CN113471963A - 可再生能源氢能微网系统能量路由管理方法 - Google Patents

可再生能源氢能微网系统能量路由管理方法 Download PDF

Info

Publication number
CN113471963A
CN113471963A CN202110696173.1A CN202110696173A CN113471963A CN 113471963 A CN113471963 A CN 113471963A CN 202110696173 A CN202110696173 A CN 202110696173A CN 113471963 A CN113471963 A CN 113471963A
Authority
CN
China
Prior art keywords
power
energy
energy storage
less
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110696173.1A
Other languages
English (en)
Other versions
CN113471963B (zh
Inventor
李德鑫
王佳蕊
吕项羽
田春光
裴玮
张家郡
张海锋
庄冠群
邓卫
李成钢
王伟
陈璟毅
刘畅
高松
孟涛
蔡丽霞
张懿夫
冷俊
张钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Electric Power Research Institute of State Grid Jilin Electric Power Co Ltd
Original Assignee
Institute of Electrical Engineering of CAS
Electric Power Research Institute of State Grid Jilin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS, Electric Power Research Institute of State Grid Jilin Electric Power Co Ltd filed Critical Institute of Electrical Engineering of CAS
Priority to CN202110696173.1A priority Critical patent/CN113471963B/zh
Publication of CN113471963A publication Critical patent/CN113471963A/zh
Application granted granted Critical
Publication of CN113471963B publication Critical patent/CN113471963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本发明涉及一种可再生能源氢能微网系统能量路由管理方法,包括如下步骤:获取当前运行时刻的风力发电功率PW,当前运行时刻的光伏发电功率PP,当前运行时刻的制氢负荷功率PH,当前运行时刻的储能功率PE,当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG,以及上网售电价格α1、制氢收益价格β1;步骤1:判断前运行时刻的储能功率PE,当确定储能单元输出功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整;步骤2:判断前运行时刻的储能功率PE,当确定储能单元吸收功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整。

Description

可再生能源氢能微网系统能量路由管理方法
技术领域
本发明涉及电力领域,尤其是一种可再生能源氢能微网系统能量路由管理方法。
背景技术
氢能逐渐成为全球范围内举足轻重的重要载体,其储存与应用技术收到了广泛关注。目前,科技部国家863计划、国家重点研发计划将风/光互补制氢列为重点专项进行科研攻关,国家能源投资集团、国家电网有限公司、中国海洋石油集团有限公司、华能集团以及河北建设投资集团等机构也相应开展了风/光互补制氢关键技术的研究及示范,河北建设投资集团开发了位于张家口的河北省重点项目、国内首个风电制氢工业应用项目—沽源风电10MW制氢综合利用示范项目;中国节能环保集团公司在张家口张北县开展了分布式可再生能源的风/光互补制氢技术,制氢功率为100kW。相关成果涵盖了集中式、分布式等多样化的风/光互补制氢技术路线和利用方式。
图1描述了可再生能源氢能微网系统的典型结构,交流系统AC通过电压源型换流站(voltage-source converter,VSC)与直流网络互联,其中,VSC交流侧接入AC,与此同时,VSC的直流侧提供直流母线。直流母线可以集成光伏发电、风力发电、储能单元、以及制氢负载等。
可再生能源氢能微网系统运行时,其并网运行时通常需要进行经济调度与能量管理,当系统规模较小时,调用复杂的潮流优化算法将导致开发工作量骤升。
发明内容
为了解决上述技术问题,本发明提出一种可再生能源氢能微网系统能量路由管理方法,考虑到实际的约束条件和目标函数可能较为简单,利用相对简化的能量路由规则,也可以实现对可再生能源氢能微网系统的能量管理、进而支撑不同工况下的系统优化运行。
本发明的技术方案为:一种可再生能源氢能微网系统能量路由管理方法,包括如下步骤:
获取当前运行时刻的风力发电功率PW,当前运行时刻的光伏发电功率PP,当前运行时刻的制氢负荷功率PH,当前运行时刻的储能功率PE,当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG,以及上网售电价格α1、制氢收益价格β1
步骤1:判断前运行时刻的储能功率PE,当确定储能单元输出功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整;
步骤2:判断前运行时刻的储能功率PE,当确定储能单元吸收功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整。
有益效果:
本发明考虑到可再生能源氢能微网系统的规模较小,其约束条件和目标函数较为简单,因此,本发明提出的可再生能源氢能微网系统能量路由管理方法,通过简化的能量路由规则,实现对可再生能源氢能微网系统的实用化能量管理,保障不同工况下的系统整体经济性。
附图说明
图1可再生能源氢能微网系统示意图;
图2为本发明的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
根据本发明的实施例,本发明提出的可再生能源氢能微网系统能量路由管理方法,如图2所示,其实现流程如下:
获取当前运行时刻的风力发电功率PW,当前运行时刻的光伏发电功率PP,当前运行时刻的制氢负荷功率PH,当前运行时刻的储能功率PE,当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG,以及上网售电价格α1、制氢收益价格β1
步骤1:判断前运行时刻的储能功率PE,当确定储能单元输出功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整;
具体的,当判断前运行时刻的储能功率PE<0,即储能单元输出功率,进一步判断,如果PG>0,执行步骤1.1和1.2,如果PG<0,执行步骤1.3和1.4:1.1当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP+|PE|-PH1+PHβ1}/PG大于功率边际成本,重复执行|PE|=|PE|+ΔP,直至{(PW+PP+|PE|-PH1+PHβ1}/PG小于功率边际成本或者PE到达额定功率,如果{(PW+PP+|PE|-PH1+PHβ1}/PG小于功率边际成本首先满足,则确定此时的PE为储能单元输出功率,其中,ΔP为每次调整增加的功率;
1.2当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP+|PE|-PH1+PHβ1}/PG小于功率边际成本,|PE|=|PE|+ΔP,进一步判断:
如果{(PW+PP+|PE|-PH1+PHβ1}/PG增加,重复执行|PE|=|PE|+ΔP,直至{(PW+PP+|PE|-PH1+PHβ1}/PG大于功率边际成本或PE到达额定功率,如果{(PW+PP+|PE|-PH1+PHβ1}/PG大于功率边际成本首先满足,转入步骤1.1;
如果{(PW+PP+|PE|-PH1+PHβ1}/PG减少,则|PE|=|PE|-ΔP;
1.3当PG<0,则可再生能源氢能微网电,此时判断如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|大于功率边际成本,重复执行|PE|=|PE|+ΔP,直至{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|小于功率边际成本或者PE到达额定功率,如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|小于功率边际成本首先满足,则确定此时的PE为储能单元输出功率;
1.4当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|小于功率边际成本,|PE|=|PE|+ΔP,进一步判断:
如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|增加,重复执行|PE|=|PE|+ΔP,直至{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|大于功率边际成本或者PE到达额定功率,如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|大于功率边际成本首先满足,转入步骤1.3。
如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|减少,则|PE|=|PE|-ΔP。
其中ΔP为{|(PW+PP+|PE|-PH)|,PW,PP,PH}的最小公约数。
步骤2:判断前运行时刻的储能功率PE,当确定储能单元吸收功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整。
具体的,当判断前运行时刻的储能功率PE>0,即储能单元吸收功率,进一步判断:如果PG>0,执行步骤2.1和2.2,如果PG<0,执行步骤2.3和2.4:
2.1当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP-PE-PH1+PHβ1}/PG大于功率边际成本,重复执行PE=PE-ΔP,直至{(PW+PP-PE-PH1+PHβ1}/PG小于功率边际成本或者PE小于0,当{(PW+PP-PE-PH1+PHβ1}/PG小于功率边际成本首先满足,则确定此时的PE为储能单元吸收功率,当PE小于0首先满足,则转入步骤1;
2.2当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP-PE-PH1+PHβ1}/PG小于功率边际成本,PE=PE-ΔP,进一步判断:
如果{(PW+PP-PE-PH1+PHβ1}/PG减少,PE=PE+ΔP;
如果{(PW+PP-PE-PH1+PHβ1}/PG增加,重复执行PE=PE-ΔP,直至{(PW+PP-PE-PH1+PHβ1}/PG大于功率边际成本或者PE小于0,当{(PW+PP-PE-PH1+PHβ1}/PG大于功率边际成本首先满足,则转入步骤2.1,如果当PE小于0首先满足,转入步骤1;
2.3当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|大于功率边际成本,重复执行PE=PE-ΔP,直至{|(PW+PP-PE-PH1+PHβ1|}/|PG|小于功率边际成本或者PE小于0,当{|(PW+PP-PE-PH1+PHβ1|}/|PG|小于功率边际成本首先满足,则确定此时的PE为储能单元吸收功率,当PE小于0首先满足,则转入步骤1;
2.4当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|小于功率边际成本,PE=PE-ΔP,进一步判断:
如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|减少,PE=PE+ΔP;
如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|增加,重复执行PE=PE-ΔP,直至{|(PW+PP-PE-PH1+PHβ1|}/|PG|大于功率边际成本或者PE小于0,当{|(PW+PP-PE-PH1+PHβ1|}/|PG|大于功率边际成本首先满足,则转入步骤2.3,如果当PE小于0首先满足,转入步骤1。
其中ΔP为{|(PW+PP-PE-PH)|,PW,PP,PH}的最小公约数。
可再生能源氢能微网系统成为有效支撑未来可再生能源、直流制氢快速发展的重要形态之一。本发明提出的可再生能源氢能微网系统能量路由管理方法,可以有效弥补现有缺陷,有利于可再生能源氢能微网系统实际运行过程中的经济调度与能量管理,有效简化系统优化运行的复杂度,应用前景广阔。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,且应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (3)

1.一种可再生能源氢能微网系统能量路由管理方法,其特征在于,包括如下步骤:
获取当前运行时刻的风力发电功率PW,当前运行时刻的光伏发电功率PP,当前运行时刻的制氢负荷功率PH,当前运行时刻的储能功率PE,当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG,以及上网售电价格α1、制氢收益价格β1
步骤1:判断前运行时刻的储能功率PE,当确定储能单元输出功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整;
步骤2:判断前运行时刻的储能功率PE,当确定储能单元吸收功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整。
2.根据权利要求1所述的一种可再生能源氢能微网系统能量路由管理方法,其特征在于,包括如下步骤:
所述步骤1:判断前运行时刻的储能功率PE,当确定储能单元输出功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整;具体包括:
当判断前运行时刻的储能功率PE<0,即储能单元输出功率,进一步判断,如果PG>0,执行步骤1.1和1.2,如果PG<0,执行步骤1.3和1.4:
1.1当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP+|PE|-PH1+PHβ1}/PG大于功率边际成本,重复执行|PE|=|PE|+ΔP,直至{(PW+PP+|PE|-PH1+PHβ1}/PG小于功率边际成本或者PE到达额定功率,如果{(PW+PP+|PE|-PH1+PHβ1}/PG小于功率边际成本首先满足,则确定此时的PE为储能单元输出功率;ΔP为每次调整增加的功率,为{|(PW+PP+|PE|-PH)|,PW,PP,PH}的最小公约数;
1.2当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP+|PE|-PH1+PHβ1}/PG小于功率边际成本,|PE|=|PE|+ΔP,进一步判断:
如果{(PW+PP+|PE|-PH1+PHβ1}/PG增加,重复执行|PE|=|PE|+ΔP,直至{(PW+PP+|PE|-PH1+PHβ1}/PG大于功率边际成本或PE到达额定功率,如果{(PW+PP+|PE|-PH1+PHβ1}/PG大于功率边际成本首先满足,转入步骤1.1;
如果{(PW+PP+|PE|-PH1+PHβ1}/PG减少,则|PE|=|PE|-ΔP;
1.3当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|大于功率边际成本,重复执行|PE|=|PE|+ΔP,直至{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|小于功率边际成本或者PE到达额定功率,如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|小于功率边际成本首先满足,则确定此时的PE为储能单元输出功率;
1.4当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|小于功率边际成本,|PE|=|PE|+ΔP,进一步判断:
如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|增加,重复执行|PE|=|PE|+ΔP,直至{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|大于功率边际成本或者PE到达额定功率,如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|大于功率边际成本首先满足,转入步骤1.3;
如果{|(PW+PP+|PE|-PH1+PHβ1|}/|PG|减少,则|PE|=|PE|-ΔP。
3.根据权利要求1所述的一种可再生能源氢能微网系统能量路由管理方法,其特征在于,所述步骤2:判断前运行时刻的储能功率PE,当确定储能单元吸收功率时,进一步根据当前运行时刻的可再生能源氢能微网系统与电网的交互功率PG对前运行时刻的储能功率PE进行调整,具体包括如下步骤:
步骤2:当判断前运行时刻的储能功率PE>0,即储能单元吸收功率,进一步判断:如果PG>0,执行步骤2.1和2.2,如果PG<0,执行步骤2.3和2.4:
2.1当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP-PE-PH1+PHβ1}/PG大于功率边际成本,重复执行PE=PE-ΔP,直至{(PW+PP-PE-PH1+PHβ1}/PG小于功率边际成本或者PE小于0,当{(PW+PP-PE-PH1+PHβ1}/PG小于功率边际成本首先满足,则确定此时的PE为储能单元吸收功率,当PE小于0首先满足,则转入步骤1;
2.2当PG>0,则可再生能源氢能微网售电,此时判断如果{(PW+PP-PE-PH1+PHβ1}/PG小于功率边际成本,PE=PE-ΔP,进一步判断:
如果{(PW+PP-PE-PH1+PHβ1}/PG减少,PE=PE+ΔP;
如果{(PW+PP-PE-PH1+PHβ1}/PG增加,重复执行PE=PE-ΔP,直至{(PW+PP-PE-PH1+PHβ1}/PG大于功率边际成本或者PE小于0,当{(PW+PP-PE-PH1+PHβ1}/PG大于功率边际成本首先满足,则转入步骤2.1,如果当PE小于0首先满足,转入步骤1;
2.3当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|大于功率边际成本,重复执行PE=PE-ΔP,直至{|(PW+PP-PE-PH1+PHβ1|}/|PG|小于功率边际成本或者PE小于0,当{|(PW+PP-PE-PH1+PHβ1|}/|PG|小于功率边际成本首先满足,则确定此时的PE为储能单元吸收功率,当PE小于0首先满足,则转入步骤1;
2.4当PG<0,则可再生能源氢能微网购电,此时判断如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|小于功率边际成本,PE=PE-ΔP,进一步判断:
如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|减少,PE=PE+ΔP;
如果{|(PW+PP-PE-PH1+PHβ1|}/|PG|增加,重复执行PE=PE-ΔP,直至{|(PW+PP-PE-PH1+PHβ1|}/|PG|大于功率边际成本或者PE小于0,当{|(PW+PP-PE-PH1+PHβ1|}/|PG|大于功率边际成本首先满足,则转入步骤2.3,如果当PE小于0首先满足,转入步骤1。
CN202110696173.1A 2021-06-23 2021-06-23 可再生能源氢能微网系统能量路由管理方法 Active CN113471963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110696173.1A CN113471963B (zh) 2021-06-23 2021-06-23 可再生能源氢能微网系统能量路由管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110696173.1A CN113471963B (zh) 2021-06-23 2021-06-23 可再生能源氢能微网系统能量路由管理方法

Publications (2)

Publication Number Publication Date
CN113471963A true CN113471963A (zh) 2021-10-01
CN113471963B CN113471963B (zh) 2022-12-09

Family

ID=77869363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110696173.1A Active CN113471963B (zh) 2021-06-23 2021-06-23 可再生能源氢能微网系统能量路由管理方法

Country Status (1)

Country Link
CN (1) CN113471963B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576686A (zh) * 2016-02-23 2016-05-11 北京慧峰聚能科技有限公司 利用储能系统平滑微网并网点功率波动的能量管理方法
CN106033892A (zh) * 2016-07-04 2016-10-19 许继集团有限公司 基于储能soc状态的微电网能量优化控制方法
US20170237259A1 (en) * 2016-02-15 2017-08-17 Doosan Heavy Industries & Construction Co., Ltd. Method for managing power of energy storage system connected with renewable energy
CN107769235A (zh) * 2017-09-29 2018-03-06 国网上海市电力公司 一种基于混合储能与电动汽车的微网能量管理方法
CN107872068A (zh) * 2017-09-29 2018-04-03 国网上海市电力公司 一种基于互联网的并网型微网联合能量管理与控制方法
CN109713673A (zh) * 2019-02-25 2019-05-03 上海电力学院 售电环境下并网型微电网系统配置及优化运行的方法
CN110932299A (zh) * 2019-12-13 2020-03-27 国网陕西省电力公司电力科学研究院 一种光氢储耦合微电网中电池储能系统的容量优化方法
CN111612248A (zh) * 2020-05-20 2020-09-01 云南电网有限责任公司电力科学研究院 一种配电网侧源-荷协调方法及系统
CN212726480U (zh) * 2020-08-07 2021-03-16 中国华能集团清洁能源技术研究院有限公司 一种可并离网型风光水储氢燃料电池直流互联微网系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237259A1 (en) * 2016-02-15 2017-08-17 Doosan Heavy Industries & Construction Co., Ltd. Method for managing power of energy storage system connected with renewable energy
CN105576686A (zh) * 2016-02-23 2016-05-11 北京慧峰聚能科技有限公司 利用储能系统平滑微网并网点功率波动的能量管理方法
CN106033892A (zh) * 2016-07-04 2016-10-19 许继集团有限公司 基于储能soc状态的微电网能量优化控制方法
CN107769235A (zh) * 2017-09-29 2018-03-06 国网上海市电力公司 一种基于混合储能与电动汽车的微网能量管理方法
CN107872068A (zh) * 2017-09-29 2018-04-03 国网上海市电力公司 一种基于互联网的并网型微网联合能量管理与控制方法
CN109713673A (zh) * 2019-02-25 2019-05-03 上海电力学院 售电环境下并网型微电网系统配置及优化运行的方法
CN110932299A (zh) * 2019-12-13 2020-03-27 国网陕西省电力公司电力科学研究院 一种光氢储耦合微电网中电池储能系统的容量优化方法
CN111612248A (zh) * 2020-05-20 2020-09-01 云南电网有限责任公司电力科学研究院 一种配电网侧源-荷协调方法及系统
CN212726480U (zh) * 2020-08-07 2021-03-16 中国华能集团清洁能源技术研究院有限公司 一种可并离网型风光水储氢燃料电池直流互联微网系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘继春等: "考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化", 《电网技术》 *
陈沼宇等: "考虑P2G多源储能型微网日前最优经济调度策略研究", 《中国电机工程学报》 *

Also Published As

Publication number Publication date
CN113471963B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Yan et al. Renewable energy integration with mini/micro-grids
AU2016339424A1 (en) Energy gateway, household appliance, direct-current micro-grid system and energy management method therefor
CN105552952A (zh) 一种光储联合发电系统及其能量管理方法
Sun et al. Robust optimal power flow with transmission switching
Sun et al. Integrated generation-grid-load economic dispatch considering demand response
Tran et al. Energy management and optimization method based on Lagrange multiplier for microgrid with considerations of electricity price and vehicle
CN113471963B (zh) 可再生能源氢能微网系统能量路由管理方法
Sharma et al. Comparative analysis of different types of micro-grid architectures and controls
Cai et al. Electric power big data and its applications
Lim et al. Control of Photovoltaic-Variable Speed Diesel Generator battery-less hybrid energy system
Teng et al. Coordinated optimization control strategy for we-energy in energy internet
Liu et al. Multi-objective optimization dispatch of PV-MG considering demand response actions
Zhang et al. Auxiliary service market model considering the participation of pumped-storage power stations in peak shaving
Wang et al. Renewable and distributed energy integration with mini/microgrids
Fan et al. Cost-benefit analysis of integration DER into distribution network
Ma et al. Distributed generation system development based on various renewable energy resources
Nakahata et al. Development of smart grid demonstration systems
Nazarpour et al. Analysing THD and coordinate control for power system and DG based on PI-controller
CN113410832A (zh) 一种风光储氢综合能源直流微网运行控制方法
Cui et al. Adaptive Current Protection Technology for Distribution Network with Distributed Power Sources Based on Local Information
Chen et al. Optimal configuration for distributed generations in micro-grid system considering diesel as the main control source
Yu et al. Research on microgrid reconfiguration under rural network fault
Mishra et al. Economic evaluation of solar hybrid DC grid for petrol pump stations
Li et al. Scenarios analysis and energy supply optimization configuration for multi-station integration
Liu et al. Low-carbon economic dispatch of integrated electricity-heat-hydrogen systems considering integrated demand response

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant