CN113469906A - 一种用于图像修复的跨层全局和局部感知网络的方法 - Google Patents
一种用于图像修复的跨层全局和局部感知网络的方法 Download PDFInfo
- Publication number
- CN113469906A CN113469906A CN202110703334.5A CN202110703334A CN113469906A CN 113469906 A CN113469906 A CN 113469906A CN 202110703334 A CN202110703334 A CN 202110703334A CN 113469906 A CN113469906 A CN 113469906A
- Authority
- CN
- China
- Prior art keywords
- layer
- stage
- local
- cross
- loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000008447 perception Effects 0.000 title claims abstract description 13
- 230000004927 fusion Effects 0.000 claims abstract description 32
- 230000007246 mechanism Effects 0.000 claims abstract description 32
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 238000007670 refining Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 abstract 1
- 238000011156 evaluation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/77—Retouching; Inpainting; Scratch removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Processing (AREA)
Abstract
本发明涉及一种用于图像修复的跨层全局和局部感知网络的方法,属于图像修复技术领域。步骤1:构造一个基于一种带有残差连接的编码解码结构U‑net的跨层全局和局部感知网络模型;步骤2:粗修复阶段,做简单的卷积下采样上采样操作后,输出第一阶段图片Iout1,再将其输入到精修复阶段;步骤3:精修复阶段,将粗修复阶段输出的图片Iout1作为输入,CHGLANet包括对不同的层级定义不同的特征:本发明的优势有:使用的局部和全局注意力机制,极大的减少了参数的运算。提出了一种跨层全局和局部融合机制,将深层特征图信息和浅层特征图信息融合,弥补了浅层特征图丢失图片结构信息,深层特征图丢失图片纹理信息的缺点,使得生成图片的一致性更强。
Description
技术领域
本发明涉及一种用于图像修复的跨层全局和局部感知网络的方法,属于 图像修复技术领域。
背景技术
图像修复任务是对缺失或者损坏区域的结构和纹理进行修复,来获得视觉逼真的图像。它可以用于去除图片中不需要的目标、恢复破损的部分或编辑图像内容等多种应用,已成为计算机视觉领域的研究热点。在2016年之前,图像修复的主要方法是2001年Ballester 等人提出的基于扩散的方法和2009年Barnes等人提出的基于补丁的方法。这两种方法都只 能对纹理进行修复,但是不能读取缺失区域的结构信息,所以只能对简单场景的图片进行修 复。近年来随着生成对抗网络(GAN)的发展,图像修复的方法逐渐由传统方法转换成使用 基于GAN的深度学习的方法。2016年,Pathak等人首次利用GAN来进行图像修复工作。不 久之后,Liu等人提出了一种部分卷积的新的深度学习方法,通过逐层更新马赛克的方式让 修复效果提升。2018年,Yu等人首次将注意力机制引入图像修复的工作中,注意力机制可 以不仅利用修复区域周围的信息,还能利用整张图片的全局信息,让修复的结构和纹理更加 清晰连贯。之后,在近两年很多研究学者都开始利用基于U-net的多尺度的方法,即考虑在 不同尺度下的特征合成。但是,全局像素注意力机制只关注解决全局纹理的一致性,忽略了 局部纹理的一致性,这会导致边缘的模糊和带有人工处理的痕迹。这些模型虽然都有着一定 地客观效果,但是没有考虑到,在卷积的过程中,低层卷积包含更多的纹理信息而会丢失一 些结构信息,而高层卷积包含更多的结构信息而会丢失一些纹理信息,如果仅仅是把编码过 程中的特征图映射到解码过程中的对应层,则再也无法找回丢失的信息。
发明内容
本发明的目的在于提供一种用于图像修复的跨层全局和局部感知网络的方法,在全局像素注意力机制的基础上,进一步提出局部连贯性注意力机制来精细化局部纹理细节, 从而克服现有技术中的不足。
本发明通过以下技术方案实现,包括以下步骤:
步骤1:构造一个基于一种带有残差连接的编码解码结构U-net的跨层全局和局部感知网络模型,该网络的输入为一张256×256的打过马赛克的图片Iin,输出 为256×256的修复后的图片;网络框架由两个阶段组成:粗修复阶段和精修复 阶段,每个阶段均生成对抗网络GAN,即每个阶段除了有一个带有残差连接的编 码解码结构U-net的框架外,还包括一个判别器;
步骤2:粗修复阶段,做简单的卷积下采样上采样操作后,输出第一阶段图片Iout1,再将 其输入到精修复阶段;
步骤3:精修复阶段,将粗修复阶段输出的图片Iout1作为输入,其中包括跨层全局和局部感 知网络,定义为CHGLANet;CHGLANet包括对不同的层级定义不同的特征:
步骤3.1,从{fi,i=1,2,3...}开始,fi是第i层的特征图,即feature map,fn和fn-1被融合进 了第一跨层融合模块m1,在m1中,全局像素注意力机制将fn-1作为输入,输出为重建后的 特征Fn,增进结构的一致性;
步骤3.2,fn-1和重建后的特征Fn连接,并且通过1×1的卷积层做一个简单的融合,生成Fg;
所述的步骤3中提到的全局像素注意力机制包括以下操作方法:
像素混洗操作将高级特征重塑为与低级特征相同的大小,利用像素混洗的转换原理,将通道间的相关性转化到空间区域的相关性,使得注意力评分αi,在图像水平上改善了结构一致性。
所述的步骤3中提到的局部连贯性注意力机制包括以下操作方法:
将Fg分为小块补丁:{pk,k=1,2,...,HW/s2},其中H,W是特征图的高度和宽度,k是补丁 的序号;其中每一个补丁的大小是s×s,这里s是一个自定义的维度大小,局部连贯性注意 力机制的s在不同的跨层融合模块中大小不同,增强了不同场景中的拟合能力。
补丁内的注意力评分计算方法如下:
这里P代表的是对应的补丁,(u,v),(g,n),(h,w)是pk的坐标,f(.,.)是点积运算;
局部连贯性注意力机制模块计算得到空间注意力得分:
{φk,j=1,2,3,...,HW/s2},
其中,Φk={βmn,m=1,2,...,s,n=1,2,...,s},注意力评分βmn保持了patch级别上局部纹 理的一致性;
其中H,W是特征图的高度和宽度,k是补丁的序号,每一个补丁的大小是s×s。
本发明在训练模型阶段,包括以下方法:
像素重建损失:
其中,Iout2是第二阶段生成的图片,即我们网络修复的图片,Igt是真实图片,这里HWC代 表的是这张RGB图片中所有的像素之和,|.|1代表的是第一范数,
感知损失:
Φi(.)代表的是从预训练好的VGG网络中的第i层提取出的特征图,
风格损失:
再加上生成对抗损失和总变差损失组成联合损失:
Ltotal=λreLre+λpercLperc+λstyLstyle +λfvLtv+λadvLadv,
λre,λperc,λsty,λtv,λadv分别代表重建损失,感知损失,风格损失,平滑损失和对抗损失在总 损失中所占的权重。
本发明的有益效果在于,(1)本方法使用的局部和全局注意力机制,相比于常用的通道注意力机制和空间注意力机制,极大的减少了参数的运算。(2)提出了一种跨层全局和局部融合机制,将深层特征图信息和浅层特征图信息融合,弥补了浅层特征图丢失图片结 构信息,深层特征图丢失图片纹理信息的缺点,使得生成图片的一致性更强。
附图说明
图1为本发明的结构流程图。
具体实施方式
下面结合附图1对本发明的优选实施例作进一步说明,包括以下步骤:
步骤1:构造一个基于一种带有残差连接的编码解码结构U-net的跨层全局和局部感知网络 模型,如图1中的(a)CHGLANet部分所示,该网络的输入为一张256×256的打过马赛克 的图片Iin,输出为256×256的修复后的图片;网络框架由两个阶段组成:粗修复阶段和精 修复阶段,每个阶段均生成对抗网络GAN,即每个阶段除了有一个带有残差连接的编码解 码结构U-net的框架外,还包括一个判别器;
步骤2:粗修复阶段,做简单的卷积下采样上采样操作后,输出第一阶段图片Iout1,再将 其输入到精修复阶段;
步骤3:精修复阶段,将粗修复阶段输出的图片Iout1作为输入,其中包括跨层全局和局部感 知网络,定义为CHGLANet;CHGLANet包括对不同的层级定义不同的特征:
步骤3.1,从{fi,i=1,2,3...}开始,fi是第i层的特征图,即feature map,fn和fn-1被融合进 了第一跨层融合模块m1,在m1中,全局像素注意力机制将fn-1作为输入,输出为重建后的 特征Fn,增进结构的一致性
步骤3.2,fn-1和重建后的特征Fn连接,并且通过1×1的卷积层做一个简单的融合,生成Fg;
但是,全局像素注意力机制只关注解决全局纹理的一致性,忽略了局部纹理的一致性,这会 导致边缘的模糊和带有人工处理的痕迹;
所述的步骤3中提到的全局像素注意力机制包括以下操作方法:如图1中(b) GPA部分所示,
再用分组的通道注意力操作,即对每组的通道进行评分,其中这里是第j组通道,αi是第j组通道里面的第i个通道对应的评分。 像素混洗操作将高级特征重塑为与低级特征相同的大小,利用像素混洗的转换原理,将通道间的相关性转化到空间区域的patch间的相关性,如表1所示,使得注意力评分αi在图像水平上改善了结构一致性。
表1
所述的步骤3中提到的局部连贯性注意力机制包括以下操作方法:如图1中的(c)LCA部分所示,
将Fg分为小块补丁:{pk,k=1,2,...,HW/s2},其中H,W是特征图的高度和宽度,k是补丁 的序号;其中每一个补丁的大小是s×s,这里s是一个自定义的维度大小,实验中我们取的 是3×3,局部连贯性注意力机制的s在不同的跨层融合模块中大小不同,增强了 不同场景中的拟合能力。提出的局部连贯性注意力机制模型,和non-local模块的方法相似, 对于每个补丁p_k,不同之处在于模型的区域设计。Non-local模块用了所有位置的特征通道, 而局部连贯性注意力机制用了补丁的特征通道。
补丁内的注意力评分计算方法如下:
这里P代表的是对应的补丁,(u,v),(g,n),(h,w)是pk的坐标,f(.,.)是点积运算;
局部连贯性注意力机制模块计算得到空间注意力得分:
{φk,j=1,2,3,...,HW/s2},
其中,Φk={βmn,m=1,2,...,s,n=1,2,...,s},如表2所示,注意力评分βmn保持了patch 级别上局部纹理的一致性;
表2
其中H,W是特征图的高度和宽度,k是补丁的序号,每一个补丁的大小是s×s。
通过Places2和Paris street view(PSV)数据集上的测试,其中常见的评价指标PSNR (越高越好),SSIM(越高越好),FID(越低越好)都优于现有技术。表1是中心马赛克的修复效果,其中在Places2和PSV上,PSNR的值分别达到了25.04和24.52,SSIM的值分别 达到了0.807和0.799,FID的值分别达到了62.19和59.78。当然现在最常见的是在不规则 马赛克上面进行图像修复,表2是和其他所有经典或者最新的方法在不规则马赛克上进行的对比。其中10-20,20-30,30-40,40-50,50-60分别代表的是原图中打马赛克的区域面积 占图片总面积的多少,例如10-20表示原图中打马赛克的区域占整张图片的10%-20%。其中,EC是Edge-Connect方法,SF是Structure Flow,GC是Gated-Convolution,RFR是RecurrentFeature Reasoning,MED是Mutual Encoder-Decoder,都是2019年和2020年提出的有效的修复方法。通过和它们的比较可以观察出,本发明的方法确实是最好的。
本发明在训练模型阶段,包括以下方法:
像素重建损失:
其中,Iout2是第二阶段生成的图片,即我们网络修复的图片,Igt是真实图片,这里HWC代 表的是这张RGB图片中所有的像素之和,|.|1代表的是第一范数,
感知损失:
Φi(.)代表的是从预训练好的VGG网络中的第i层提取出的特征图,
风格损失:
再加上生成对抗损失和总变差损失组成联合损失:
Ltotal=λreLre+λpercLperc+λstyLstyle +λfvLtv+λadvLadv,
λre,λperc,λsty,λtv,λadv分别代表重建损失,感知损失,风格损失,平滑损失和对抗损失在总 损失中所占的权重。
综上所述,本发明上述实例的优势有:
1.本方法使用的局部和全局注意力机制,相比于常用的通道注意力机制和空间注意力机制, 极大的减少了参数的运算;
2.提出了一种跨层全局和局部融合机制,将深层特征图信息和浅层特征图信息融合,弥补了 浅层特征图丢失图片结构信息,深层特征图丢失图片纹理信息的缺点,使得生成图片的一致 性更强;
3.通过Celeba-HQ,Places2和Paris street view(PSV)三个数据集上的测试,其中常见的评 价指标PSNR(越高越好),SSIM(越高越好),FID(越低越好)都优于现有技术。其中在Places2 和PSV上,PSNR的值分别达到了25.04和24.52,SSIM的值分别达到了0.807和0.799,FID 的值分别达到了62.19和59.78。
Claims (5)
1.一种用于图像修复的跨层全局和局部感知网络的方法,其特征在于包括以下步骤:
步骤1:构造一个基于一种带有残差连接的编码解码结构U-net的跨层全局和局部感知网络模型,该网络的输入为一张256×256的打过马赛克的图片Iin,输出为256×256的修复后的图片;网络框架由两个阶段组成:粗修复阶段和精修复阶段,每个阶段均生成对抗网络GAN,即每个阶段除了有一个带有残差连接的编码解码结构U-net的框架外,还包括一个判别器;
步骤2:粗修复阶段,做简单的卷积下采样上采样操作后,输出第一阶段图片Iout1,再将其输入到精修复阶段;
步骤3:精修复阶段,将粗修复阶段输出的图片Iout1作为输入,其中包括跨层全局和局部感知网络,定义为CHGLANet;CHGLANet包括对不同的层级定义不同的特征:
步骤3.1,从{fi,i=1,2,3...}开始,fi是第i层的特征图,即feature map,fn和fn-1被融合进了第一跨层融合模块m1,在m1中,全局像素注意力机制将fn-1作为输入,输出为重建后的特征Fn,增进结构的一致性;
步骤3.2,fn-1和重建后的特征Fn连接,并且通过1×1的卷积层做一个简单的融合,生成Fg;
5.根据权利要求4所述的一种用于图像修复的跨层全局和局部感知网络的方法,其特征在于,在训练模型阶段,包括以下方法:
像素重建损失:
其中,Iout2是第二阶段生成的图片,即我们网络修复的图片,Igt是真实图片,这里HWC代表的是这张RGB图片中所有的像素之和,|.|1代表的是第一范数,
感知损失:
Φi(.)代表的是从预训练好的VGG网络中的第i层提取出的特征图,
风格损失:
Ltotal=λreLre+λpercLperc+λstyLstyle+λtvLtv+λadvLadv,
λre,λperc,λsty,λtv,λadv分别代表重建损失,感知损失,风格损失,平滑损失和对抗损失在总损失中所占的权重。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110703334.5A CN113469906B (zh) | 2021-06-24 | 2021-06-24 | 一种用于图像修复的跨层全局和局部感知网络的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110703334.5A CN113469906B (zh) | 2021-06-24 | 2021-06-24 | 一种用于图像修复的跨层全局和局部感知网络的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113469906A true CN113469906A (zh) | 2021-10-01 |
CN113469906B CN113469906B (zh) | 2023-02-07 |
Family
ID=77872631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110703334.5A Active CN113469906B (zh) | 2021-06-24 | 2021-06-24 | 一种用于图像修复的跨层全局和局部感知网络的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113469906B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114266711A (zh) * | 2021-12-24 | 2022-04-01 | 樊瑶 | 一种基于注意力跨层转移机制的生成式图像修复方法 |
CN115035170A (zh) * | 2022-05-17 | 2022-09-09 | 合肥工业大学 | 基于全局纹理与结构的图像修复方法 |
CN115908205A (zh) * | 2023-02-21 | 2023-04-04 | 成都信息工程大学 | 图像修复方法、装置、电子设备和存储介质 |
CN117994172A (zh) * | 2024-04-03 | 2024-05-07 | 中国海洋大学 | 基于时序依赖和边缘细化的海温图像鲁棒补全方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109829868A (zh) * | 2019-02-28 | 2019-05-31 | 华南理工大学 | 一种轻量级深度学习模型图像去雾方法、电子设备及介质 |
CN110503609A (zh) * | 2019-07-15 | 2019-11-26 | 电子科技大学 | 一种基于混合感知模型的图像去雨方法 |
CN111080628A (zh) * | 2019-12-20 | 2020-04-28 | 湖南大学 | 图像篡改检测方法、装置、计算机设备和存储介质 |
CN111709895A (zh) * | 2020-06-17 | 2020-09-25 | 中国科学院微小卫星创新研究院 | 基于注意力机制的图像盲去模糊方法及系统 |
US20200401847A1 (en) * | 2019-06-24 | 2020-12-24 | Realtek Semiconductor Corp. | Calculation method using pixel-channel shuffle convolutional neural network and operating system using the same |
-
2021
- 2021-06-24 CN CN202110703334.5A patent/CN113469906B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109829868A (zh) * | 2019-02-28 | 2019-05-31 | 华南理工大学 | 一种轻量级深度学习模型图像去雾方法、电子设备及介质 |
US20200401847A1 (en) * | 2019-06-24 | 2020-12-24 | Realtek Semiconductor Corp. | Calculation method using pixel-channel shuffle convolutional neural network and operating system using the same |
CN110503609A (zh) * | 2019-07-15 | 2019-11-26 | 电子科技大学 | 一种基于混合感知模型的图像去雨方法 |
CN111080628A (zh) * | 2019-12-20 | 2020-04-28 | 湖南大学 | 图像篡改检测方法、装置、计算机设备和存储介质 |
CN111709895A (zh) * | 2020-06-17 | 2020-09-25 | 中国科学院微小卫星创新研究院 | 基于注意力机制的图像盲去模糊方法及系统 |
Non-Patent Citations (2)
Title |
---|
张盼盼等: "基于轻量级分组注意力模块的图像分类算法", 《计算机应用》 * |
蒋斌等: ""一种基于局部属性生成对抗网络的人脸修复算法"", 《计算机研究与发展》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114266711A (zh) * | 2021-12-24 | 2022-04-01 | 樊瑶 | 一种基于注意力跨层转移机制的生成式图像修复方法 |
CN115035170A (zh) * | 2022-05-17 | 2022-09-09 | 合肥工业大学 | 基于全局纹理与结构的图像修复方法 |
CN115035170B (zh) * | 2022-05-17 | 2024-03-05 | 合肥工业大学 | 基于全局纹理与结构的图像修复方法 |
CN115908205A (zh) * | 2023-02-21 | 2023-04-04 | 成都信息工程大学 | 图像修复方法、装置、电子设备和存储介质 |
CN115908205B (zh) * | 2023-02-21 | 2023-05-30 | 成都信息工程大学 | 图像修复方法、装置、电子设备和存储介质 |
CN117994172A (zh) * | 2024-04-03 | 2024-05-07 | 中国海洋大学 | 基于时序依赖和边缘细化的海温图像鲁棒补全方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113469906B (zh) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113469906B (zh) | 一种用于图像修复的跨层全局和局部感知网络的方法 | |
CN113139898B (zh) | 基于频域分析和深度学习的光场图像超分辨率重建方法 | |
CN103093444B (zh) | 基于自相似性和结构信息约束的图像超分辨重建方法 | |
CN109671023A (zh) | 一种人脸图像超分辨率二次重建方法 | |
CN103077511B (zh) | 基于字典学习和结构相似的图像超分辨率重建方法 | |
CN109859106A (zh) | 一种基于自注意力的高阶融合网络的图像超分辨率重建方法 | |
CN112422870B (zh) | 一种基于知识蒸馏的深度学习视频插帧方法 | |
CN113222875B (zh) | 一种基于色彩恒常性的图像和谐化合成方法 | |
CN111833261A (zh) | 一种基于注意力的生成对抗网络的图像超分辨率复原方法 | |
CN116152120A (zh) | 一种融合高低频特征信息的低光图像增强方法及装置 | |
CN109559278B (zh) | 基于多特征学习的超分辨图像重建方法及系统 | |
CN115908205A (zh) | 图像修复方法、装置、电子设备和存储介质 | |
CN112785502A (zh) | 一种基于纹理迁移的混合相机的光场图像超分辨率方法 | |
CN114359044A (zh) | 一种基于参考图像的图像超分辨率系统 | |
CN115829880A (zh) | 基于上下文结构注意力金字塔网络的图像修复方法 | |
CN114694176A (zh) | 一种基于深度学习的轻量级人体姿态估计方法 | |
CN113888417A (zh) | 基于语义解析生成指导的人脸图像修复方法 | |
CN114155171A (zh) | 一种基于密集多尺度融合的图像修复方法及系统 | |
CN116523985B (zh) | 一种结构和纹理特征引导的双编码器图像修复方法 | |
CN114549314A (zh) | 一种提高图像分辨率的方法 | |
CN115937429A (zh) | 一种基于单张图像的细粒度3d人脸重建方法 | |
CN115375537A (zh) | 非线性感知多尺度的超分辨率图像生成系统及方法 | |
CN115689918A (zh) | 一种基于残差先验注意力机制的并行单幅图像去雨方法 | |
Tang et al. | MFFAGAN: Generative Adversarial Network With Multi-Level Feature Fusion Attention Mechanism for Remote Sensing Image Super-Resolution | |
CN113077385A (zh) | 基于对抗生成网络和边缘增强的视频超分辨率方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |