CN113466811A - Three-point parameter estimation method of generalized pareto sea clutter amplitude model - Google Patents
Three-point parameter estimation method of generalized pareto sea clutter amplitude model Download PDFInfo
- Publication number
- CN113466811A CN113466811A CN202110511457.9A CN202110511457A CN113466811A CN 113466811 A CN113466811 A CN 113466811A CN 202110511457 A CN202110511457 A CN 202110511457A CN 113466811 A CN113466811 A CN 113466811A
- Authority
- CN
- China
- Prior art keywords
- amplitude
- sea clutter
- cumulative probability
- cumulative
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 230000001186 cumulative effect Effects 0.000 claims abstract description 114
- 230000014509 gene expression Effects 0.000 claims abstract description 33
- 238000005315 distribution function Methods 0.000 claims abstract description 32
- 230000006870 function Effects 0.000 claims description 15
- 238000004590 computer program Methods 0.000 claims description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000012163 sequencing technique Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 20
- 230000002159 abnormal effect Effects 0.000 abstract description 12
- 238000004088 simulation Methods 0.000 description 8
- 238000007476 Maximum Likelihood Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001174 ascending effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/414—Discriminating targets with respect to background clutter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/411—Identification of targets based on measurements of radar reflectivity
- G01S7/412—Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种广义帕累托海杂波幅值模型的三分位点参数估计方法,包括:获取海杂波脉冲回波数据并进行取模值递增排序;获取广义帕累托分布的海杂波模型的第二累积概率分布函数;根据第二累积分布函数设定第一累积概率和第二累积概率;构建第三累积概率与形状参数的函数表达式;利用海杂波回波脉冲的模值递增序列获得第一幅值分位点和第二幅值分位点的估计值;获得广义帕累托分布幅值模型的形状参数估计值;根据形状参数估计值获得广义帕累托海杂波幅值模型的尺度参数估计值。该方法利用分位点信息进行参数估计,能够有效减少原始数据中功率较大的异常数值对参数估计性能的影响,进而提高海杂波背景下目标检测的精度。
The invention discloses a method for estimating parameters of three-point points of a generalized Pareto sea clutter amplitude model. The second cumulative probability distribution function of the sea clutter model; the first cumulative probability and the second cumulative probability are set according to the second cumulative distribution function; the functional expression of the third cumulative probability and the shape parameter is constructed; the sea clutter echo pulse is used The modulo value increasing sequence of , obtains the estimated value of the first magnitude quantile and the second magnitude quantile; obtains the estimated value of the shape parameter of the magnitude model of the generalized Pareto distribution; obtains the estimated value of the generalized Pareto according to the estimated value of the shape parameter Scale parameter estimates for the sea clutter amplitude model. This method uses quantile information for parameter estimation, which can effectively reduce the influence of abnormal values with large power in the original data on the performance of parameter estimation, thereby improving the accuracy of target detection in the background of sea clutter.
Description
技术领域technical field
本发明属于雷达目标检测技术领域,具体涉及一种广义帕累托海杂波 幅值模型的三分位点参数估计方法,可用于海杂波条件下的目标检测。The invention belongs to the technical field of radar target detection, and in particular relates to a method for estimating three-point parameter of a generalized Pareto sea clutter amplitude model, which can be used for target detection under sea clutter conditions.
背景技术Background technique
在海杂波目标检测发展历程之中,海杂波仿真模型与实际海杂波分布 特性契合精度是海杂波仿真模型构建的重要考虑前提。海杂波的幅值分布 信息能够精确描述海杂波的回波统计特性,海杂波背景下最优检测器的设 计依赖于海杂波幅值模型的参数。海杂波的幅值模型与气象条件和雷达分 辨率有着密切的关系。In the development process of sea clutter target detection, the accuracy of the sea clutter simulation model and the actual sea clutter distribution characteristics is an important prerequisite for the construction of the sea clutter simulation model. The amplitude distribution information of sea clutter can accurately describe the statistical characteristics of the echo of sea clutter, and the design of the optimal detector under the background of sea clutter depends on the parameters of the sea clutter amplitude model. The amplitude model of sea clutter is closely related to meteorological conditions and radar resolution.
当雷达分辨单元较大时,雷达分辨率较低,可以用复高斯模型来描述 海杂波幅值特性,这时海杂波的幅值模型通常为瑞利分布。然而,随着雷 达分辨率的不断提高,传统的复高斯模型无法满足精确描述海杂波特性的 需求。对于低擦地角和高分辨的雷达,相比于瑞利分布模型,海杂波的幅 值分布会出现比较长的拖尾,呈现出较强的非高斯性,此时需要采用非高 斯模型来描述海杂波幅值分布。复高斯模型是一种使用较为广泛的海杂波 模型,其将海杂波幅值分布描述为慢变的正纹理分量和快变的复高斯散斑 分量的乘积。对于复高斯模型,在海杂波检测时间段内,其散斑分量近似 常数,其统计特性主要受纹理分量的影响。当纹理分量符合逆伽马分布时, 其海杂波幅值模型符合广义帕累托分布。When the radar resolution unit is large, the radar resolution is low, and the complex Gaussian model can be used to describe the amplitude characteristics of sea clutter. At this time, the amplitude model of sea clutter is usually a Rayleigh distribution. However, with the continuous improvement of radar resolution, the traditional complex Gaussian model cannot meet the needs of accurately describing the characteristics of sea clutter. For radars with low ground angle and high resolution, compared with the Rayleigh distribution model, the amplitude distribution of sea clutter will have a longer tail, showing a strong non-Gaussian property. In this case, a non-Gaussian model needs to be used. to describe the distribution of sea clutter amplitudes. The complex Gaussian model is a widely used sea clutter model, which describes the amplitude distribution of sea clutter as the product of a slow-varying positive texture component and a fast-varying complex Gaussian speckle component. For the complex Gaussian model, in the sea clutter detection period, the speckle component is approximately constant, and its statistical characteristics are mainly affected by the texture component. When the texture component conforms to the inverse gamma distribution, its sea clutter amplitude model conforms to the generalized Pareto distribution.
最大似然估计可以实现广义帕累托海杂波幅值模型的参数估计,但估 计参数特性不稳定。文献“BALLERI A,NEHORAI A,and WANG J.Maximum likelihood estimationfor compound-Gaussian clutter with inverse Gamma texture[J].IEEE Transactionson Aerospace and Electronic Systems,2007,43(2):775-780.”提出一种最大似然估计,最大似然估计方法利 用迭代方法来进行参数的估计,提高了估计精度。但是此方法未考虑异常 样本对杂波参数估计的影响,对于真实的海杂波数据来说,样本中经常含 有少量高功率的异常值,这会使得最大似然估计性能大打折扣,精度出现 大范围下降。The maximum likelihood estimation can realize the parameter estimation of the generalized Pareto clutter amplitude model, but the estimated parameter characteristics are unstable. The document "BALLERI A, NEHORAI A, and WANG J. Maximum likelihood estimation for compound-Gaussian clutter with inverse Gamma texture [J]. IEEE Transactionson Aerospace and Electronic Systems, 2007, 43(2): 775-780." proposes a maximum likelihood estimation Likelihood estimation, the maximum likelihood estimation method uses an iterative method to estimate parameters, which improves the estimation accuracy. However, this method does not consider the influence of abnormal samples on clutter parameter estimation. For real sea clutter data, the samples often contain a small number of high-power outliers, which will greatly reduce the performance of maximum likelihood estimation and increase the accuracy. range down.
文献“P-L.Shui and M.Liu,”Subband adaptive GLRT-LTD for weak movingtargets in sea clutter,”IEEE Trans.Aerosp.Electron.Syst.,52(1):423-437,2016.”中 提出样本累积概率为0.5和0.75时的双分位点估计方法,固定双分位点估 计由于估计点固定,其结果的准确性不足。The document "P-L.Shui and M.Liu,"Subband adaptive GLRT-LTD for weak movingtargets in sea clutter,"IEEE Trans.Aerosp.Electron.Syst.,52(1):423-437,2016."Proposed sample accumulation in The biquantile estimation method when the probability is 0.5 and 0.75, the fixed biquantile estimation The accuracy of the results is insufficient due to the fixed estimated points.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种广义帕累托 海杂波幅值模型的三分位点参数估计方法。本发明要解决的技术问题通过 以下技术方案实现:In order to solve the above-mentioned problems existing in the prior art, the present invention provides a method for estimating the parameters of the tertiles of the generalized Pareto sea clutter amplitude model. The technical problem to be solved by the present invention is realized by the following technical solutions:
本发明提供了一种广义帕累托海杂波幅值模型的三分位点参数估计方 法,包括:The invention provides a tertile parameter estimation method of a generalized Pareto clutter amplitude model, including:
S1:获取海杂波脉冲回波数据并进行取模值递增排序,生成海杂波回 波脉冲的模值递增序列;S1: Acquire the sea clutter pulse echo data and sort the modulo value in ascending order to generate the modulo value increasing sequence of the sea clutter echo pulse;
S2:获取广义帕累托分布的海杂波模型的第二累积概率分布函数;S2: Obtain the second cumulative probability distribution function of the sea clutter model of the generalized Pareto distribution;
S3:根据所述第二累积分布函数设定第一累积概率和第二累积概率;S3: Set a first cumulative probability and a second cumulative probability according to the second cumulative distribution function;
S4:构建第三累积概率与形状参数的函数表达式;S4: Construct the functional expression of the third cumulative probability and the shape parameter;
S5:利用所述海杂波回波脉冲的模值递增序列获得第一幅值分位点和 第二幅值分位点的估计值;S5: Obtain the estimated values of the first amplitude quantile and the second amplitude quantile by using the increasing sequence of the modulo value of the sea clutter echo pulse;
S6:根据所述第一幅值分位点和所述第二幅值分位点的估计值,获得 广义帕累托分布幅值模型的形状参数估计值;S6: obtain the estimated value of the shape parameter of the generalized Pareto distribution amplitude model according to the estimated value of the first amplitude quantile and the second amplitude quantile;
S7:根据所述形状参数估计值获得广义帕累托海杂波幅值模型的尺度 参数估计值。S7: Obtain the estimated value of the scale parameter of the generalized Pareto sea clutter amplitude model according to the estimated value of the shape parameter.
在本发明的一个实施例中,所述S2包括:In an embodiment of the present invention, the S2 includes:
S21:获取广义帕累托分布的海杂波模型的幅值概率密度函数f(r;μ,v):S21: Obtain the amplitude probability density function f(r; μ, v) of the sea clutter model of the generalized Pareto distribution:
其中,r表示广义帕累托海杂波幅值模型的海杂波幅值,μ表示广义帕 累托海杂波幅值模型的尺度参数,v表示广义帕累托海杂波幅值模型的形状 参数;Among them, r represents the sea clutter amplitude of the generalized Pareto clutter amplitude model, μ represents the scale parameter of the generalized Pareto clutter amplitude model, and v represents the generalized Pareto clutter amplitude model. shape parameter;
S22:根据所述幅值概率密度函数获得所述广义帕累托海杂波幅值模型 的第一累积概率分布函数F(r;μ,γ):S22: Obtain the first cumulative probability distribution function F(r; μ, γ) of the generalized Pareto clutter amplitude model according to the amplitude probability density function:
S23:根据所述第一累积分布函数F(r;μ,v)获得所述广义帕累托海杂波 幅值模型的第二累积分布函数F(r;1,v):S23: Obtain the second cumulative distribution function F(r; 1, v) of the generalized Pareto clutter amplitude model according to the first cumulative distribution function F(r; μ, v):
在本发明的一个实施例中,所述S3包括:In an embodiment of the present invention, the S3 includes:
根据所述第二累积分布函数F(r;1,v)的表达式,获得第一累积概率α和 第二累积概率β的表达式:According to the expression of the second cumulative distribution function F(r; 1, v), the expressions of the first cumulative probability α and the second cumulative probability β are obtained:
α=p(r≤rα)=F(rα;1,v)α=p(r≤r α )=F(r α ; 1,v)
β=p(r≤rβ)=F(rβ;1,v)β=p(r≤r β )=F(r β ; 1,v)
其中,0.1<α+0.1<β<1,rα为第一累积概率α对应的第一幅值分位点, rβ为第二累积概率β对应的第二幅值分位点。0.1<α+0.1<β<1, r α is the first amplitude quantile corresponding to the first cumulative probability α, and r β is the second amplitude quantile corresponding to the second cumulative probability β.
在本发明的一个实施例中,所述S4包括:In an embodiment of the present invention, the S4 includes:
S41:根据估计误差经验公式,将第三幅值分位点rζ的估计误差表示为:S41: According to the empirical formula of estimation error, the estimation error of the third amplitude quantile r ζ is expressed as:
其中,σζ表示第三幅值分位点rζ的估计误差,μ为尺度参数,v为形状 参数,ζ表示第三累积概率;Among them, σ ζ represents the estimated error of the third amplitude quantile r ζ , μ is the scale parameter, v is the shape parameter, ζ represents the third cumulative probability;
S42:将形状参数v设定在区间[1,30]之间,间隔0.01遍历取值,获得多 个形状参数γ;S42: Set the shape parameter v between the interval [1, 30], and traverse the value at an interval of 0.01 to obtain multiple shape parameters γ;
S43:将第三累积概率ζ设定在区间[0.1,0.99]之间,间隔0.01遍历取值, 获得第三累积概率ζ的多个取值;S43: Set the third cumulative probability ζ between the interval [0.1, 0.99], and traverse the value at an interval of 0.01 to obtain multiple values of the third cumulative probability ζ;
S44:对于步骤S42中获得的每个形状参数γ,根据S52中的公式对第三 幅值分位点rζ的估计误差进行计算,获得不同形状参数对应的最优第三累 积概率;S44: For each shape parameter γ obtained in step S42, calculate the estimated error of the third amplitude quantile r ζ according to the formula in S52, and obtain the optimal third cumulative probability corresponding to different shape parameters;
S45:将不同形状参数对应的最优第三累积概率进行拟合,得到第三累 积概率与形状参数的函数表达式:S45: Fit the optimal third cumulative probability corresponding to different shape parameters to obtain the function expression of the third cumulative probability and the shape parameters:
ζ=0.6985exp(0.008101v)-0.4008exp(-0.7256v),v>0ζ=0.6985exp(0.008101v)-0.4008exp(-0.7256v), v>0
其中,γ表示形状参数,ζ表示第三累积概率。where γ represents the shape parameter and ζ represents the third cumulative probability.
在本发明的一个实施例中,所述S5包括:In an embodiment of the present invention, the S5 includes:
利用步骤S1中获得的海杂波回波脉冲的模值递增序列,得到第一幅值 分位点和第二幅值分位点的估计值:Using the increasing sequence of the modulus value of the sea clutter echo pulse obtained in step S1, the estimated values of the first amplitude quantile and the second amplitude quantile are obtained:
其中,为第一幅值分位点rα的估计值,为第二幅值分位点rβ的估 计值,round(N*α)表示最接近N*α的整数,round(N*β)表示最接近N*β的 整数。in, is the estimated value of the first magnitude quantile r α , is the estimated value of the second magnitude quantile r β , round(N*α) represents the integer closest to N*α, and round(N*β) represents the integer closest to N*β.
在本发明的一个实施例中,所述S6包括:In an embodiment of the present invention, the S6 includes:
S61:给定大于1的正数q,使得第一累积概率α和第二累积概率β满 足:S61: Given a positive number q greater than 1, make the first cumulative probability α and the second cumulative probability β satisfy:
S62:计算第二分位点估计值和第一分位点估计值的比值平方t:S62: Calculate the second quantile estimate and the first quantile estimate The ratio of squared t:
S63:根据所述第二累积分布函数F(r;1,v)与第一累积概率α和第二累积 概率β的关系获得广义帕累托分布形状参数估计算法表达式:S63: Obtain the generalized Pareto distribution shape parameter estimation algorithm expression according to the relationship between the second cumulative distribution function F(r; 1, v) and the first cumulative probability α and the second cumulative probability β:
S64:设立中间参数u,令获得形状参数估计值和中 间参数u的关系表达式为:S64: Set up the intermediate parameter u, let Obtain shape parameter estimates The relational expression with the intermediate parameter u is:
S65:通过迭代求解形状参数的估计值其表达式为:S65: Solve the estimated value of the shape parameter by iteration Its expression is:
其中,初始值u0∈(1,+∞),k为迭代次数。Among them, the initial value u 0 ∈(1,+∞), and k is the number of iterations.
在本发明的一个实施例中,所述S7包括:In an embodiment of the present invention, the S7 includes:
S71:根据第三累积概率与形状参数的函数表达式和所述形状参数估计 值计算第三累计概率值ζ;S71: According to the third cumulative probability and the function expression of the shape parameter and the estimated value of the shape parameter Calculate the third cumulative probability value ζ;
S72:利用累积分布函数、第三累积概率ζ和形状参数估计值获得 尺度参数μ的估计值 S72: Utilize the cumulative distribution function, the third cumulative probability ζ and the estimated value of the shape parameter obtain an estimate of the scale parameter μ
在本发明的一个实施例中,所述S72包括:In an embodiment of the present invention, the S72 includes:
S721:计算第三累积概率ζ对应的第三幅值分位点rζ的估计值 S721: Calculate the estimated value of the third amplitude quantile r ζ corresponding to the third cumulative probability ζ
其中,round(N*ζ)表示最接近N*ζ的整数;Among them, round(N*ζ) represents the integer closest to N*ζ;
S722:根据第三累积概率ζ对应的累积分布函数F(rζ;μ,γ),得到尺度参 数估计值的表达式:S722: Obtain the estimated value of the scale parameter according to the cumulative distribution function F(r ζ ; μ, γ) corresponding to the third cumulative probability ζ expression:
本发明的另一方面提供了一种存储介质,所述存储介质中存储有计算 机程序,所述计算机程序用于执行上述实施例中任一项所述的广义帕累托 海杂波幅值模型的三分位点参数估计方法的步骤。Another aspect of the present invention provides a storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute the generalized Pareto clutter amplitude model described in any one of the foregoing embodiments The steps of the tertile parameter estimation method.
本发明的又一方面提供了一种电子设备,包括存储器和处理器,所述 存储器中存储有计算机程序,所述处理器调用所述存储器中的计算机程序 时实现如上述实施例中任一项所述广义帕累托海杂波幅值模型的三分位点 参数估计方法的步骤。Yet another aspect of the present invention provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and when the processor invokes the computer program in the memory, any one of the foregoing embodiments is implemented The steps of the tertile parameter estimation method of the generalized Pareto clutter amplitude model.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明广义帕累托海杂波幅值模型的三分位点参数估计方法,利用 分位点信息进行参数估计,能够有效减少原始数据中功率较大的异常数值 对参数估计性能的影响,相比于已有的矩估计方法,具有比较高的抗异常 数据的能力,进而提高海杂波背景下目标检测的精度。1. The tertile parameter estimation method of the generalized Pareto clutter amplitude model of the present invention uses the quantile information for parameter estimation, which can effectively reduce the influence of abnormal values with large power in the original data on the parameter estimation performance Compared with the existing moment estimation methods, it has a relatively high ability to resist abnormal data, thereby improving the accuracy of target detection in the background of sea clutter.
2、本发明广义帕累托海杂波幅值模型的三分位点参数估计方法,利用 理论公式构建了尺度参数估计的累积概率值与形状参数的函数表达式,在 形状参数已知的条件下,可以比较准确地实现尺度参数的估计。同时,相 比于双分位点估计,本发明的方法引入第三分位点的估计误差较小,其对 尺度参数估计性能较优。2. The tertile parameter estimation method of the generalized Pareto sea clutter amplitude model of the present invention uses theoretical formulas to construct a functional expression of the cumulative probability value of the scale parameter estimation and the shape parameter, under the condition that the shape parameters are known In this way, the estimation of the scale parameter can be achieved more accurately. At the same time, compared with the biquantile estimation, the method of the present invention introduces a smaller estimation error of the third quantile, and has better performance for estimating scale parameters.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1是本发明实施例提供的一种广义帕累托海杂波幅值模型的三分位 点参数估计方法的流程图;Fig. 1 is the flow chart of the tertile parameter estimation method of a kind of generalized Pareto sea clutter amplitude model provided in the embodiment of the present invention;
图2a是使用本发明实施例以及现有的两种方法进行形状参数估计的相 对均方根误差比较图;Fig. 2 a is the relative root mean square error comparison diagram that uses the embodiment of the present invention and two existing methods to carry out shape parameter estimation;
图2b是双分位点和本发明实施例的三分位点估计方法形状参数估计的 相对均方根误差对比图;Fig. 2 b is the relative root mean square error comparison diagram of biquantile point and the tertile point estimation method shape parameter estimation of the embodiment of the present invention;
图2c是使用本发明实施例以及现有技术的两种方法进行尺度参数估计 的相对均方根误差比较图;Fig. 2 c is the relative root mean square error comparison diagram of using the embodiment of the present invention and two methods of prior art to carry out scale parameter estimation;
图2d是双分位点和本发明实施例的三分位点估计方法尺度参数估计的 相对均方根误差对比图。Fig. 2d is a comparison diagram of relative root mean square error of the scale parameter estimation of the biquantile point and the tertile point estimation method according to the embodiment of the present invention.
具体实施方式Detailed ways
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及具体实施方式,对依据本发明提出的一种广义帕累托 海杂波幅值模型的三分位点参数估计方法进行详细说明。In order to further illustrate the technical means and effects adopted by the present invention to achieve the predetermined purpose of the invention, the following describes the tertiles of a generalized Pareto clutter amplitude model proposed by the present invention with reference to the accompanying drawings and specific embodiments. The parameter estimation method is described in detail.
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的 具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可 对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地 了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术 方案加以限制。The foregoing and other technical contents, features and effects of the present invention can be clearly presented in the following detailed description of the specific implementation with the accompanying drawings. Through the description of the specific embodiments, the technical means and effects adopted by the present invention to achieve the predetermined purpose can be more deeply and specifically understood. However, the accompanying drawings are only for reference and description, and are not used for the technical description of the present invention. program is restricted.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用 来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者 暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语 “包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使 得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明 确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……” 限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相 同要素。It should be noted that, in this document, relational terms such as first and second are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation are intended to encompass a non-exclusive inclusion, whereby an article or device comprising a list of elements includes not only those elements, but also other elements not expressly listed. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the article or device comprising said element.
在实际雷达工作环境中,需要对不同海杂波背景下的雷达回波数据进 行目标检测处理,而目标检测器的设计则是目标检测处理环节的关键步骤。 不同海杂波背景下目标检测器的检验统计量和检测门限都与海杂波两个特 性参数密切相关,即尺度参数和形状参数,海杂波这两个特性参数的精确 性和稳定性是评定海洋背景下目标检测器检测性能的重要指标。换句话说, 海杂波特性参数(形状参数和尺度参数)决定目标检测器检测门限的选取, 检测门限的选取直接影响虚警率,进而影响目标检测精度。海杂波特性参 数越接近海杂波真实特性参数,目标检测精度越高。In the actual radar working environment, it is necessary to perform target detection and processing on the radar echo data under different sea clutter backgrounds, and the design of the target detector is a key step in the target detection and processing link. The test statistics and detection thresholds of the target detector under different sea clutter backgrounds are closely related to the two characteristic parameters of sea clutter, namely the scale parameter and the shape parameter. The accuracy and stability of these two characteristic parameters of sea clutter are An important indicator for evaluating the detection performance of object detectors in the ocean background. In other words, the sea clutter characteristic parameters (shape parameters and scale parameters) determine the selection of the detection threshold of the target detector, and the selection of the detection threshold directly affects the false alarm rate, thereby affecting the target detection accuracy. The closer the sea clutter characteristic parameters are to the real sea clutter characteristic parameters, the higher the target detection accuracy.
本发明实施例的目的是提出一种广义帕累托海杂波幅值模型的三分位 点参数估计方法,在满足广义帕累托分布的海杂波下,对杂波的尺度参数 和形状参数估计更精确,依据本发明实施例方法获得的尺度参数和形状参 数设计的目标检测器检测门限更优,对目标检测虚警率控制更好,检测精 度更高。The purpose of the embodiments of the present invention is to propose a method for estimating the parameters of the tertiles of the generalized Pareto sea clutter amplitude model. The parameter estimation is more accurate, the detection threshold of the target detector designed according to the scale parameters and shape parameters obtained by the method of the embodiment of the present invention is better, the false alarm rate of target detection is better controlled, and the detection accuracy is higher.
请参见图1,图1是本发明实施例提供的一种广义帕累托海杂波幅值模 型的三分位点参数估计方法的流程图。该方法包括如下步骤:Please refer to FIG. 1. FIG. 1 is a flowchart of a method for estimating tertile parameters of a generalized Pareto clutter amplitude model according to an embodiment of the present invention. The method includes the following steps:
S1:获取海杂波脉冲回波数据并进行取模值递增排序,生成海杂波回 波脉冲的模值递增序列。S1: Acquire sea clutter pulse echo data and perform an ascending sequence of modulo values to generate an ascending sequence of modulo value of sea clutter echo pulses.
雷达发射机发射的电磁脉冲信号由于在海平面发生散射,其回波信号 经过雷达接收机后服从逆高斯纹理的复高斯分布,通过仿真得到海杂波脉 冲回波数据:The electromagnetic pulse signal emitted by the radar transmitter is scattered at the sea level, and its echo signal obeys the complex Gaussian distribution of the inverse Gaussian texture after passing through the radar receiver. The sea clutter pulse echo data is obtained by simulation:
{r1,r2,....,ri,....,rN}{r 1 ,r 2 ,....,r i ,....,r N }
其中,i=1,2,...,N,N表示海杂波脉冲回波数据的数量,ri表示海杂 波脉冲回波数据中的第i个海杂波脉冲回波数据的幅值。Among them, i=1,2,...,N, N represents the number of sea clutter pulse echo data, ri represents the amplitude of the i -th sea clutter pulse echo data in the sea clutter pulse echo data value.
随后,对海杂波脉冲回波数据进行取模值递增排序,得到所述海杂波 脉冲回波数据的模值递增序列。Then, the sea clutter pulse echo data is sorted in ascending order of modulo values to obtain an increasing sequence of modulo values of the sea clutter pulse echo data.
S2:获取广义帕累托分布的海杂波模型的第二累积概率分布函数。S2: Obtain the second cumulative probability distribution function of the generalized Pareto distributed sea clutter model.
在本实施例中,步骤S2具体包括:In this embodiment, step S2 specifically includes:
S21:获取广义帕累托分布的海杂波模型的幅值概率密度函数f(r;μ,v):S21: Obtain the amplitude probability density function f(r; μ, v) of the sea clutter model of the generalized Pareto distribution:
其中,r表示广义帕累托海杂波幅值模型的海杂波幅值,μ表示广义帕 累托海杂波幅值模型的尺度参数,v表示广义帕累托海杂波幅值模型的形状 参数。Among them, r represents the sea clutter amplitude of the generalized Pareto clutter amplitude model, μ represents the scale parameter of the generalized Pareto clutter amplitude model, and v represents the generalized Pareto clutter amplitude model. shape parameter.
S22:根据所述幅值概率密度函数获得所述广义帕累托海杂波幅值模型 的第一累积概率分布函数F(r;μ,γ)。S22: Obtain the first cumulative probability distribution function F(r; μ, γ) of the generalized Pareto clutter amplitude model according to the amplitude probability density function.
具体地,对步骤S21中得到的幅值概率密度函数f(r;μ,γ)进行积分,得 到所述广义帕累托海杂波幅值模型的第一累积分布函数:Specifically, the amplitude probability density function f(r; μ, γ) obtained in step S21 is integrated to obtain the first cumulative distribution function of the generalized Pareto clutter amplitude model:
S23:根据所述第一累积分布函数F(r;μ,v)获得所述广义帕累托海杂波 幅值模型的第二累积分布函数F(r;1,v)。S23: Obtain a second cumulative distribution function F(r; 1, v) of the generalized Pareto clutter amplitude model according to the first cumulative distribution function F(r; μ, v).
具体地,将第一累积分布函数F(r;μ,v)的尺度参数μ固定为1,得到所 述第二累积分布函数F(r;1,v):Specifically, the scale parameter μ of the first cumulative distribution function F(r; μ, v) is fixed to 1 to obtain the second cumulative distribution function F(r; 1, v):
S3:根据所述第二累积分布函数设定第一累积概率和第二累积概率。S3: Set the first cumulative probability and the second cumulative probability according to the second cumulative distribution function.
根据所述第二累积分布函数F(r;1,v)的表达式,所述第二累积分布函数 F(r;1,v)的第一累积概率α和第二累积概率β满足:According to the expression of the second cumulative distribution function F(r; 1, v), the first cumulative probability α and the second cumulative probability β of the second cumulative distribution function F(r; 1, v) satisfy:
α=p(r≤rα)=F(rα;1,v) (4)α=p(r≤r α )=F(r α ; 1,v) (4)
β=p(r≤rβ)=F(rβ;1,v) (5)β=p(r≤r β )=F(r β ; 1,v) (5)
其中,0.1<α+0.1<β<1,rα为第一累积概率α对应的第一幅值分位点, rβ为第二累积概率β对应的第二幅值分位点。0.1<α+0.1<β<1, r α is the first amplitude quantile corresponding to the first cumulative probability α, and r β is the second amplitude quantile corresponding to the second cumulative probability β.
S4:构建第三累积概率与形状参数的函数表达式。S4: Construct a functional expression of the third cumulative probability and the shape parameter.
具体地,所述S4包括:Specifically, the S4 includes:
S41:根据估计误差经验公式可以得到,在样本数量(在本实施例中即为 海杂波脉冲回波数据的数量N)给定的前提下,第三幅值分位点rζ的估计值 服从渐进正态分布,则第三幅值分位点rζ的估计误差可以表示为:S41: According to the empirical formula of estimation error, it can be obtained, under the premise that the number of samples (in this embodiment, the number N of sea clutter pulse echo data) is given, the estimated value of the third amplitude quantile r ζ Following the asymptotic normal distribution, the estimated error of the third magnitude quantile r ζ can be expressed as:
其中,σζ表示第三幅值分位点rζ的估计误差,μ为尺度参数,v为形状 参数,ζ表示第三累积概率。Among them, σ ζ represents the estimation error of the third magnitude quantile r ζ , μ is the scale parameter, v is the shape parameter, and ζ represents the third cumulative probability.
S42:将形状参数v设定在区间[1,30]之间,间隔0.01遍历取值,获得 多个形状参数γ。即,形状参数γ的取值依次为1、1.01、1.02、1.03……29.99、 30。S42: Set the shape parameter v between the interval [1, 30], and traverse the value at an interval of 0.01 to obtain multiple shape parameters γ. That is, the values of the shape parameter γ are 1, 1.01, 1.02, 1.03... 29.99, 30 in sequence.
S43:将第三累积概率ζ设定在区间[0.1,0.99]之间,间隔0.01遍历取值, 获得第三累积概率ζ的多个取值。即,第三累积概率ζ的取值依次为0、0.1、 0.11、0.12……0.98、0.99。S43: Set the third cumulative probability ζ in the interval [0.1, 0.99], and traverse the values at an interval of 0.01 to obtain multiple values of the third cumulative probability ζ. That is, the values of the third cumulative probability ζ are 0, 0.1, 0.11, 0.12... 0.98, 0.99 in sequence.
S44:对于步骤S42中获得的每个形状参数γ,对第三幅值分位点rζ的 估计误差进行计算,获得不同形状参数对应的最优第三累积概率。S44: For each shape parameter γ obtained in step S42, calculate the estimated error of the third amplitude quantile r ζ to obtain the optimal third cumulative probability corresponding to different shape parameters.
具体地,对于给定的一个形状参数γ,对第三累积概率的所有取值进行 遍历,记录第三幅值分位点rζ的估计误差σζ最小情况下的形状参数值和第 三累积概率值,一个形状参数值能够得到一个最优第三累积概率;接着, 选取另一个形状参数,重复上述步骤,获得该形状参数的最优第三累积概 率,以此类推,则一组形状参数值就能得到一组最优第三累积概率。需要 说明的是,在计算过程中,将尺度参数μ固定为1。Specifically, for a given shape parameter γ, traverse all the values of the third cumulative probability, and record the shape parameter value and the third cumulative probability when the estimated error σ ζ of the third amplitude quantile r ζ is the smallest Probability value, a shape parameter value can obtain an optimal third cumulative probability; then, select another shape parameter, repeat the above steps, obtain the optimal third cumulative probability of the shape parameter, and so on, a set of shape parameters value to obtain a set of optimal third cumulative probabilities. It should be noted that, in the calculation process, the scale parameter μ is fixed to 1.
S45:根据步骤S44中得到的结果,将不同形状参数对应的最优第三累 积概率进行拟合,得到第三累积概率与形状参数的函数表达式:S45: According to the result obtained in step S44, the optimal third cumulative probability corresponding to different shape parameters is fitted to obtain the function expression of the third cumulative probability and shape parameter:
ζ=0.6985exp(0.008101v)-0.4008exp(-0.7256v),v>0 (7)ζ=0.6985exp(0.008101v)-0.4008exp(-0.7256v), v>0 (7)
其中,γ表示形状参数,ζ表示第三累积概率。where γ represents the shape parameter and ζ represents the third cumulative probability.
S5:利用所述海杂波回波脉冲的模值递增序列获得第一幅值分位点rα 和第二幅值分位点rβ的估计值。S5: Obtain the estimated values of the first amplitude quantile r α and the second amplitude quantile r β by using the increasing sequence of the modulo value of the sea clutter echo pulse.
具体地,利用步骤S1中获得的海杂波回波脉冲的模值递增序列,得到 第一幅值分位点和第二幅值分位点的估计值:Specifically, using the increasing sequence of the modulo value of the sea clutter echo pulse obtained in step S1, the estimated values of the first amplitude quantile and the second amplitude quantile are obtained:
其中,为第一幅值分位点rα的估计值,为第二幅值分位点rβ的估 计值,round(N*α)表示最接近N*α的整数,round(N*β)表示最接近N*β的 整数。in, is the estimated value of the first magnitude quantile r α , is the estimated value of the second magnitude quantile r β , round(N*α) represents the integer closest to N*α, and round(N*β) represents the integer closest to N*β.
S6:根据所述第一幅值分位点和所述第二幅值分位点的估计值,获得 广义帕累托分布幅值模型的形状参数估计值 S6: Obtain the estimated value of the shape parameter of the generalized Pareto distribution amplitude model according to the estimated value of the first amplitude quantile and the second amplitude quantile
在本实施例中,所述S6包括:In this embodiment, the S6 includes:
S61:给定一个大于1的正数q,使得第一累积概率α和第二累积概率β 满足:S61: Given a positive number q greater than 1, so that the first cumulative probability α and the second cumulative probability β satisfy:
S62:计算第二分位点估计值和第一分位点估计值的比值平方t:S62: Calculate the second quantile estimate and the first quantile estimate The ratio of squared t:
S63:根据公式(3)、(4)和(5),(9),(10),变形得到:S63: According to formulas (3), (4) and (5), (9), (10), the deformation is obtained:
进一步地,将上述两式变形,提出第一幅值分位点和第二幅值分位点 的比值平方,得到广义帕累托分布形状参数估计算法表达式:Further, by transforming the above two equations, the square of the ratio of the first amplitude quantile and the second amplitude quantile is proposed to obtain the generalized Pareto distribution shape parameter estimation algorithm expression:
S64:设立中间参数u,令得到简化的形状参数估计算 法表达式:S64: Set up the intermediate parameter u, let Get the simplified shape parameter estimation algorithm expression:
其中,中间参数u>1;Among them, the intermediate parameter u>1;
根据u的表达式,对其变形得到形状参数估计值和中间参数u的关系 表达式:According to the expression of u, the shape parameter estimation value is obtained by its deformation and the relational expression of the intermediate parameter u:
S65:通过迭代求解形状参数的估计值其表达式为:S65: Solve the estimated value of the shape parameter by iteration Its expression is:
其中,初始值u0∈(1,+∞),u0取范围内任意一值,这里取u0=2,k为迭代 次数,在仿真中k取200。此时可以根据公式(15)中形状参数估计值和中间 参数u的关系表达式得到形状参数估计值 Among them, the initial value u 0 ∈(1,+∞), u 0 takes any value within the range, where u 0 =2 is taken here, k is the number of iterations, and k takes 200 in the simulation. At this time, the estimated value of the shape parameter in formula (15) can be and the relational expression of the intermediate parameter u to obtain the estimated value of the shape parameter
S7:根据所述形状参数估计值获得广义帕累托海杂波幅值模型的尺度 参数估计值。S7: Obtain the estimated value of the scale parameter of the generalized Pareto sea clutter amplitude model according to the estimated value of the shape parameter.
在本实施例中,所述S7包括:In this embodiment, the S7 includes:
S71:根据步骤S4中获得的第三累积概率与形状参数的函数表达式以 及所述形状参数估计值计算第三累计概率ζ的值。S71: According to the third cumulative probability obtained in step S4 and the function expression of the shape parameter and the estimated value of the shape parameter The value of the third cumulative probability ζ is calculated.
具体地,将步骤S65中得到的形状参数估计值代入公式(7)中,得到第 三累计概率ζ的值。Specifically, the estimated value of the shape parameter obtained in step S65 Substitute into formula (7) to obtain the value of the third cumulative probability ζ.
S72:利用累积分布函数、第三累积概率ζ和形状参数估计值获得 尺度参数μ的估计值 S72: Utilize the cumulative distribution function, the third cumulative probability ζ and the estimated value of the shape parameter obtain an estimate of the scale parameter μ
具体地,所述S72包括:Specifically, the S72 includes:
S721:计算第三累积概率ζ对应的第三幅值分位点rζ的估计值 S721: Calculate the estimated value of the third amplitude quantile r ζ corresponding to the third cumulative probability ζ
其中,round(N*ζ)表示最接近N*ζ的整数。where round(N*ζ) represents the integer closest to N*ζ.
S722:根据公式(17)计算出的第三幅值分位点rζ的估计值对其函 数形式变形,得到尺度参数μ的函数表达式。S722: the estimated value of the third amplitude quantile r ζ calculated according to formula (17) Transform its functional form to obtain the functional expression of the scale parameter μ.
在本实施例中,令第三累计概率ζ,则对应的累积分布函数F(rζ;μ,γ)有:In this embodiment, let the third cumulative probability ζ, then the corresponding cumulative distribution function F(r ζ ; μ, γ) has:
对其变形,提出尺度参数μ,得到尺度参数μ估计值表达式:For its deformation, the scale parameter μ is proposed, and the estimated value expression of the scale parameter μ is obtained:
其中,ζ为第三累积概率值,v为形状参数。Among them, ζ is the third cumulative probability value, and v is the shape parameter.
S723:根据公式(19)的尺度参数μ的函数表达式,代入第三累积概率ζ, 并且以第三幅值分位点估计值替代公式(19)中的rζ,以步骤S7中的形状 参数估计值替代公式(19)中的v,得到尺度参数估计值的表达式:S723: According to the functional expression of the scale parameter μ of formula (19), substitute the third cumulative probability ζ, and estimate the value with the third amplitude quantile Substitute r ζ in formula (19) with the estimated value of the shape parameter in step S7 Substitute v in equation (19) to get the scale parameter estimate expression:
根据公式(20)即可求出逆高斯纹理的复高斯海杂波模型的尺度参数估 计值 According to formula (20), the estimated value of the scale parameter of the complex Gaussian sea clutter model of the inverse Gaussian texture can be obtained
进一步地,在获得了广义帕累托海杂波幅值模型的尺度参数估计值和形状参数估计值之后,根据获得的尺度参数估计值和形状参数估计值 可以更加精确地选取目标检测器的检测门限,进而获得更加精确的目标检 测结果。Further, after obtaining the scale parameter estimates of the generalized Pareto clutter amplitude model and shape parameter estimates After that, according to the obtained scale parameter estimates and shape parameter estimates The detection threshold of the target detector can be selected more accurately, thereby obtaining more accurate target detection results.
下面结合仿真实验对本发明广义帕累托海杂波幅值模型的三分位点参 数估计方法的效果做进一步说明。The effect of the three-point parameter estimation method of the generalized Pareto sea clutter amplitude model of the present invention will be further described below in conjunction with simulation experiments.
(1)仿真参数设置(1) Simulation parameter setting
使用MATLAB软件仿真产生服从广义帕累托海杂波幅值模型的杂波数 据,其中样本数量(海杂波脉冲回波数据的数量)N=10000。将形状参数取值 设为区间[1.2,20],间隔0.05,尺度参数μ设为1。随机加入异常样本,其中, 异常样本功率与杂波功率的比值为10-100之间的随机数,异常样本比例为 0-2%之间的随机数。将第一累积概率和第二累积概率选为0.37和0.80。The clutter data obeying the generalized Pareto sea clutter amplitude model was generated using MATLAB software simulation, where the number of samples (the number of sea clutter pulse echo data) N=10000. The value of the shape parameter is set to the interval [1.2, 20], the interval is 0.05, and the scale parameter μ is set to 1. Randomly add abnormal samples, wherein the ratio of abnormal sample power to clutter power is a random number between 10-100, and the ratio of abnormal samples is a random number between 0-2%. The first cumulative probability and the second cumulative probability were chosen to be 0.37 and 0.80.
(2)仿真实验内容(2) Simulation experiment content
分别采用本发明实施例的方法、2-4阶矩估计和双分位点估计这3种方 法对仿真产生的广义帕累托海杂波幅值模型的数据样本进行形状参数和尺 度参数的估计,结果如图2a至图2d所示,其中,图2a为使用本发明实施 例以及现有的两种方法进行形状参数估计的相对均方根误差比较图,其中, 横坐标线性表示形状参数取值,纵坐标对数表示形状参数相对均方根误差; 图2b为双分位点和本发明实施例的三分位点估计方法形状参数估计的相对 均方根误差对比,因矩估计精度较差导致分位点对比不明显,本图做分位 点估计方法对比,其中,横坐标线性表示形状参数取值,纵坐标对数表示 形状参数相对均方根误差;图2c为使用本发明实施例以及现有技术的两种 方法进行尺度参数估计的相对均方根误差比较图,其中,横坐标线性表示 形状参数取值,纵坐标对数表示尺度参数相对均方根误差;图2d为双分位 点和本发明实施例的三分位点估计方法尺度参数估计的相对均方根误差对 比,因矩估计精度较差导致分位点对比不明显,本图做分位点估计方法对 比,其中,横坐标线性表示形状参数取值,纵坐标对数表示尺度参数相对 均方根误差。The shape parameters and scale parameters of the data samples of the generalized Pareto sea clutter amplitude model generated by simulation are estimated respectively by using the method of the embodiment of the present invention, the 2-4 order moment estimation and the biquantile estimation. , the results are shown in Figures 2a to 2d, wherein Figure 2a is a comparison diagram of the relative root mean square error of the shape parameter estimation using the embodiment of the present invention and the existing two methods, wherein the abscissa linearly represents the shape parameter. The logarithm of the ordinate represents the relative root mean square error of the shape parameter; Figure 2b is a comparison of the relative root mean square error of the shape parameter estimation between the biquantile point and the tertile point estimation method according to the embodiment of the present invention. The difference causes the quantile comparison to be inconspicuous. This figure compares the quantile estimation methods. The abscissa linearly represents the value of the shape parameter, and the logarithm of the ordinate represents the relative root mean square error of the shape parameter; Figure 2c shows the implementation of the present invention. Example and the relative root mean square error comparison of scale parameter estimation by two methods of the prior art, wherein the abscissa linearly represents the value of the shape parameter, and the logarithm of the ordinate represents the relative root mean square error of the scale parameter; Compared with the relative root mean square error of the scale parameter estimation of the quantile point estimation method according to the embodiment of the present invention, the comparison of the quantile points is not obvious due to the poor moment estimation accuracy. This figure compares the quantile point estimation methods. Among them, the linear axis of the abscissa represents the value of the shape parameter, and the logarithm of the ordinate represents the relative root mean square error of the scale parameter.
由图2a和图2b可知,当样本数N相同,用3种方法进行形状参数估计 时,2-4阶矩估计和双分位点估计的性能均受异常点影响而变差,其中2-4 阶矩估计方法的相对均方根误差最大,双分位点估计方法对应的相对均方 根误差稍大于本发明方法,而本发明实施例的方法对应的相对均方根误差 最小,估计性能最好。It can be seen from Figure 2a and Figure 2b that when the number of samples N is the same and three methods are used to estimate the shape parameters, the performance of the 2-4 order moment estimation and the biquantile estimation are both affected by the outliers and deteriorate, among which 2- The relative root mean square error of the fourth-order moment estimation method is the largest, the relative root mean square error corresponding to the biquantile estimation method is slightly larger than that of the method of the present invention, and the relative root mean square error corresponding to the method of the embodiment of the present invention is the smallest, and the estimation performance most.
由图2c和图2d可知,当样本数量N相同,用3种方法进行尺度参数估 计时,2-4阶矩估计方法的性能明显变差,双分位点估计方法性能稍差于本 发明方法。从结果可以看出,本发明实施例的方法对应的相对均方根误差 最小,估计性能最好。It can be seen from Figure 2c and Figure 2d that when the number of samples N is the same and the scale parameters are estimated by three methods, the performance of the 2-4 order moment estimation method is obviously worse, and the performance of the biquantile estimation method is slightly worse than that of the method of the present invention. . It can be seen from the results that the relative root mean square error corresponding to the method of the embodiment of the present invention is the smallest, and the estimation performance is the best.
对比图2a至图2d可以看出,2-4阶矩估计使用样本估计广义帕累托 海杂波幅值模型的参数,所以其相对均方根误差受异常样本的影响较大。 双分位点估计方法与本发明实施例的估计方法类似,但本发明实施例的方 法引入估计最优的第三分位点,使得本方法抗异常样本能力最好,计算效 率相对较高。在实际雷达目标检测之中,难免存在异常点,在尽可能消除 异常点带来的影响的趋势下,本发明实施例的方法有其领先之处。Comparing Fig. 2a to Fig. 2d, it can be seen that the 2-4 order moment estimation uses samples to estimate the parameters of the generalized Pareto sea clutter amplitude model, so its relative root mean square error is greatly affected by abnormal samples. The biquantile estimation method is similar to the estimation method of the embodiment of the present invention, but the method of the embodiment of the present invention introduces the third quantile with the best estimation, so that the method has the best anti-abnormal sample ability and relatively high computational efficiency. In actual radar target detection, it is inevitable that there are abnormal points, and under the trend of eliminating the influence of abnormal points as much as possible, the method of the embodiment of the present invention has its advantages.
总上,本发明实施例广义帕累托海杂波幅值模型的三分位点参数估计 方法,利用分位点信息进行参数估计,能够有效减少原始数据中功率较大 的异常数值对参数估计性能的影响,相比于已有的矩估计方法,具有比较 高的抗异常数据的能力,此外,该方法利用理论公式构建了尺度参数估计 的累积概率值与形状参数的函数表达式,在形状参数已知的条件下,可以 比较准确地实现尺度参数的估计。同时,相比于双分位点估计,本发明的方法引入第三分位点的估计误差较小,其对尺度参数估计性能较优。In general, the method for estimating the parameters of the tertiles of the generalized Pareto sea clutter amplitude model according to the embodiment of the present invention uses the information of the quantiles to estimate the parameters, which can effectively reduce the parameter estimation of abnormal values with high power in the original data. Compared with the existing moment estimation methods, it has a relatively high ability to resist abnormal data. In addition, this method uses theoretical formulas to construct a functional expression of the cumulative probability value of the scale parameter estimation and the shape parameter. Under the condition that the parameters are known, the estimation of the scale parameters can be achieved relatively accurately. At the same time, compared with biquantile estimation, the method of the present invention introduces a smaller estimation error of the third quantile, and has better performance in estimating scale parameters.
本发明的又一实施例提供了一种存储介质,所述存储介质中存储有计 算机程序,所述计算机程序用于执行上述实施例中所述方法的步骤。本发 明的再一方面提供了一种电子设备,包括存储器和处理器,所述存储器中 存储有计算机程序,所述处理器调用所述存储器中的计算机程序时实现如 上述实施例所述方法的步骤。具体地,上述以软件功能模块的形式实现的 集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个 人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实 施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只 读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。Yet another embodiment of the present invention provides a storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute the steps of the methods described in the above embodiments. Another aspect of the present invention provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor implements the method described in the above embodiments when the processor invokes the computer program in the memory step. Specifically, the above-mentioned integrated modules implemented in the form of software functional modules can be stored in a computer-readable storage medium. The above-mentioned software function modules are stored in a storage medium, and include several instructions to cause an electronic device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute the methods described in the various embodiments of the present invention. some steps. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说 明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若 干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with the specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field to which the present invention belongs, without departing from the concept of the present invention, some simple deductions or replacements can also be made, all of which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110511457.9A CN113466811B (en) | 2021-05-11 | 2021-05-11 | Three-position point parameter estimation method of generalized pareto sea clutter amplitude model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110511457.9A CN113466811B (en) | 2021-05-11 | 2021-05-11 | Three-position point parameter estimation method of generalized pareto sea clutter amplitude model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113466811A true CN113466811A (en) | 2021-10-01 |
CN113466811B CN113466811B (en) | 2024-03-29 |
Family
ID=77870598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110511457.9A Active CN113466811B (en) | 2021-05-11 | 2021-05-11 | Three-position point parameter estimation method of generalized pareto sea clutter amplitude model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113466811B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115001997A (en) * | 2022-04-11 | 2022-09-02 | 北京邮电大学 | Extreme value theory-based smart city network equipment performance abnormity threshold evaluation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6044336A (en) * | 1998-07-13 | 2000-03-28 | Multispec Corporation | Method and apparatus for situationally adaptive processing in echo-location systems operating in non-Gaussian environments |
US20170016987A1 (en) * | 2015-07-17 | 2017-01-19 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Processing synthetic aperture radar images for ship detection |
CN106646417A (en) * | 2016-12-29 | 2017-05-10 | 西安电子科技大学 | Iterative maximum likelihood estimation method for generalized Pareto distribution parameter |
CN107271979A (en) * | 2017-06-13 | 2017-10-20 | 西安电子科技大学 | The double quantile methods of estimation of Pareto distribution with wide scope parametric joint |
US20180052224A1 (en) * | 2014-12-15 | 2018-02-22 | Airbus Singapore Private Limited | Automated method for selecting training areas of sea clutter and detecting ship targets in polarimetric synthetic aperture radar imagery |
CN109143196A (en) * | 2018-09-25 | 2019-01-04 | 西安电子科技大学 | Tertile point method for parameter estimation based on K Distribution Sea Clutter amplitude model |
CN110658508A (en) * | 2019-10-17 | 2020-01-07 | 中国人民解放军火箭军工程大学 | A K-distributed sea clutter parameter estimation method based on characteristic quantities |
-
2021
- 2021-05-11 CN CN202110511457.9A patent/CN113466811B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6044336A (en) * | 1998-07-13 | 2000-03-28 | Multispec Corporation | Method and apparatus for situationally adaptive processing in echo-location systems operating in non-Gaussian environments |
US20180052224A1 (en) * | 2014-12-15 | 2018-02-22 | Airbus Singapore Private Limited | Automated method for selecting training areas of sea clutter and detecting ship targets in polarimetric synthetic aperture radar imagery |
US20170016987A1 (en) * | 2015-07-17 | 2017-01-19 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Processing synthetic aperture radar images for ship detection |
CN106646417A (en) * | 2016-12-29 | 2017-05-10 | 西安电子科技大学 | Iterative maximum likelihood estimation method for generalized Pareto distribution parameter |
CN107271979A (en) * | 2017-06-13 | 2017-10-20 | 西安电子科技大学 | The double quantile methods of estimation of Pareto distribution with wide scope parametric joint |
CN109143196A (en) * | 2018-09-25 | 2019-01-04 | 西安电子科技大学 | Tertile point method for parameter estimation based on K Distribution Sea Clutter amplitude model |
CN110658508A (en) * | 2019-10-17 | 2020-01-07 | 中国人民解放军火箭军工程大学 | A K-distributed sea clutter parameter estimation method based on characteristic quantities |
Non-Patent Citations (3)
Title |
---|
于涵;水鹏朗;施赛楠;杨春娇;: "广义Pareto分布海杂波模型参数的组合双分位点估计方法", 电子与信息学报, no. 12, 15 December 2019 (2019-12-15) * |
何耀民;何华锋;徐永壮;王依繁;苏敬;: "基于多特征量的海杂波参数估计", 兵工学报, no. 03, 15 March 2020 (2020-03-15) * |
陈世超;罗丰;雒梅逸香;胡冲;: "采用梅林变换的帕累托分布参数估计方法", 西安电子科技大学学报, no. 04, 8 January 2018 (2018-01-08) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115001997A (en) * | 2022-04-11 | 2022-09-02 | 北京邮电大学 | Extreme value theory-based smart city network equipment performance abnormity threshold evaluation method |
CN115001997B (en) * | 2022-04-11 | 2024-02-09 | 北京邮电大学 | Extreme value theory-based smart city network equipment performance abnormal threshold evaluation method |
Also Published As
Publication number | Publication date |
---|---|
CN113466811B (en) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109143196B (en) | Estimation method of tertile point parameters based on K-distribution sea clutter amplitude model | |
CN102288951B (en) | Radar target parameter estimation method based on AIC (automatic information center) compression information acquisition and FBMP (fast Bayesian matching pursuit) | |
CN103217679B (en) | Full-waveform laser radar echo data gaussian decomposition method based on genetic algorithm | |
CN110376582B (en) | A Maneuvering Target Tracking Method Based on Adaptive GM-PHD | |
CN106443627B (en) | K Distribution Sea Clutter form parameter estimation method based on Bayesian | |
CN106872958B (en) | Radar target self-adapting detecting method based on linear fusion | |
CN108919223B (en) | Broadband radar target self-adaptive structured matching filtering method | |
CN112162244B (en) | Event trigger target tracking method under related noise and random packet loss environment | |
CN107741581B (en) | A Parameter Estimation Method for Generalized Pareto Distribution Based on Truncation Moment | |
CN111830481B (en) | Method and device for parameter estimation of single-component amplitude distribution model of radar echo | |
CN113466811A (en) | Three-point parameter estimation method of generalized pareto sea clutter amplitude model | |
CN115062658B (en) | Modulation type recognition method for overlapping radar signals based on adaptive threshold network | |
CN113466812A (en) | Three-point estimation method for complex Gaussian sea clutter model parameters of inverse Gaussian texture | |
CN106199552B (en) | A kind of grouping generalized likelihood test method under local uniform sea clutter background | |
CN113311429B (en) | 1-bit radar imaging method based on countermeasure sample | |
CN111398928B (en) | Method for calculating detection threshold of synthetic ultra-narrow pulse radar based on resampling algorithm | |
CN112639515B (en) | A signal processing method and device | |
CN107247258B (en) | Recursive moment estimation method for space-varying K-distribution parameters of sea clutter | |
CN104849705B (en) | Local uniform clutter covariance matrix adaptive estimation method | |
CN109239677A (en) | A kind of environment self-adaption CFAR detection thresholding determines method | |
CN114966550A (en) | An Adaptive Sea Clutter Suppression Method Based on Empirical Wavelet Transform | |
CN114019459A (en) | Method and apparatus for determining pulse width of echo waveform, and storage medium | |
CN111597500B (en) | Uncertainty optimization inverse reliability evaluation method and device for DVL (dynamic Voltage Locus) mounting angle | |
CN114089301B (en) | A new adaptive sonar target detection method and computer device based on neural network | |
Wang et al. | Analysis and prediction of supermarket energy consumption time series with significant fractional order characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |