbh Control system for synchronous motor, has controller and/or control unit adjusting high longitudinal axis current, where rotor is engaged with preset rotation angle, which is compared with initial rotor angle
JP2009189203A (en) * 2008-02-08 2009-08-20 Denso Corp Motor driving device for eps
CN102710183A (en) * 2012-06-13 2012-10-03 苏州汇川技术有限公司 Crossed coupling synchronous control system and method of multiple motors
CN110190792A (en) * 2019-04-30 2019-08-30 西安理工大学 Road feel based on Active Disturbance Rejection Control simulates method for controlling permanent magnet synchronous motor
CN111017010A (en) * 2020-01-03 2020-04-17 南京航空航天大学 Dual-motor intelligent steer-by-wire system and synchronous control method
CN111464073A (en) * 2020-04-30 2020-07-28 南京工程学院 Dual-motor synchronous control device and method
JP2020150584A (en) * 2019-03-11 2020-09-17 株式会社ジェイテクト Control apparatus of motor
CN211765842U (en) * 2020-01-03 2020-10-27 南京航空航天大学 Double-motor intelligent steer-by-wire system
CN113071558A (en) * 2021-03-22 2021-07-06 南京航空航天大学 Dual-motor intelligent steer-by-wire system and control method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045835A1 (en) * 2005-09-24 2007-03-29 Zf Lenksysteme Gmbh Control system for synchronous motor, has controller and/or control unit adjusting high longitudinal axis current, where rotor is engaged with preset rotation angle, which is compared with initial rotor angle
JP2009189203A (en) * 2008-02-08 2009-08-20 Denso Corp Motor driving device for eps
CN102710183A (en) * 2012-06-13 2012-10-03 苏州汇川技术有限公司 Crossed coupling synchronous control system and method of multiple motors
JP2020150584A (en) * 2019-03-11 2020-09-17 株式会社ジェイテクト Control apparatus of motor
CN110190792A (en) * 2019-04-30 2019-08-30 西安理工大学 Road feel based on Active Disturbance Rejection Control simulates method for controlling permanent magnet synchronous motor
CN111017010A (en) * 2020-01-03 2020-04-17 南京航空航天大学 Dual-motor intelligent steer-by-wire system and synchronous control method
CN211765842U (en) * 2020-01-03 2020-10-27 南京航空航天大学 Double-motor intelligent steer-by-wire system
CN111464073A (en) * 2020-04-30 2020-07-28 南京工程学院 Dual-motor synchronous control device and method
CN113071558A (en) * 2021-03-22 2021-07-06 南京航空航天大学 Dual-motor intelligent steer-by-wire system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2622434A (en) * 2022-09-16 2024-03-20 Zf Automotive Uk Ltd A dual motor drive assembly

Also Published As

Publication number Publication date
CN113479258B (en) 2022-04-22

Similar Documents

Publication Publication Date Title
CN111017010B (en) Dual-motor intelligent steer-by-wire system and synchronous control method
EP3321149B1 (en) Electric power steering device
US11066095B2 (en) Controller for steering system and method for controlling steering system
EP3453592A1 (en) Electric power steering device
CN101472780B (en) Electrical power steering system for a motor vehicle
CN113479258B (en) Tracking and synchronous control method for dual-motor steer-by-wire system of intelligent vehicle
CN110190792B (en) Road sense simulation permanent magnet synchronous motor control method based on active disturbance rejection control
US20080196966A1 (en) Steering system
CN104108418A (en) Electric Power Steering System
CN113071558B (en) Dual-motor intelligent steer-by-wire system and control method thereof
CN111756286B (en) High-performance robust permanent magnet synchronous hub motor composite controller
US7690477B2 (en) Vehicular steering system
US20210171093A1 (en) Differential cooperative active steering for a front-axle independent-drive vehicle with electric wheels and control method therefor
JP2020195240A (en) Control arrangement of polyphase rotary machine
CN115092243B (en) Dual-motor driven electric steering device and control method thereof
CN211765842U (en) Double-motor intelligent steer-by-wire system
CN114928285A (en) Double-shaft drive electric automobile double-switch reluctance motor rotating speed synchronous control technology
CN112859613B (en) High-precision control method of control moment gyro frame system based on harmonic reducer
CN111055917B (en) Electro-hydraulic coupling intelligent steering system and mode switching control method
CN112821827A (en) Disturbance suppression system for harmonic reducer of CMG frame system
CN112061229A (en) Friction compensation method of electric power steering system
JP4291924B2 (en) Vehicle cooperative control device
CN111017009A (en) Composite intelligent steering system and control and fault diagnosis method thereof
CN104627234A (en) Automobile active steering coupling device capable of achieving variable transmission ratio and steering system
CN211710936U (en) Compound intelligent steering system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant