CN113470896B - Method for integrating extensible stimulation electrode on surface of semi-inflatable micro-balloon - Google Patents
Method for integrating extensible stimulation electrode on surface of semi-inflatable micro-balloon Download PDFInfo
- Publication number
- CN113470896B CN113470896B CN202110775769.0A CN202110775769A CN113470896B CN 113470896 B CN113470896 B CN 113470896B CN 202110775769 A CN202110775769 A CN 202110775769A CN 113470896 B CN113470896 B CN 113470896B
- Authority
- CN
- China
- Prior art keywords
- balloon
- micro
- extensible
- semi
- stimulation electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000638 stimulation Effects 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000004936 stimulating effect Effects 0.000 claims abstract description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000000741 silica gel Substances 0.000 claims abstract description 24
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 24
- 239000002390 adhesive tape Substances 0.000 claims abstract description 15
- 239000000853 adhesive Substances 0.000 claims abstract description 14
- 230000001070 adhesive effect Effects 0.000 claims abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- 239000002872 contrast media Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000001680 brushing effect Effects 0.000 claims abstract 2
- 238000002791 soaking Methods 0.000 claims abstract 2
- 229920001721 polyimide Polymers 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 239000004642 Polyimide Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 7
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 239000002042 Silver nanowire Substances 0.000 claims description 5
- 239000002041 carbon nanotube Substances 0.000 claims description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- 238000000206 photolithography Methods 0.000 claims description 5
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229920005839 ecoflex® Polymers 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000004816 latex Substances 0.000 claims description 4
- 229920000126 latex Polymers 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002379 silicone rubber Polymers 0.000 claims description 4
- 239000004945 silicone rubber Substances 0.000 claims description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 4
- 239000000499 gel Substances 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 3
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 239000002775 capsule Substances 0.000 abstract description 5
- 230000008602 contraction Effects 0.000 abstract description 2
- 239000004005 microsphere Substances 0.000 abstract 2
- 238000005538 encapsulation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 6
- 239000003094 microcapsule Substances 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000007674 radiofrequency ablation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VRBFTYUMFJWSJY-UHFFFAOYSA-N 28804-46-8 Chemical compound ClC1CC(C=C2)=CC=C2C(Cl)CC2=CC=C1C=C2 VRBFTYUMFJWSJY-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010317 ablation therapy Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000007675 cardiac surgery Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 210000001174 endocardium Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000003901 trigeminal nerve Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0456—Specially adapted for transcutaneous electrical nerve stimulation [TENS]
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Manufacturing & Machinery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Electrotherapy Devices (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明属于生物医电技术领域,具体涉及一种可延展刺激电极集成方法。The invention belongs to the technical field of biomedical electricity, and in particular relates to a method for integrating an extensible stimulation electrode.
背景技术Background technique
随着柔性电子器件技术发展,已有部分研究报道集成应用于面向心脏诊疗的微球囊表面的柔性器件,以实现心电监测,温度传感,压力传感,射频消融等功能。目前大多数微球囊,采用的是小变形聚氨酯材料,充放气过程弹性变形量小,放气状态主要呈瘪皱状,其表面集成的柔性器件延展变形量较小。With the development of flexible electronic device technology, some studies have reported the integration of flexible devices on the surface of microballoons for cardiac diagnosis and treatment to realize functions such as ECG monitoring, temperature sensing, pressure sensing, and radiofrequency ablation. At present, most of the microballoons are made of polyurethane material with small deformation. The elastic deformation during the inflation and deflation process is small, and the deflated state is mainly shriveled and wrinkled.
现有技术中,2012年韩国首尔国立大学Dae-Hyeong Kim等在PNAS,2012,109(49):19910-19915撰文“Electronic sensor and actuator webs for large-area complexgeometry cardiac mapping and therapy”,提出球囊表面集成测量电阻的蛇形导线结构触觉传感器,用于验证与组织接触程度;2015年美国MC10公司Lauren Klinker等在ExtremeMechanics Letters,2015,3:45-54撰写“Balloon catheters with integratedstretchable electronics for electrical stimulation,ablation and blood flowmonitoring”,提出球囊表面集成聚酰亚胺基底的蛇形导线结构电极,具备电刺激和射频消融等功能;2019年上海交通大学刘景全团队在IEEE Electron Device Letters,2019,40(10):1674-1677撰文“Flexible Multi-Positional Microsensors for Cryoablation Temperature Monitoring”,提出大尺寸球囊表面集成蛇形导线结构的Parylene-C基底柔性温度传感器,用于冷冻消融低温检测;2020年美国西北大学John A.Rogers团队在NatureBiomedical Engineering,2020,4(10):997-1009撰文“Catheter-integrated softmultilayer electronic arrays for multiplexed sensing and actuation duringcardiac surgery”,提出球囊表面集成蛇形导线结构的聚酰亚胺基底电极,对心内膜的电信号进行检测,并通过局部加热的方式烧蚀部分心肌组织,实现对心律不齐的治疗以及同步压力检测。以上研究虽然对器件导线进行了蛇形化结构设计,以期提高整体延展能力,然而充气状态球囊膨胀变形量小,因此对导线延展性能要求不高。In the prior art, in 2012, Dae-Hyeong Kim et al. of Seoul National University, Korea, wrote an article "Electronic sensor and actuator webs for large-area complexgeometry cardiac mapping and therapy" in PNAS, 2012, 109(49): 19910-19915, proposing a balloon Surface-integrated tactile sensor with serpentine wire structure for measuring electrical resistance to verify the degree of contact with tissue; in 2015, Lauren Klinker et al. of MC10 company in the United States wrote "Balloon catheters with integratedstretchable electronics for electrical stimulation," ExtremeMechanics Letters, 2015, 3:45-54. "ablation and blood flow monitoring", proposed a serpentine wire structure electrode with a polyimide substrate integrated on the surface of the balloon, which has functions such as electrical stimulation and radiofrequency ablation; ): 1674-1677 wrote "Flexible Multi-Positional Microsensors for Cryoablation Temperature Monitoring", proposing a Parylene-C substrate flexible temperature sensor with a serpentine wire structure integrated on the surface of a large-sized balloon for cryoablation low temperature detection; 2020 Northwestern University, USA The John A. Rogers team wrote an article "Catheter-integrated softmultilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery" in NatureBiomedical Engineering, 2020, 4(10):997-1009, proposing a polyimide with a serpentine wire structure integrated on the balloon surface The base electrode detects the electrical signal of the endocardium, and ablates part of the myocardial tissue by means of local heating, so as to realize the treatment of arrhythmia and the simultaneous pressure detection. Although the above research has carried out a serpentine structure design for the device wire, in order to improve the overall ductility, the balloon expansion deformation in the inflated state is small, so the ductility of the wire is not required to be high.
另一种微球囊采用大变形硅树脂材料(如乳胶),充放气过程弹性变形量大,可从初始圆柱膨胀至球状并能够恢复圆柱状。2011年John A.Rogers团队在NATURE MATERIALS,2011,10(4):316-323中撰文“Materials for multifunctional balloon catheters withcapabilities in cardiac electrophysiological mapping and ablation therapy”,提出大变形硅树脂球囊导管表面集成了柔性器件,用于心外膜记录心脏电生理、触觉、温度数据和进行冷冻消融,所展示球囊最大变形量为130%,柔性器件主要集成在靠近导管的球囊下半段。所使用的岛桥结构在岛的背面沉积二氧化硅,与弹性基底依靠化学缩合反应粘合,桥即导线则呈自由活动状态,在延展状态下不受基底约束,可发生面外变形,以提供充足的延展能力。然而,该界面集成方法中,导线随球囊膨胀脱离基底,容易与组织挤压和摩擦过程中破坏失效。Another type of micro-balloon uses a large deformation silicone resin material (such as latex), which has a large amount of elastic deformation during inflation and deflation, and can expand from an initial cylindrical shape to a spherical shape and can return to a cylindrical shape. In 2011, the John A. Rogers team wrote an article "Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy" in NATURE MATERIALS, 2011, 10(4): 316-323, and proposed that the surface of the large deformation silicone balloon catheter integrates The flexible device is used for epicardial recording of cardiac electrophysiology, tactile, temperature data and cryoablation. The maximum deformation of the balloon shown is 130%. The flexible device is mainly integrated in the lower half of the balloon near the catheter. The used island-bridge structure deposits silicon dioxide on the back of the island, which is bonded to the elastic substrate by chemical condensation reaction. The bridge, that is, the wire, is in a free-moving state. Provide sufficient extension capacity. However, in this interface integration method, the wires are detached from the substrate with the balloon expansion, and are easily damaged and failed in the process of squeezing and rubbing with the tissue.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明提供了一种半膨胀微球囊表面集成可延展刺激电极方法,首先将水溶性胶带压覆在可延展刺激电极上方,并施加均匀的压覆力;然后向微球囊中充气或注入造影剂使微球囊达到半膨胀状态,并在微球囊表面均匀刷涂黏性硅胶作为微球囊与可延展刺激电极之间的粘附材料;接下来通过水溶性胶带将刺激电极从硅片上缓慢剥离,将刺激电极贴附在涂有黏性硅胶的微球囊目标位置,然后将整个微球囊置于烘箱中烘干黏性硅胶;最后将微球囊在热水中充分浸泡,确保水溶性胶带完全溶解,刺激电极点以及环形地电极完全暴露出来。该方法能保证可延展刺激电极随微球囊膨胀或收缩同步变形,满足微球囊较高的变形拉伸要求,具有重要的实用价值和创新意义。In order to overcome the deficiencies of the prior art, the present invention provides a method for integrating extensible stimulating electrodes on the surface of a semi-expandable microballoon. First, a water-soluble adhesive tape is pressed over the extensible stimulating electrodes, and a uniform pressing force is applied; then Inflate or inject contrast agent into the microballoon to make the microballoon reach a semi-expanded state, and evenly brush the surface of the microballoon with viscous silica gel as the adhesive material between the microballoon and the extensible stimulation electrode; The water-soluble tape slowly peels off the stimulating electrode from the silicon wafer, attaches the stimulating electrode to the target position of the micro-balloon coated with adhesive silica gel, and then places the entire micro-balloon in an oven to dry the adhesive silica gel; The balloon is fully immersed in hot water to ensure that the water-soluble tape is completely dissolved, and the stimulating electrode points and the annular ground electrode are fully exposed. The method can ensure that the extensible stimulating electrode deforms synchronously with the expansion or contraction of the micro-balloon, and meets the higher deformation and stretching requirements of the micro-balloon, and has important practical value and innovative significance.
本发明解决其技术问题所采用的技术方案包括如下步骤:The technical scheme adopted by the present invention to solve its technical problems comprises the following steps:
步骤1:将水溶性胶带压覆在聚酰亚胺薄膜衬底封装金属材料的可延展刺激电极上方,并施加均匀的压覆力;Step 1: Press the water-soluble tape over the stretchable stimulation electrode encapsulating the metal material of the polyimide film substrate, and apply a uniform pressing force;
步骤2:通过与微球囊连接的支撑管向微球囊中充气或注入造影剂使微球囊达到半膨胀状态,然后在微球囊表面均匀地刷涂黏性硅胶;Step 2: Inflate the microballoon or inject a contrast agent through the support tube connected to the microballoon to make the microballoon reach a semi-expanded state, and then evenly brush the surface of the microballoon with viscous silica gel;
步骤3:通过水溶性胶带将可延展刺激电极从硅片上剥离,再将可延展刺激电极贴附在涂有黏性硅胶的微球囊上,然后将微球囊放置在设定好参数的烘箱中烘干黏性硅胶;Step 3: Peel the malleable stimulation electrode from the silicon wafer with water-soluble tape, attach the malleable stimulation electrode to the micro-balloon coated with adhesive silica gel, and place the micro-balloon on the set parameter. Dry the viscous silica gel in an oven;
步骤4:将烘干的微球囊在热水中充分浸泡,确保水溶性胶带完全溶解脱落,使可延展刺激电极全部暴露出来。Step 4: Fully immerse the dried micro-balloons in hot water to ensure that the water-soluble tape is completely dissolved and peeled off, so that the malleable stimulating electrodes are fully exposed.
进一步地,所述可延展刺激电极包括6个刺激电极点、6个环形地电极和可延展导线;所述6个刺激电极点平均分为两组,周向间距120°分别分布于微球囊两端的金属端中间位置;所述6个环形地电极分别半包围在6个刺激电极点周围;所述刺激电极点的直径为50~200微米,环形地电极的内径为200~300微米,可延展导线的宽度为5~50微米。Further, the extensible stimulation electrode includes 6 stimulation electrode points, 6 annular ground electrodes and extensible wires; the 6 stimulation electrode points are equally divided into two groups, and the circumferential spacing is 120° distributed in the microballoons respectively. The middle position of the metal ends at both ends; the six annular ground electrodes are respectively semi-enclosed around the six stimulating electrode points; the diameter of the stimulating electrode points is 50-200 microns, and the inner diameter of the ring-shaped ground electrodes is 200-300 microns, which can be The width of the extended wire is 5-50 microns.
进一步地,所述可延展刺激电极包含聚酰亚胺衬底层、金属导电层和聚酰亚胺封装层,通过光刻工艺获得蛇形可延展导线结构;所述金属导电层的材料为Cr/Au或Cr/Pt。Further, the extensible stimulating electrode includes a polyimide substrate layer, a metal conductive layer and a polyimide encapsulation layer, and a serpentine extensible wire structure is obtained by a photolithography process; the material of the metal conductive layer is Cr/ Au or Cr/Pt.
进一步地,所述水溶性胶带为3M水溶性胶带,尺寸为6mm*15mm。Further, the water-soluble adhesive tape is 3M water-soluble adhesive tape, and the size is 6mm*15mm.
进一步地,所述微球囊初始状态的尺寸为直径1.6mm,总长11mm,微球囊半膨胀状态时最大变形处直径为4mm,微球囊完全膨胀时最大变形处直径为8mm;所述微球囊的材料为乳胶或热塑性聚氨酯。Further, the size of the initial state of the micro-balloon is 1.6 mm in diameter and 11 mm in total length, the diameter of the maximum deformation point when the micro-balloon is in a semi-expanded state is 4 mm, and the diameter of the maximum deformation point when the micro-balloon is fully inflated is 8 mm; The material of the balloon is latex or thermoplastic polyurethane.
进一步地,所述黏性硅胶采用未固化低模量聚二甲基硅氧烷或低模量铂催化硅橡胶Ecoflex_gel。Further, the viscous silica gel adopts uncured low-modulus polydimethylsiloxane or low-modulus platinum-catalyzed silicone rubber Ecoflex_gel.
进一步地,所述将微球囊放置在设定好参数的烘箱中烘干黏性硅胶时,烘箱内温度为70~80摄氏度,加热时间为1~4小时。Further, when the microcapsules are placed in an oven with set parameters to dry the viscous silica gel, the temperature in the oven is 70-80 degrees Celsius, and the heating time is 1-4 hours.
进一步地,所述6个刺激电极点分为两组沿周向间距120°,轴向间距10~20mm,分布于微球囊的外表面靠近顶端金属端5~10mm的位置。Further, the six stimulating electrode points are divided into two groups with a circumferential spacing of 120° and an axial spacing of 10-20 mm, and are distributed on the outer surface of the microballoon at a position of 5-10 mm near the top metal end.
进一步地,所述金属导电层的材料采用银纳米线或碳纳米管或石墨烯。Further, the material of the metal conductive layer is silver nanowires, carbon nanotubes or graphene.
进一步地,所述聚酰亚胺衬底层和聚酰亚胺封装层能采用PDMS或Ecoflex或PU胶材料进行替换。Further, the polyimide substrate layer and the polyimide encapsulation layer can be replaced with PDMS or Ecoflex or PU glue material.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明方法通过预拉伸方式,在微球囊半膨胀状态时,将可延展刺激电极集成在微球囊表面,从而保证微球囊在最大膨胀状态时,可延展导线变形量在可延展刺激电极可承受最大变形极限内,而在微球囊在放气收缩时,可延展导线也能够同步压缩变形。另外,为提高可延展刺激电极蛇形导线相对位置精度和微球囊表面粘接可靠性,避免可延展导线面外变形严重,在集成过程中,黏性硅胶材料作为粘接材料,使用水溶性胶带将可延展刺激电极缓慢转移至刷涂有黏性硅胶材料的微球囊表面目标位置,从而有效保证了可延展刺激电极与微球囊表面粘接的可靠性。The method of the invention integrates the extensible stimulation electrodes on the surface of the micro-balloon by means of pre-stretching when the micro-balloon is in a semi-expanded state, so as to ensure that when the micro-balloon is in a state of maximum expansion, the deformation of the extensible wire is at the same level as the extensible stimulation electrode. The electrodes can withstand within the maximum deformation limit, and the malleable wires can also be simultaneously compressed and deformed when the microballoon is deflated and deflated. In addition, in order to improve the relative position accuracy of the serpentine wire of the extensible stimulation electrode and the bonding reliability of the surface of the microballoon, and avoid the serious deformation of the extensible wire outside the surface, in the integration process, the viscous silica gel material is used as the bonding material, and the water-soluble material is used. The tape slowly transfers the extensible stimulating electrode to the target position on the surface of the microballoon coated with the adhesive silicone material, thus effectively ensuring the reliability of the adhesion between the extensible stimulating electrode and the surface of the microballoon.
附图说明Description of drawings
图1为本发明的半膨胀微球囊表面集成可延展刺激电极的集成状态示意图。FIG. 1 is a schematic diagram of the integrated state of the semi-expandable microballoon surface integrating the stretchable stimulating electrodes of the present invention.
图2为本发明的半膨胀微球囊表面集成可延展刺激电极的转移集成过程示意图。FIG. 2 is a schematic diagram of the transfer integration process of the semi-expandable microballoon surface integrating the stretchable stimulating electrodes of the present invention.
图3为本发明可延展刺激电极结构的分层结构示意图。FIG. 3 is a schematic diagram of the layered structure of the extensible stimulation electrode structure of the present invention.
图4为本发明可延展刺激电极集成于初始状态微球囊的相对位置示意图。FIG. 4 is a schematic diagram of the relative positions of the stretchable stimulation electrodes integrated in the initial state of the microballoon according to the present invention.
图5为本发明可延展导线变形与对应状态微球囊示意图。FIG. 5 is a schematic diagram of the deformation of the stretchable wire and the corresponding state of the microballoon according to the present invention.
图6为本发明可延展刺激电极局部放大结构示意图。FIG. 6 is a schematic diagram of a partially enlarged structure of the extensible stimulation electrode of the present invention.
图中:1-可延展刺激电极,2-微球囊,3-金属端,4-支撑管,5-聚酰亚胺衬底层,6-金属导电层,7-聚酰亚胺封装层,8-球囊导管,9-半膨胀微球囊表面初始导线,10-收缩后微球囊表面压缩导线,11-膨胀后微球囊表面延展导线,12-刺激电极点,13-环形地电极,14-可延展导线。In the figure: 1-Extensible stimulating electrode, 2-Microballoon, 3-Metal end, 4-Support tube, 5-Polyimide substrate layer, 6-Metal conductive layer, 7-Polyimide encapsulation layer, 8- Balloon catheter, 9- Initial wire on the surface of the semi-expanded micro-balloon, 10- Compression wire on the surface of the micro-balloon after deflation, 11- Extension wire on the surface of the micro-balloon after inflation, 12- Stimulating electrode point, 13- Ring ground electrode , 14-extensible wire.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明提供一种半膨胀微球囊表面集成可延展刺激电极方法,能够实现微球囊表面集成刺激电极的大延展应用场景,同时保证刺激电极与微球囊表面的高粘附性以及高可靠性。本发明方法涉及可实现大延展的微球囊和可延展刺激电极两部分,含可延展刺激电路通过水溶性胶带精准转移到可实现大延展的微球囊表面。The invention provides a method for integrating extensible stimulating electrodes on the surface of a semi-expandable micro-balloon, which can realize a large-expandable application scenario of integrating a stimulating electrode on the surface of a micro-balloon, and at the same time ensure high adhesion and high reliability between the stimulating electrode and the surface of the micro-balloon sex. The method of the invention involves two parts, a microballoon capable of realizing large extension and an extensible stimulating electrode, and the extensible stimulation circuit is accurately transferred to the surface of the microballoon capable of realizing large extension through a water-soluble adhesive tape.
一种半膨胀微球囊表面集成可延展刺激电极方法,包括如下步骤:A method for integrating extensible stimulating electrodes on the surface of a semi-expandable microballoon, comprising the following steps:
步骤1:将水溶性胶带压覆在可延展刺激电极上方,并施加均匀的压覆力;确保水溶性胶带与刺激电极界面间的粘附力能够使刺激电极从喷涂有脱膜剂的硅片上完整剥离,确保水溶性胶带与可延展刺激电极界面间有充足的粘附力,能够使可延展刺激电极从去除牺牲层的硅片上完整剥离;;Step 1: Press the water-soluble tape over the extensible stimulating electrode and apply a uniform pressing force; ensure that the adhesive force between the water-soluble tape and the stimulating electrode interface enables the stimulating electrode to release from the silicon wafer sprayed with the release agent. It is completely peeled off to ensure that there is sufficient adhesion between the water-soluble tape and the interface of the extensible stimulation electrode, so that the extensible stimulation electrode can be completely peeled off from the silicon wafer with the sacrificial layer removed;
步骤2:通过与微球囊连接的支撑管向微球囊中充气或注入造影剂使微球囊达到半膨胀状态,然后在微球囊表面均匀刷涂黏性硅胶作为微球囊与可延展刺激电极之间的粘附材料;Step 2: Inflate the microballoon or inject contrast agent through the support tube connected to the microballoon to make the microballoon reach a semi-expanded state, and then evenly brush the surface of the microballoon with viscous silica gel as the microballoon and malleable. Adhesive material between stimulation electrodes;
步骤3:通过水溶性胶带将可延展刺激电极从硅片上缓慢剥离,按照器件设计的方案再将可延展刺激电极贴附在涂有黏性硅胶的微球囊的对应位置,然后将微球囊放置在设定好参数的烘箱中烘干黏性硅胶;Step 3: Slowly peel the extensible stimulating electrode from the silicon wafer with water-soluble tape, and then attach the extensible stimulating electrode to the corresponding position of the microballoon coated with adhesive silica gel according to the device design scheme, and then attach the microballoon The capsule is placed in an oven with set parameters to dry the viscous silica gel;
步骤4:将微球囊在热水中充分浸泡,确保水溶性胶带完全溶解,刺激电极点以及环形地电极完全暴露出来。Step 4: Fully soak the microcapsule in hot water to ensure that the water-soluble tape is completely dissolved, and the stimulating electrode point and the ring ground electrode are completely exposed.
进一步地,所述可延展刺激电极包括6个刺激电极点、6个环形地电极和可延展导线;所述6个刺激电极点平均分为两组,周向间距120°分别分布于微球囊两端的金属端中间位置;所述6个环形地电极分别半包围在6个刺激电极点周围;所述刺激电极点的直径为50~200微米,环形地电极的内径为200~300微米,可延展导线的宽度为5~50微米。Further, the extensible stimulation electrode includes 6 stimulation electrode points, 6 annular ground electrodes and extensible wires; the 6 stimulation electrode points are equally divided into two groups, and the circumferential spacing is 120° distributed in the microballoons respectively. The middle position of the metal ends at both ends; the six annular ground electrodes are respectively semi-enclosed around the six stimulating electrode points; the diameter of the stimulating electrode points is 50-200 microns, and the inner diameter of the ring-shaped ground electrodes is 200-300 microns, which can be The width of the extended wire is 5-50 microns.
进一步地,所述可延展刺激电极包含聚酰亚胺衬底层、金属导电层和聚酰亚胺封装层,通过光刻工艺获得蛇形可延展导线结构;所述金属导电层的材料为铬或金。Further, the extensible stimulating electrode comprises a polyimide substrate layer, a metal conductive layer and a polyimide encapsulation layer, and a serpentine extensible wire structure is obtained by a photolithography process; the material of the metal conductive layer is chromium or gold.
进一步地,所述水溶性胶带为3M水溶性胶带,尺寸为6mm*15mm。Further, the water-soluble adhesive tape is 3M water-soluble adhesive tape, and the size is 6mm*15mm.
进一步地,所述微球囊初始状态的尺寸为直径1.6mm,总长11mm,微球囊半膨胀状态时最大变形处直径为4mm,微球囊完全膨胀时最大变形处直径为8mm;所述微球囊的材料为乳胶、热塑性聚氨酯(TPU)等延展性能优良的弹性材料。Further, the size of the initial state of the micro-balloon is 1.6 mm in diameter and 11 mm in total length, the diameter of the maximum deformation point when the micro-balloon is in a semi-expanded state is 4 mm, and the diameter of the maximum deformation point when the micro-balloon is fully inflated is 8 mm; The material of the balloon is an elastic material with excellent ductility such as latex and thermoplastic polyurethane (TPU).
进一步地,所述黏性硅胶采用未固化低模量聚二甲基硅氧烷(PDMS)或低模量铂催化硅橡胶Ecoflex_gel。Further, the viscous silica gel adopts uncured low-modulus polydimethylsiloxane (PDMS) or low-modulus platinum-catalyzed silicone rubber Ecoflex_gel.
进一步地,所述将微球囊放置在设定好参数的烘箱中烘干黏性硅胶时,烘箱内温度为70~80摄氏度,加热时间为1~4小时。Further, when the microcapsules are placed in an oven with set parameters to dry the viscous silica gel, the temperature in the oven is 70-80 degrees Celsius, and the heating time is 1-4 hours.
进一步地,所述6个可延展刺激电极分为两组沿周向间距120°,轴向间距10~20mm,分布于微球囊的外表面靠近顶端金属端5~10mm的位置。Further, the six extensible stimulating electrodes are divided into two groups with a circumferential spacing of 120° and an axial spacing of 10-20 mm, and are distributed on the outer surface of the microballoon at a position of 5-10 mm near the top metal end.
进一步地,所述金属导电层的材料采用银纳米线或碳纳米管或石墨烯。Further, the material of the metal conductive layer is silver nanowires, carbon nanotubes or graphene.
进一步地,所述聚酰亚胺衬底层和聚酰亚胺封装层能采用PDMS或Ecoflex或PU胶材料进行替换。Further, the polyimide substrate layer and the polyimide encapsulation layer can be replaced with PDMS or Ecoflex or PU glue material.
具体实施例:Specific examples:
在本实施例中,参照图1所示,将可延展刺激电极1集成到半膨胀状态的微球囊2表面,可延展刺激电极1的整体尺寸由微球囊2半膨胀状态的尺寸决定,微球囊初始状态的尺寸是直径1.6mm,总长11mm,同时,集成后的可延展刺激电极1上的刺激电极点位于微球囊两端金属端中间位置,可延展刺激电极1的焊盘贴附于支撑管4表面,通过软排线连接电刺激器,输入刺激信号,实现高度可控的刺激过程。In this embodiment, referring to FIG. 1 , the
参照图2所示,为本实施例集成方法,主要分为以下四步:Referring to Figure 2, the integration method of this embodiment is mainly divided into the following four steps:
第一步:将水溶性胶带压覆在聚酰亚胺薄膜衬底封装金属材料的柔性可延展刺激电极上方,并施加均匀的压覆力,确保水溶性胶带与可延展刺激电极界面间有充足的粘附力,能够使可延展刺激电极从去除牺牲层的硅片上完整剥离;Step 1: Press the water-soluble tape over the flexible and extensible stimulating electrode encapsulated by the polyimide film substrate, and apply a uniform pressing force to ensure that there is sufficient space between the interface of the water-soluble tape and the extensible stimulating electrode. The adhesion of the ductile stimulation electrode can be completely peeled off from the silicon wafer with the sacrificial layer removed;
这里所用到的是3M水溶性胶带,将水溶性胶带剪切成6mm×15mm的长方形,用以剥离单个可延展刺激电极,避免误粘硅片上的其他器件。剥离过程从焊盘端开始剥离,避免剥离过程中可延展导线断裂。另外,水溶性胶带由于剥离过程受力而发生弯曲,可通过外力使得其恢复平整,方便后续与微球囊表面贴附集成。The 3M water-soluble tape used here is cut into a rectangle of 6mm × 15mm to peel off a single extensible stimulating electrode to avoid mis-sticking other devices on the silicon wafer. The stripping process starts from the end of the pad to avoid breakage of the ductile wires during the stripping process. In addition, the water-soluble tape is bent due to the force during the peeling process, and can be restored to a flat surface by external force, which is convenient for subsequent attachment and integration with the surface of the microballoon.
第二步:通过与微球囊连接的支撑管向微球囊中充气或注入造影剂使微球囊达到半膨胀状态,最大变形处直径为4mm,然后在微球囊表面均匀刷涂黏性硅胶,作为微球囊与可延展刺激电极之间的粘附材料;Step 2: Inflate the microballoon or inject contrast agent through the support tube connected to the microballoon to make the microballoon reach a semi-expanded state, the maximum deformation diameter is 4mm, and then evenly brush the surface of the microballoon with adhesive Silica gel, as the adhesive material between the microcapsules and the malleable stimulation electrodes;
第三步:通过水溶性胶带将可延展刺激电极从硅片上缓慢剥离,按照器件设计的方案将可延展刺激电极贴附在涂有黏性硅胶的微球囊的对应位置,然后将整个微球囊器件置于烘箱中70~80℃加热1~4小时将黏性硅胶烘干;Step 3: Slowly peel the extensible stimulating electrode from the silicon wafer with water-soluble tape, attach the extensible stimulating electrode to the corresponding position of the micro-balloon coated with adhesive silica gel according to the device design scheme, and then attach the entire The balloon device is placed in an oven at 70-80°C and heated for 1-4 hours to dry the viscous silica gel;
第四步:将微球囊器件在热水中充分浸泡、适当晃动,确保水溶性胶带完全的溶解脱落,刺激电极点以及环形地电极完全暴露出来。Step 4: Fully soak the microcapsule device in hot water and shake it properly to ensure that the water-soluble tape is completely dissolved and dropped, and the stimulating electrode point and the annular ground electrode are completely exposed.
参照图3所示,为传统光刻工艺制造的包含聚酰亚胺衬底层5、金属导电层6以及聚酰亚胺封装层7的电极分层示意图;聚酰亚胺衬底5,使用旋胶机旋涂聚酰亚胺(Durimide7505)光刻胶,经过前烘、光刻、显影、漂洗后,利用高温热解与固化设备在氮气环境保护下,对聚酰亚胺进行非完全亚胺化,温度250℃,60min,固化后厚度约2.5μm。使用金属多层膜磁控溅射控制系统依次溅射铬20nm、金200nm作为导电材料,然后使用干法刻蚀工艺获得金属导电层6。聚酰亚胺封装层7与聚酰亚胺衬底层5工艺流程相同,但是后烘温度设置为350℃,60min,进行完全亚胺化,聚酰亚胺封装层7固化后厚度约2.5μm。Referring to FIG. 3, it is a schematic diagram of electrode layering including a
参照图4所示,为可延展刺激电极1与初始状态的微球囊2的对应位置,当可延展刺激电极集成到微球囊时,应当保证刺激电极点位于球囊两侧金属端3的中间位置,确保电刺激位置的稳定性。Referring to Fig. 4, it is the corresponding position of the
参照图5所示,为微球囊处于初始、半膨胀、完全膨胀状态时可延展导线的对应变形状态,本实施例的半膨胀微球囊表面集成可延展刺激电极方法是将可延展刺激电极借助水溶性胶带集成到半膨胀状态的微球囊(最大直径处为4mm)表面,此时,可延展导线的形态为半膨胀微球囊表面初始导线9,当微球囊收缩回初始状态时(直径为1.6mm)得到收缩后微球囊表面压缩导线10,当微球囊完全膨胀时(最大直径处为8mm)得到膨胀后微球囊表面延展导线11。Referring to FIG. 5 , which is the corresponding deformation state of the stretchable wire when the microballoon is in the initial, semi-expanded, and fully expanded states, the method for integrating stretchable stimulation electrodes on the surface of the semi-expanded microballoon in this embodiment is to combine the stretchable stimulation electrodes. With the help of water-soluble adhesive tape, it is integrated into the surface of the semi-expanded microballoon (4mm at the maximum diameter). At this time, the shape of the stretchable wire is the
参照图6所示,为刺激电极点12、环形地电极13、以及可延展导线14的局部放大图,刺激电极点的直径为50~200微米,环形地电极的内径为200~300微米,可延展导线的宽度为5~50微米,本实施例中设计的环形地电极在电刺激时接标准零电位,从而将电刺激范围约束在弧形范围内,提高了电刺激的空间准确性。可延展导线采用同向同行的布局方式,尽可能提高可延展导线沿径向和周向的变形能力,减小了可延展刺激电极在拉伸过程中金属导电层受到的最大主应力,提高了器件的可靠性。Referring to FIG. 6, which is a partial enlarged view of the stimulating
在另一具体实施例中,对电极位置进行变换,以实现类似的电刺激操作。6个电极点分为两组沿周向间距120°,轴向间距10~20mm,分布于微球囊的外表面靠近顶端金属端5~10mm的位置,确保在微球囊膨胀过程中刺激电极点随之发生位移,且主要位于与三叉神经组织产生主要接触的区域,从而实现对于特定区域精准集中电刺激功能。In another specific embodiment, the electrode positions are varied to achieve a similar electrical stimulation operation. The 6 electrode points are divided into two groups with a circumferential distance of 120° and an axial distance of 10-20mm, and are distributed on the outer surface of the micro-balloon near the top metal end of 5-10 mm to ensure that the electrodes are stimulated during the expansion of the micro-balloon. The point is displaced accordingly, and is mainly located in the area where the main contact with the trigeminal nerve tissue is made, so as to realize the precise and concentrated electrical stimulation function for a specific area.
在另一具体实施例中,采用银纳米线或碳纳米管或石墨烯等材料,对图3中的金属导电层进行替换,同时采用PDMS、Ecoflex、PU等硅胶材料,对图3中的聚酰亚胺衬底层和聚酰亚胺封装层进行替换,从材料本征角度使可延展刺激电极具备更强的延展能力。可以借助高分辨率电流体喷印设备,使用银纳米线或碳纳米管或石墨烯为导电材料,打印出设计好的导电层;同样借助高分辨率打印设备完成硅胶衬底层和硅胶封装层的加工,对打印好的导电层进行封装,使集成于半膨胀微球囊表面的可延展刺激电极具备更强的延展能力。In another specific embodiment, materials such as silver nanowires, carbon nanotubes, or graphene are used to replace the metal conductive layer in FIG. The imide substrate layer and the polyimide encapsulation layer are replaced, so that the extensible stimulating electrode has stronger extensibility from the perspective of material intrinsic. The designed conductive layer can be printed with the help of high-resolution electro-fluid jet printing equipment, using silver nanowires, carbon nanotubes or graphene as conductive materials; also with the help of high-resolution printing equipment to complete the silicone substrate layer and the silicone packaging layer. Processing, the printed conductive layer is encapsulated, so that the malleable stimulation electrode integrated on the surface of the semi-expanded microballoon has stronger extensibility.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110775769.0A CN113470896B (en) | 2021-07-09 | 2021-07-09 | Method for integrating extensible stimulation electrode on surface of semi-inflatable micro-balloon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110775769.0A CN113470896B (en) | 2021-07-09 | 2021-07-09 | Method for integrating extensible stimulation electrode on surface of semi-inflatable micro-balloon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113470896A CN113470896A (en) | 2021-10-01 |
CN113470896B true CN113470896B (en) | 2022-08-16 |
Family
ID=77879379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110775769.0A Active CN113470896B (en) | 2021-07-09 | 2021-07-09 | Method for integrating extensible stimulation electrode on surface of semi-inflatable micro-balloon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113470896B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114505592B (en) * | 2022-02-12 | 2024-04-09 | 西北工业大学重庆科创中心 | Method for segmenting flexible electrode and soft flat cable interface of micro-balloon catheter and integrating curved surface |
WO2025111744A1 (en) * | 2023-11-27 | 2025-06-05 | 中国科学院深圳先进技术研究院 | Multi-channel balloon electrode, method for preparing same, and use thereof |
CN117297757B (en) * | 2023-11-27 | 2024-03-15 | 中国科学院深圳先进技术研究院 | Multichannel balloon electrode and preparation method and application thereof |
CN117563129B (en) * | 2024-01-17 | 2024-04-19 | 四川锦江生命科技有限公司 | Stimulating electrode with directivity and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014176205A1 (en) * | 2013-04-25 | 2014-10-30 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system |
CN105006450A (en) * | 2015-08-31 | 2015-10-28 | 中国科学院半导体研究所 | Preparation method of extensive inorganic flexible LED array |
CN106572842A (en) * | 2014-06-24 | 2017-04-19 | 阿帕玛医疗公司 | Tissue ablation and monitoring thereof |
CN110495882A (en) * | 2019-07-19 | 2019-11-26 | 电子科技大学 | A stretchable capacitive flexible bioelectrode array and its preparation method |
CN112890945A (en) * | 2021-01-05 | 2021-06-04 | 安杭医疗科技(杭州)有限公司 | Balloon catheter device with flexible electrodes |
-
2021
- 2021-07-09 CN CN202110775769.0A patent/CN113470896B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014176205A1 (en) * | 2013-04-25 | 2014-10-30 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system |
CN106572842A (en) * | 2014-06-24 | 2017-04-19 | 阿帕玛医疗公司 | Tissue ablation and monitoring thereof |
CN105006450A (en) * | 2015-08-31 | 2015-10-28 | 中国科学院半导体研究所 | Preparation method of extensive inorganic flexible LED array |
CN110495882A (en) * | 2019-07-19 | 2019-11-26 | 电子科技大学 | A stretchable capacitive flexible bioelectrode array and its preparation method |
CN112890945A (en) * | 2021-01-05 | 2021-06-04 | 安杭医疗科技(杭州)有限公司 | Balloon catheter device with flexible electrodes |
Also Published As
Publication number | Publication date |
---|---|
CN113470896A (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113470896B (en) | Method for integrating extensible stimulation electrode on surface of semi-inflatable micro-balloon | |
Wu et al. | Piezoresistive stretchable strain sensors with human machine interface demonstrations | |
Shim et al. | Functionalized elastomers for intrinsically soft and biointegrated electronics | |
US9662069B2 (en) | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy | |
US9119533B2 (en) | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy | |
JP6109863B2 (en) | Device using extensible electronic components for medical applications | |
JP6320920B2 (en) | Balloon catheter device and sensing method using sensing element | |
CN104523227A (en) | Flexible and extendable electronic device based on biocompatible films and manufacturing method | |
CN113057637B (en) | Hydrogel-based flexible bioelectrode array and manufacturing method thereof | |
CN103462601B (en) | Electrode for medical service pastes and preparation method thereof | |
JP2017035505A (en) | Method for detecting parameter within lumen | |
EP2404171A2 (en) | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy | |
Lee et al. | Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology | |
CN112993716B (en) | Thermal stripping auxiliary extensible flexible neural electrode interface integration process | |
CN109770866A (en) | A kind of preparation method of high-sensitivity electronic skin | |
Liu et al. | Sacrificial layer-assisted one-step transfer printing for fabricating a three-layer dry electrode | |
CN109998544B (en) | Preparation method of ultrathin flexible array type surface electromyography electrode | |
JP2011204890A (en) | Module, and method of manufacturing module | |
CN112353484B (en) | A flexible microsensor system, extensible flexible device and preparation method | |
CN114864137A (en) | Super-soft skin-smoothing brain electrode based on bacterial cellulose substrate and preparation method | |
Kassanos et al. | Sensor embodiment and flexible electronics | |
CN113819836B (en) | A multi-material kirigami structure stretchable strain sensor and preparation method thereof | |
Lu et al. | Bio-integrated electronics | |
KR102596810B1 (en) | Bio-implantable bladder treatment apparatus and manufacturing method for electronic web and electronic thread included therein | |
CN118000743A (en) | Flexible microarray electrode and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |