CN113472092A - 一种谐振频率自适应的非接触电能传输装置 - Google Patents

一种谐振频率自适应的非接触电能传输装置 Download PDF

Info

Publication number
CN113472092A
CN113472092A CN202110596525.6A CN202110596525A CN113472092A CN 113472092 A CN113472092 A CN 113472092A CN 202110596525 A CN202110596525 A CN 202110596525A CN 113472092 A CN113472092 A CN 113472092A
Authority
CN
China
Prior art keywords
frequency
current
circuit
resonance
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110596525.6A
Other languages
English (en)
Other versions
CN113472092B (zh
Inventor
王强
巩方彬
侯昭霆
张雪雪
赵海森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dezhou Hengli Electrical Machinery Co ltd
Original Assignee
Dezhou Hengli Electrical Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dezhou Hengli Electrical Machinery Co ltd filed Critical Dezhou Hengli Electrical Machinery Co ltd
Priority to CN202110596525.6A priority Critical patent/CN113472092B/zh
Publication of CN113472092A publication Critical patent/CN113472092A/zh
Application granted granted Critical
Publication of CN113472092B publication Critical patent/CN113472092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种短间隔距离下的非接触式电能传输装置。可实现静止体与旋转体之间的非接触式电能传送。本发明通过实时检测电流曲线的变化状态,实现谐振频率的自适应控制。与传统谐振式无线电能传输相比,能够在负载和环境分布参数发生变化的情况下,通过电流变化趋势自动快速调整谐振频率,从而保证无线电能传输的效率始终处于最佳状态。

Description

一种谐振频率自适应的非接触电能传输装置
技术领域
本发明属于工业自动控制领域,特别是涉及一种用于电机定转子之间实现电能非接触传输的装置,通过该装置可以非接触式的实现对旋转转子上的各类测量电路提供电能。
背景技术
发电厂大中型电机,尤其是辅助电机系统,由于启动频繁、谐波场复杂等原因引起导条温度升高,最终发生断条的故障较多。电动汽车在夏季高温工作环境中由于发热引起的故障也频繁发生。如果温度检测系统能够随时了解电机转子表面各点的温度,就可以有效地预防这类故障的发生。常规测量物体表面温度的方法,是在物体表面预埋温度传感器,将温度传感器测得的模拟值转换为温度的数字量实现温度测量。由于电机转子是高速旋转的,只能通过滑环等连接方式将外部电源输送到转子表面的温度传感器,并将温度测量值传送到电机外部。但是,电机工作在高速旋转的过程中,滑环内外环的接触部件会由于摩擦和振动产生火花,引起发热,同时电机本体振动等因素也会使数据信号发生抖动,降低了信号的电能传输的可靠性,需要频繁更换内外环滑动摩擦的易损件,提高了使用成本,最终影响电机的正常安全运行。
目前有通过松耦合变压器实现电能和数据的无线传输。松耦合变压器通过一次侧与二次侧的松耦合互感实现能量和数据的交互,由于松耦合变压器工作在大气隙状态下,其漏感占比非常高,导致工作效率较低。电能需求量较高的情况下,松耦合变压器自身的温升较高。而且松耦合变压器是由磁芯和线圈的缠绕而成的,导致体积较大,所以不适合对安装空间有限制的电机。
因此设计一种低成本非接触式电能传输装置、可以电机转子测温等电路提供电源,具有十分重要的应用价值。
发明内容
本发明提出了一种非接触式传输电能的方法。对于安装在电机旋转的转子或其他轴向旋转的物体上安装的电子元件,可以通过本装置以非接触式的方式从外部获得电能,从而为旋转设备的用电需求提供了切实可行的解决方案。
本发明技术方案:
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单说明。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1本发明实施例提供的一种可用于发电机转子的非接触式电能传输装置的结构原理图。
如图2所示本非接触式电能传输装置包括两个电路板,一个电路板是磁谐振电能发送单元安装在相对于电源静止的物体上,例如电机的定子端盖等位置(本发明中称之为定子侧电路),另一个电路板是磁谐振电能接收单元安装在旋转体上,例如电机的转子轴上或者转子轴的端面等位置(本发明中称为转子侧电路),两套电路之间可以实现10mm的空间间隔。
图2中①为转子侧电路板;包括磁谐振电能接收电感线圈、整流电路、稳压电路;②为定子侧电路板,依次包含磁谐振电能发送电感线圈、谐振电容器、电流采样电阻、噪声滤波电路、电流采样信号放大电路、单片机AD转换及谐振频率自适应控制单元、IGBT驱动电路等。
如图3所示为磁谐振电能发送电路原理图,定子侧电路板上设有一个谐振电感 L1和谐振电容C1的并联谐振回路,其并联导纳的计算公式为公式(1)
Figure BSA0000243517780000031
当导纳的虚部为零时,电路表现为纯阻性。频率ω由公式(2)决定:
Figure BSA0000243517780000032
实际电路中电阻R1和R2非常小,再考虑其系数分别为更小的C/L和C2,所以其谐振频率可近似由公式(3)确定。
Figure BSA0000243517780000033
但是由于负载变化和外界环境的不同,分布电容和杂散电感会叠加在原有谐振电感和谐振电容上,从而改变谐振电感和谐振电容的数值,分布电容和杂散电感不是常数,而是随着负载的变化和外界环境的不同而改变,使得整个谐振电路的电流虚部不为0,即谐振频率发生偏移。为了确保电路时刻工作在谐振状态,需要对系统频率的变化做出动态跟踪调整。现有文献关于这种磁谐振非接触传输电能的谐振频率控制方法有以下几种,第一种是锁相环相位跟踪法,通过监测电压与电流的相位差,通过动态调整开关管的触发频率使电压与电流的相位差为0;第二种是效率曲线查询法,当系统发生谐振式,系统工作在纯电阻状态,效率最高,通过实验获得的效率曲线,调整开关管触发频率。第三种是通过在负载侧添加动态补偿匹配阻抗。
磁谐振电路是二阶非线性电路,其电流的瞬态响应可以通过二阶线性微分方程求解得到。本发明通过监测主回路流过线路内阻R上的电流瞬态变化斜率、改变开关管导通与关断的频率,保证电路始终工作在真实谐振频率附近,实现谐振自适应的电能非接触式传送的功能。
以流过电感的电流iL为状态变量,列出其二阶线性微分方程为公式(4)
i″L+αi′L+β=0 (4)
忽略电感和电容的内电阻R1和R2,可求得电感电流的通解为公式(5)
iL=c1e-δtcosωt+c2je-δtsinωt (5)
其中c1和c2为常系数,
Figure BSA0000243517780000041
同理求得电容的电流iC,其通解为下式(6):
iC=-c1LCe-δt[(ω22)cosωt-2δωsinωt]-c2jLCe-δt[2δωcosωt+(ω22)sinωt]由于零状态时电感的电流为0,所以c1可取为0、电容上的电压为0,所以电感电流的瞬态值表现为相位超前,电容电流的瞬态值表现为相位滞后。δ远远小于ω,所以电感电流表现为震荡上升,电容电流表现为震荡减小。当谐振发生时,两者互相抵消,整个电路表现为纯阻性如图4中的a,检测电流曲线为一条直线如图5 中的a,电流曲线的斜率为0,用公式表示为(7),其中u为电源电压,Req线路等效阻抗的实部。
Figure BSA0000243517780000042
当谐振频率与开关频率不相等时,总电路必定表现为阻容性或者阻感性,将 LC谐振回路看做一端口网络,则整个电路简化为图4中的b和c
图4中b是由于容抗大于感抗时整个电路表现为阻容特性,其瞬态电流曲线表现为图5中的b,为一条向下弯曲的曲线,电流曲线的斜率为负值,并且斜率的绝对值逐渐减小用公式表示为(8)。
Figure BSA0000243517780000043
图4中c是由于感抗大于容抗时整个电路表现为阻感特性,其瞬态电流表现为图5中的c,为一条上扬弯曲的曲线,电流曲线的斜率为正值用公式表示为 (9),并且其斜率先是增大后减小。
Figure BSA0000243517780000051
附图说明
图1是本发明所示的一种基于谐振频率自适应的电能非接触传输装置原理图;
图2是本发明所示的定子侧电路板与转子侧电路板布局俯视图;
图3是本发明所示的磁谐振电能发送电路原理图;
图4-6是本发明所示的稳态时,3种不同参数的谐振电路等效原理图:
图4表现为纯阻性,图5表现为阻容性,图6表现为阻感性。
图7-9是本发明所示的不同负载Req状态下的3种电流曲线图:
图7.纯阻性负载电流瞬态响应,图8.阻容性负载电流瞬态响应,
图9.阻感性负载电流瞬态响应。
图10是本发明所示的单片机程序流程图。
其中:
图2中,①为转子侧电路板;②为定子侧电路板;③转子侧磁谐振电能接收单元;④定子侧磁谐振电能发送单元;
具体实施例
见图1:电路开始工作时,脉冲发生器按照单片机内预置的谐振频率输出高频方波信号;高频方波通过IGBT驱动电路提高驱动能力,并且可以实现单片机与IGBT的隔离,防止主回路的信号对单片机形成干扰;
IGBT驱动电路连接在高频IGBT开关管Q的门极,IGBT门极的在高频方波的驱动作用下,按照预置初始谐振频率实现主回路电流的开通和关断;
通过电阻R上获得主回路电流模拟量,并送信号滤波单元,以滤除白噪声等干扰;
经过滤波处理后的电流模拟信号经过运放的放大后,送至单片机AD转换模块;
由于通过等间隔电流采样,所以任意相邻两次电流采样值之间的斜率可以忽略ΔT简化为K1=ik+1-ik
单片机每完成一次电流采样值的AD转换后,便与上一次电流采样值做减法,将两次电流的差值作为当前电流曲线的斜率;
单片机判断总电流斜率趋势,如果斜率接近0,则不调整开关频率、如果斜率小于0,则开关频率增加1Hz、如果斜率大于0,则开关频率减小1Hz。
以此循环。
单片机程序流程图如图10所示。

Claims (6)

1.一种谐振频率自适应的非接触电能传输装置,其特征在于,包括谐振频率自适应的非接触电能传输装置本体(1),其两端分别安装在旋转体侧壁或者旋转体的端部和相对电源静止的一端:
接收电能的谐振电感线圈绕制于所述旋转体的外壁上(如电机转子轴),或者旋转体的端部(如电机转轴端部),并采用非导磁材料固封;
谐振频率自适应控制电路安装于所述的相对于电源的静止体(例如电机的定子端盖等),具体包括:依次连接谐振电感线圈,电流采样电路、前置放大电路、电流信号AD转换电路、高频脉冲发生器与谐振频率调整电路、高频谐振开关电路及其驱动电路;
其中:
谐振电感线圈用于产生电感电容谐振电能发射;
电流隔离采样电路,用于检测谐振主电路的电流值;
前置放大电路,用于将采样电流的幅值调整至适用于AD转换电路要求的电压幅值范围内;
谐振频率计算和高频脉冲发生器电路,用于输出高频方波信号以驱动谐振开关电路,并判别当前系统频率是否为谐振频率并实时调整高频方波信号的频率;
高频开关电路及其驱动电路,按照谐振频率计算和高频脉冲发生器电路输出的方波频率快速切换开关状态,用以使谐振电感和谐振电容工作在谐振状态。
2.根据权利要求1所述的一种基于谐振频率自适应的非接触电能传输装置,其特征在于,所述的谐振电感线圈采用铜线绕制在旋转体外壁或以印刷电路形式放置于旋转体端部用以接收谐振电能,采用但不局限于高温树脂等非导磁材料密封固化。
3.根据权利要求1所述的一种基于谐振频率自适应的非接触电能传输装置,其特征在于,采用等时间步长采样,并且采样频率fs必须大于谐振频率fk的2倍或以上;即满足公式如下:
fs>2fk (1)
4.根据权利要求1所述的一种基于谐振频率自适应的电能无线短传装置,其特征在于,电感和电容的磁谐振状态是以电源输出电流的瞬态响应判别的,磁谐振电路是二阶非线性电路,其电流的瞬态响应可以通过二阶线性微分方程求解得到;
P″+αP′+β=0 (2)
以流过电感的电流iL为状态变量,忽略线路R1和R2,求得其通解为下式:
iL=c1e-δtcosωt+c2je-δtsinωt (3)
其中c1和c2为常系数,
Figure FSA0000243517770000021
同理求得电容的电流ic,其通解为下式:
ic=-c1LCe-δt[(ω22)cosωt-2δωsinωt]-c2jLCe-δt[2δωcosωt+(ω22)sinωt]
由于零状态时电感的电流为0,所以c1可取为0、电容上的电压为0,所以电感电流的瞬态值表现为相位超前,电容电流的瞬态值表现为相位滞后。δ远远小于ω,所以电感电流表现为震荡上升,电容电流表现为震荡减小。当谐振发生时,两者互相抵消,整个电路表现为纯阻性,总电流表现为一条直线。
Figure FSA0000243517770000022
5.根据权利要求1所述的一种基于谐振频率自适应的电能无线短传装置,其特征在于,电感和电容的磁谐振状态是以电源输出电流AD采样值变化规律判别的;
当谐振频率与开关频率不等时,电路特性必定表现为阻容性或者阻感性,
当容抗大于感抗时整个电路表现为阻容特性,由公式(5)可知则电源输出的瞬态电流曲线表现为一条向下弯曲的曲线。
Figure FSA0000243517770000031
当感抗大于容抗时整个电路表现为阻感特性,由公式(6)可知电源输出的瞬态电流曲线表现为一条上扬的曲线。
Figure FSA0000243517770000032
6.根据权利要求1所述的一种基于谐振频率自适应的电能无线短传装置,其特征在于,为了实现谐振频率与开关管开关频率一致,采用开关管导通时同步检测电流的方法实现谐振频率的自适应,在无线电能短传装置工作时,开关频率为fk,L为实际的谐振电感,C为实际的谐振电容,为了保证
Figure FSA0000243517770000033
顺序检测一个周期内的3个电源输出电流的瞬时值,其幅值记为ik、ik+1和ik+2,从而求得:
第1次和第2次之间电流变化斜率为K1=(ik+1-ik)/ΔT
第2次和第3次之间电流变化斜率为K2=(ik+2-ik+1)/ΔT
当0>K2>K1时:开关频率fk自加1Hz,
当K1>0,K2>0时:开关频率fk自减1Hz,
当K2=K1=0时:开关频率fk保持不变。
CN202110596525.6A 2021-05-26 2021-05-26 一种谐振频率自适应的非接触电能传输装置 Active CN113472092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110596525.6A CN113472092B (zh) 2021-05-26 2021-05-26 一种谐振频率自适应的非接触电能传输装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110596525.6A CN113472092B (zh) 2021-05-26 2021-05-26 一种谐振频率自适应的非接触电能传输装置

Publications (2)

Publication Number Publication Date
CN113472092A true CN113472092A (zh) 2021-10-01
CN113472092B CN113472092B (zh) 2023-07-18

Family

ID=77871747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110596525.6A Active CN113472092B (zh) 2021-05-26 2021-05-26 一种谐振频率自适应的非接触电能传输装置

Country Status (1)

Country Link
CN (1) CN113472092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265311A (zh) * 2021-12-21 2022-04-01 杭州电子科技大学 基于动态反馈的非线性液位控制谐振电路系统的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013663A1 (en) * 2014-07-14 2016-01-14 Silergy Semiconductor Technology (Hangzhou) Ltd. Resonance-type contactless power supply, integrated circuit and constant voltage controlling method therefor
US20160141887A1 (en) * 2014-11-13 2016-05-19 Silergy Semiconductor Technology (Hangzhou) Ltd. Tuning circuit, tuning method and resonance-type contactless power supply
CN107104613A (zh) * 2017-06-29 2017-08-29 同济大学 一种同步电机转子励磁方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013663A1 (en) * 2014-07-14 2016-01-14 Silergy Semiconductor Technology (Hangzhou) Ltd. Resonance-type contactless power supply, integrated circuit and constant voltage controlling method therefor
US20160141887A1 (en) * 2014-11-13 2016-05-19 Silergy Semiconductor Technology (Hangzhou) Ltd. Tuning circuit, tuning method and resonance-type contactless power supply
CN107104613A (zh) * 2017-06-29 2017-08-29 同济大学 一种同步电机转子励磁方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SIDENG HU等: "Principle and Application of the Contactless Load Detection Based on the Amplitude Decay Rate in a Transient Process", 《 IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
江兵 等: "一种非接触电能传输系统的原边控制方法", 《电测与仪表》 *
闫美存等: "非接触式励磁电源的谐振补偿分析", 《电机与控制学报》 *
陆芬等: "基于频率跟踪控制的串联谐振变换器研究", 《电力电子技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265311A (zh) * 2021-12-21 2022-04-01 杭州电子科技大学 基于动态反馈的非线性液位控制谐振电路系统的控制方法
CN114265311B (zh) * 2021-12-21 2024-03-29 杭州电子科技大学 基于动态反馈的非线性液位控制谐振电路系统的控制方法

Also Published As

Publication number Publication date
CN113472092B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP2011142769A (ja) 磁気共鳴電力伝送方法及びその装置
US11101848B2 (en) Wireless power transmission system utilizing multiple transmission antennas with common electronics
CN107069997B (zh) 一种无线电能传输设备发送端动态调谐装置及调谐方法
Yuan et al. A novel anti-offset interdigital electrode capacitive coupler for mobile desktop charging
CN113472092B (zh) 一种谐振频率自适应的非接触电能传输装置
CN104767290B (zh) 一种感应式无线供电系统双闭环恒定输出电流控制方法
CN109067005B (zh) 用于旋转机电设备的非接触供电装置
CN116918210A (zh) 无线供电的传感器系统
JP7447463B2 (ja) 非接触給電装置
CN103269074B (zh) 一种动态谐波滤波装置
WO2010082115A1 (en) Method for measuring an electrical current
CN103944280A (zh) 一种无线电能传输设备发送端动态调谐装置及其调谐方法
CN215678531U (zh) 集成式变频调速系统的瞬时耦合电压检测装置
US11658517B2 (en) Area-apportioned wireless power antenna for maximized charging volume
US11824373B2 (en) Wireless power transmission antenna with parallel coil molecule configuration
CN115021425A (zh) 一种具有频率跟踪和桥臂功率检测的无线电能传输系统
CN206850430U (zh) 一种即插即用集成模块化有源串联补偿器
Li et al. Design of a temperature transmitter with contactless power and data transmission
CN110957649A (zh) 一种改善电能质量的电能质量补偿装置
CN114785168B (zh) 基于阻抗匹配的感应能量收集系统最大功率追踪方法
EP4290540A1 (en) Magnetic resonance-type wireless power feeding device
US11962337B2 (en) Communications demodulation in wireless power transmission system having an internal repeater
CN110649718B (zh) 一种具有恒压输出特性的无线电能传输系统
US20230134091A1 (en) Wireless Power Transmission Antenna with Antenna Molecules
US20230113247A1 (en) Systems for Extending Wireless Power Transmission Charge Volume Utilizing Repeater Antennas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant