CN113462588A - Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid - Google Patents

Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid Download PDF

Info

Publication number
CN113462588A
CN113462588A CN202110548580.8A CN202110548580A CN113462588A CN 113462588 A CN113462588 A CN 113462588A CN 202110548580 A CN202110548580 A CN 202110548580A CN 113462588 A CN113462588 A CN 113462588A
Authority
CN
China
Prior art keywords
yarrowia lipolytica
acid
gene
citric acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110548580.8A
Other languages
Chinese (zh)
Inventor
邓利
萧琦
刘欢
刘军锋
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110548580.8A priority Critical patent/CN113462588A/en
Publication of CN113462588A publication Critical patent/CN113462588A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/38Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/48Tricarboxylic acids, e.g. citric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03008ATP citrate synthase (2.3.3.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01006Aconitate decarboxylase (4.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01003Long-chain-fatty-acid-CoA ligase (6.2.1.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid, belonging to the field of genetic engineering. The research discloses a yarrowia lipolytica genetic engineering bacterium for producing citric acid or itaconic acid, which is characterized in that a citrate synthase gene CAS, an acetyl coenzyme A synthase gene ACS, a mitochondrial carboxylic acid transporter gene MTT and a cis-aconitate decarboxylase gene CADA are introduced into leucine auxotrophic yarrowia lipolytica to construct yarrowia lipolytica genetic engineering bacterium YLA01 (containing genes CAS, ACS and MTT) and YLA02 (containing genes CAS, ACS, MTT and CADA) capable of metabolizing acetic acid. The yarrowia lipolytica genetic engineering bacteria constructed by the research can utilize acetic acid as a carbon source, efficiently produce citric acid or itaconic acid, and provide a good solution for acetic acid which is a waste in the fermentation industry.

Description

Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid
Technical Field
The research belongs to the field of gene engineering, and particularly relates to yarrowia lipolytica gene engineering bacteria capable of producing citric acid or itaconic acid by using acetic acid and application thereof.
Background
Citric acid, which is a natural component of various citrus fruits, pineapples, pears, peaches and figs, is the most important food acidulant at present, and can improve the flavor of food, inhibit the growth of microorganisms and play a role in keeping food fresh, so the consumption of the citric acid in the food industry is always the highest among organic acids. Furthermore, citric acid may also be used as a chelating agent and a preferred additive for detergents, animal feeds, lubricants and plasticizers. Thus, the market for citric acid is in great demand and is on a continuing growth trend. Citric acid is mainly produced by chemical synthesis or fermentation of aspergillus niger, which generally uses glucose, starch and other food crops as fermentation substrates and acetic acid or acetate as a carbon source.
Itaconic acid, which contains a carbon-carbon double bond and two carboxyl groups with strong chemical activity in its molecule, can participate in numerous chemical reactions, has wide application in the polymer chemistry industry, and is used for synthesizing resins, plastics, rubbers, drugs, and the like. The market demand of itaconic acid is also huge, and fermentation of aspergillus terreus is a traditional itaconic acid production mode, but the production of itaconic acid by aspergillus terreus cannot be improved more than ever in decades, and with the development of molecular biology technology, the production of itaconic acid by means of metabolic engineering becomes the current mainstream research direction, and in the production of itaconic acid, the fermentation production process using acetic acid or acetate as a substrate is rarely involved.
Acetic acid, also known as acetic acid, is generally present as a byproduct in biosynthesis, is usually a metabolic waste, and contains a large amount of acetate in plant wastewater, so that the research on the utilization of acetic acid is a process of reusing waste in order to develop a new carbon source and follow the principle of green chemistry. In addition, during the process of converting acetic acid into citric acid, acetic acid can be easily converted into acetyl-coenzyme A, and then combined with oxaloacetate to form citric acid, and the carbon chain transfer is much shorter than that of the traditional carbon source such as glucose, so that the carbon source is favorable for producing citric acid.
Yarrowia lipolytica is a lipid yeast that converts most of the carbon atoms into fatty acids. It has been recognized as a safe (GRAS) organism for the food and health care industry to produce organic acids and natural products, with the ability to degrade a variety of substrates, including hexose/pentose sugars, glycerol, hydrocarbons, Volatile Fatty Acids (VFA), agricultural wastes, and even urea or urine, and can produce a variety of organic acids including citric acid, isocitric acid, alpha-ketoglutaric acid, and pyruvic acid, as a highly advantageous organic acid producing strain.
However, no report on the production of citric acid by yarrowia lipolytica using acetic acid as a carbon source has been found yet.
Disclosure of Invention
The research establishes the genetic engineering bacteria of the Yarrowia lipolytica and lays a foundation for further synthesizing the citric acid or the itaconic acid by utilizing the acetic acid or the acetate.
Therefore, the first objective of the present study is to overcome the deficiencies of the prior art and to provide a genetically engineered yarrowia lipolytica that can produce citric acid or itaconic acid using acetic acid.
The second purpose of the research is to provide a construction method of yarrowia lipolytica gene engineering bacteria for producing citric acid or itaconic acid by using acetic acid.
The third purpose of the research is to provide the application of yarrowia lipolytica gene engineering bacteria for producing citric acid or itaconic acid by using acetic acid.
In order to achieve the above purpose, the following technical solutions are adopted in the present research:
as the first aspect of the research, a yarrowia lipolytica genetic engineering bacterium for producing citric acid or itaconic acid, wherein a citrate synthase gene CAS, an acetyl coenzyme A synthase gene ACS and a mitochondrial carboxylic acid transporter gene MTT are introduced into leucine auxotrophic yarrowia lipolytica to construct yarrowia lipolytica genetic engineering bacterium YLA01 capable of metabolizing acetic acid; introducing citrate synthetase gene CAS, acetyl coenzyme A synthetase gene ACS, mitochondrial carboxylic acid transporter gene MTT and aconitic acid decarboxylase gene CADA into leucine auxotrophic yarrowia lipolytica to construct yarrowia lipolytica genetically engineered strain YLA02 capable of metabolizing acetic acid,
the nucleotide sequence of the citrate synthase gene CAS is shown as SEQ ID No.1, the nucleotide sequence of the acetyl coenzyme A synthase gene ACS is shown as SEQ ID No.2, the nucleotide sequence of the mitochondrial carboxylic acid transporter gene MTT is shown as SEQ ID No.3, and the nucleotide sequence of the aconitate decarboxylase gene CADA is shown as SEQ ID No. 4.
According to this study, the leucine auxotrophic yarrowia lipolytica is yarrowia lipolytica.
As a second aspect of the present study, a method for constructing yarrowia lipolytica genetically engineered bacterium producing citric acid and itaconic acid, comprising the steps of:
the method comprises the steps of firstly, connecting three genes of a citrate synthase gene CAS, an acetyl coenzyme A synthase gene ACS and a mitochondrial carboxylic acid transporter gene MTT to an expression plasmid PYLXP 'in sequence by means of homologous recombination and T4 connection to obtain a recombinant plasmid PYcam, and connecting the citrate synthase gene CAS, the acetyl coenzyme A synthase gene ACS, the mitochondrial carboxylic acid transporter gene MTT and an aconitate decarboxylase gene CADA to the expression plasmid PYLXP' by means of homologous recombination and T4 connection to obtain the recombinant plasmid PYcam. .
And step two, introducing the recombinant plasmid into yarrowia lipolytica by an acetic acid lithiation transformation method to construct strains YLA01(PYcam) and YLA02 (PYcam).
And (3) lithiation conversion method of acetic acid:
first, fresh yeast POIG was inoculated on YPD plates by plating and cultured at 30 ℃ for 24 hours for the purpose of activating the cells.
② single colony is selected, the plate is streaked into another clean YPD plate, and cultured for 20-22 h.
③ adding 90 mu L of PEG4000 with volume fraction of 50 percent, 5 mu L of salmon sperm single-stranded DNA and 5 mu L of lithium acetate (2mol/L) into a sterilized centrifuge tube in a super clean bench, and mixing evenly by vortex oscillation.
And fourthly, scraping the yeast cultured in the step 2 into a mixing system, wherein the amount of the yeast is not excessive, and the yeast can be uniformly mixed by shaking. Thus far it was thought that yeast competence was well established.
Fifthly, adding 800-1000ng recombinant plasmid into the cells, taking out the cells, uniformly mixing, placing the cells in warm water at 30 ℃ for 40min, taking out the cells every 600s, and carrying out vortex oscillation and uniform mixing.
Sixthly, the mixed transformation system is transferred to 39 ℃ and placed for 600 s.
Seventhly, taking out the mixture, adding 100 mu L of sterile water, and fully mixing.
And coating the mixed system on a leucine defect culture medium, and culturing for 3 days at the temperature of 30 ℃.
According to the research, the nucleotide sequence of the recombinant plasmid PYcam is shown as SEQ ID NO.5, and the nucleotide sequence of the recombinant plasmid PYcama is shown as SEQ ID NO. 6.
As a third aspect of the present study, the use of a yarrowia lipolytica genetically engineered bacterium capable of producing citric acid or itaconic acid as described above for producing citric acid and itaconic acid, wherein said genetically engineered bacterium is capable of producing citric acid or itaconic acid using acetic acid or acetate directly as a carbon source.
Further, the carbon source for culturing the yarrowia lipolytica genetic engineering bacterium capable of producing citric acid or itaconic acid is acetic acid, the concentration of the acetic acid is 5g/L-50g/L, and the concentration is the ratio of the mass of the acetic acid to the volume of a culture system. In the fermentation process, the pH of the fermentation liquor is adjusted once every 6 to 36 hours until the pH is between 3.0 and 9.0.
The construction method of the yarrowia lipolytica gene engineering bacterium for producing citric acid or itaconic acid has the following beneficial effects:
(1) according to the research, an acetic acid utilization pathway is firstly constructed in yarrowia lipolytica, so that the engineering strain can utilize the acetic acid to carry out biosynthesis of high value-added chemicals, and the process can provide a new carbon source pathway for production of citric acid, itaconic acid and related organic acids.
(2) The research provides a new, more environment-friendly and more economic utilization mode for acetic acid and acetate which are biological industrial byproducts or wastes.
Drawings
FIG. 1 shows the metabolic pathway of yarrowia lipolytica for the production of citric acid using acetate after the introduction of the three genes CAS, ACS, MTT.
FIG. 2 shows the metabolic pathway of yarrowia lipolytica for the production of citric acid from acetic acid after the introduction of the four genes CAS, ACS, MTT, CADA.
FIG. 3 is a graph showing the growth curve of strain YLA01 using acetic acid as a carbon source, the consumption curve of acetic acid, and the synthesis curve of citric acid.
FIG. 4 is a graph showing the growth curve of strain YLA01 using acetic acid as a carbon source, the consumption curve of acetic acid, and the synthesis curve of itaconic acid.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The study is further illustrated by the following specific examples, but the scope of the study is not limited thereto.
Although Yarrowia lipolytica was used as the starting strain in the present examples, a conventional uracil and leucine auxotrophic Yarrowia lipolytica (Yarrowia lipolytica) strain was used as the starting strain for transformation to perform the experiments in the examples.
Example 1 construction of genetically engineered yarrowia lipolytica for production of citric acid Using acetic acid as carbon Source
A. Construction of plasmid PYcam
(1) The citrate synthase CAS gene and the acetyl coenzyme A synthetase ACS gene are both from yarrowia lipolytica genome, and the acquisition mode is to design primers CAS-F, CAS-R and ACS-F, ACS-R, PCR amplifies corresponding citrate synthase CAS gene and acetyl coenzyme A synthetase ACS gene from the genome, and PCR amplifies corresponding citrate synthase CAS gene and acetyl coenzyme A synthetase gene ACS from Aspergillus terreus mitochondrial carboxylic acid transport protein gene MTT, and the primers are sequentially connected to a vector PYLXP' to obtain a recombinant plasmid, namely PYcam, the nucleotide sequence of which is shown as SEQ ID NO. 5.
Primer sequences used in Table 1
Figure BDA0003074509030000051
B. Yarrowia lipolytica transformation of plasmid PYcam
The transformation method of the plasmid is a lithium acetate yeast transformation method which is commonly used for yeast transformation.
The concrete mode is as follows:
first, fresh yeast POIG was inoculated on YPD plates by plating and cultured at 30 ℃ for 24 hours for the purpose of activating the cells.
② single colony is selected, the plate is streaked into another clean YPD plate, and cultured for 20-22 h.
③ adding 90 mu L of PEG4000 with volume fraction of 50 percent, 5 mu L of salmon sperm single-stranded DNA and 5 mu L of lithium acetate (2mol/L) into a sterilized centrifuge tube in a super clean bench, and mixing evenly by vortex oscillation.
And fourthly, scraping the yeast cultured in the step 2 into a mixing system, wherein the amount of the yeast is not excessive, and the yeast can be uniformly mixed by shaking. Thus far it was thought that yeast competence was well established.
Fifthly, adding 800-1000ng recombinant plasmid into the cells, taking out the cells, uniformly mixing, placing the cells in warm water at 30 ℃ for 40min, taking out the cells every 600s, and carrying out vortex oscillation and uniform mixing.
Sixthly, the mixed transformation system is transferred to 39 ℃ and placed for 600 s.
Seventhly, taking out the mixture, adding 100 mu L of sterile water, and fully mixing.
And coating the mixed system on a leucine defect culture medium, and culturing for 3 days at the temperature of 30 ℃.
Example 2 construction of yarrowia lipolytica Gene engineering bacteria for production of itaconic acid Using acetic acid as carbon Source
A. Construction of plasmid PYcama
(1) The citrate synthase CAS gene and the acetyl coenzyme A synthetase ACS gene are both from yarrowia lipolytica genomes, the acquisition mode is that primers CAS-F, CAS-R and ACS-F, ACS-R are designed, corresponding citrate synthase CAS gene and acetyl coenzyme A synthetase ACS gene are amplified from the genomes through PCR, the citrate synthase ACS gene is from Aspergillus terreus mitochondrial carboxylic acid transport protein gene MTT and aconitic acid decarboxylase gene CADA, the citrate synthase ACS gene and the ACS gene are sequentially connected to a vector PYLXP' to obtain a recombinant plasmid PYcama, the nucleotide sequence of the recombinant plasmid is shown as SEQ ID No.6, and the used sequences are shown as Table 1.
B. Yarrowia lipolytica transformation of plasmid PYcam
The transformation method of the plasmid is a lithium acetate yeast transformation method which is commonly used for yeast transformation.
The concrete mode is as follows:
first, fresh yeast POIG was inoculated on YPD plates by plating and cultured at 30 ℃ for 24 hours for the purpose of activating the cells.
② single colony is selected, the plate is streaked into another clean YPD plate, and cultured for 20-22 h.
③ adding 90 mu L of PEG4000 with volume fraction of 50 percent, 5 mu L of salmon sperm single-stranded DNA and 5 mu L of lithium acetate (2mol/L) into a sterilized centrifuge tube in a super clean bench, and mixing evenly by vortex oscillation.
And fourthly, scraping the yeast cultured in the step 2 into a mixing system, wherein the amount of the yeast is not excessive, and the yeast can be uniformly mixed by shaking. Thus far it was thought that yeast competence was well established.
Fifthly, adding 800-1000ng recombinant plasmid into the cells, taking out the cells, uniformly mixing, placing the cells in warm water at 30 ℃ for 40min, taking out the cells every 600s, and carrying out vortex oscillation and uniform mixing.
Sixthly, the mixed transformation system is transferred to 39 ℃ and placed for 600 s.
Seventhly, taking out the mixture, adding 100 mu L of sterile water, and fully mixing.
And coating the mixed system on a leucine defect culture medium, and culturing for 3 days at the temperature of 30 ℃.
Example 3 YLA01 Strain ability to ferment with acetic acid as carbon Source to produce citric acid
1. Experimental materials: strain YLA01
2. The experimental method comprises the following steps:
seed culture medium: leucine acetate-deficient medium, YNB1.5 g/L, acetic acid 23g/L, ammonium sulfate 4.6g/L, CSM-leu0.8 g/L. Sterilizing at 121 deg.C for 25 min.
Fermentation medium: leucine acetate deficient medium, YNB1.7 g/L, acetic acid 41g/L, ammonium sulfate 0.825g/L, CSM-leu 0.69 g/L. Sterilizing at 121 deg.C for 25 min.
Strain YLA01 was inoculated into 5mL of seed medium, cultured at 28 ℃ and 220rpm for 48 hours, 100. mu.L of seed solution was inoculated into 50mL of fermentation medium, cultured at 28 ℃ and 220rpm for 144 hours, and the concentration of citric acid and the residual amount of acetic acid in the fermentation broth were measured.
3. Method for detecting product
Citric acid is easily dissolved in water, so products are all enriched in fermentation liquor. And (5) detecting the concentration of the product in the fermentation liquor by using high performance liquid chromatography when the fermentation is finished.
4. Results of the experiment
After the strain YLA01 is fermented for 5 days, the yield and the biomass of the strain are plotted in figure 3, the biomass accumulation OD600 can reach 16, and the accumulation amount of citric acid can reach 12g/L, which shows that the expression genes ACS, ACS and MTT are helpful for the accumulation of citric acid on the basis of the expression CAS gene, and the growth of thalli cannot be obviously influenced.
Example 4YLA02 Strain ability to ferment with acetic acid as carbon Source to produce itaconic acid
1. Experimental materials: strain YLA02
2. The experimental method comprises the following steps:
seed culture medium: leucine acetate-deficient medium, YNB1.5 g/L, acetic acid 23g/L, ammonium sulfate 4.6g/L, CSM-leu0.8 g/L. Sterilizing at 121 deg.C for 25 min.
Fermentation medium: leucine acetate deficient medium, YNB1.7 g/L, acetic acid 41g/L, ammonium sulfate 0.825g/L, CSM-leu 0.69 g/L. Sterilizing at 121 deg.C for 25 min.
Strain YLA01 was inoculated into 5mL of seed medium, cultured at 28 ℃ and 220rpm for 48 hours, 100. mu.L of seed solution was inoculated into 50mL of fermentation medium, cultured at 28 ℃ and 220rpm for 144 hours, and the itaconic acid concentration and the residual amount of acetic acid in the fermentation broth were measured.
3. Method for detecting product
Itaconic acid can be dissolved in water, so the products are all enriched in the fermentation liquor. And (5) detecting the concentration of the product in the fermentation liquor by using high performance liquid chromatography when the fermentation is finished.
4. Results of the experiment
After the strain YLA02 is fermented for 5 days, the yield and the biomass are plotted in figure 4, the accumulated OD600 of the biomass can reach 16, and meanwhile, the accumulated amount of the itaconic acid can reach 1.2g/L, which shows that the production of the itaconic acid can be really carried out by utilizing the acetic acid.
The above description is only an embodiment of the present research, and it should be understood in advance that the above-mentioned modes are not to be taken as limitations for the implementation of the present research, and simple modifications and transformations for those skilled in the art are not complicated, so that the protection of the present research shall deviate from the content of the present statement and shall be protected by the present research under the principle of the present research.
Sequence listing
Beijing University of Chemical Technology
Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid
SEQ ID NO.1
1709 bp
atgatttctg ctattcgtcc cgccgttcga tcttccgttc gtgttgccc ctatggcca acaccgcct tccgggcct actctaccc aggatgtga gtatttctttt ctttcatcaa ttggttgctgtgcgacggatttcgttgcgtcagcctgattgcaacagccttaggccccattttcgacctgttcttgcctcggcaaaagtttttccgaatgcatgtgacacgtcgaatgtggtgctttcaagcagcagcagcagcataaaatatggaatgtgttgtgtgcagaagtcgacattacataaccccgcggcaaccatacgagatggcagtcataacaattgcaattgagcaatacaaaccacactgcaacccactaaaaagaaacacgactaacaaatagggtcttaaggagcgattcgccgagctcatccccgagaacgtcgagaagatcaagaagctccgaaaggagaagggtaacaccgtcatcggcgaggtcatcctcgaccaggcttacggtggtatgcgaggtattaagggtctcgtctgggagggatccgtcctcgaccccgaggagggtatccgattccgaggtctgactatccccgacctccagaagcagctcccccacgcccctggcggaaaggagcctctccccgagggtcttttctggctcctgctcaccggcgagatccccactgatgctcaggtcaagggtctgtccgctgactgggcctctcgagccgagatccccaagcatgttgaggagctcatcgaccgatgcccccccaccctccaccccatggctcagctcggtattgccgtcaacgctctggagtccgagtctcagttcaccaaggcttacgagaagggtgttaacaagaaggagtactggcagtacacctacgaggattccatgaacctcattgccaagctccccgtcattgcttctcgaatctaccgaaaccttttcaaggacggaaagattgttggctccattgacaactctcttgactactctgctaacttcgcctctctgctcggctttggcgacaacaaggagttcattgagcttctgcgactctacctcaccatccacgctgaccacgagggaggtaacgtctctgcccacaccaccaagcttgttggttctgctctctcctctcccttcctctctctgtccgctggtctcaacggtcttgccggtcctctccacggccgagctaaccaggaggtccttgagtggattctcgagatgaagtccaagattggctctgatgtcaccaaggaggacattgagaagtacctctgggatacccttaaggccggtcgagtcgtccccggttacggacacgccgttctccgaaagaccgatcctcgatacaccgcccagcgagagttcgccctcgagcacatgcccgactacgacctcttccacctcgtttccaccatctacgaggttgcccccaaggttctcaccgagcacggcaagaccaagaacccctggcccaatgtggactcccactccggtgtcctcctccagtactacggtctcactgagcagtcttactacactgttctcttcggtgtttcccgagctatcggtgtcctgccccagctcatcatggaccgagcttacggtgctcccatcgagcgacccaagtccttctctaccgagaagtacgctgagctcgttggcctcaagctctaa
SEQ ID NO.2
1974 bp
atgtctgaagaccacccagccatccacccaccctccgagttcaaggacaaccacccccacttcggaggcccccacctcgactgtctgcaggactaccaccagctgcacaaggagtccattgaggaccccaaggccttctggaagaagatggccaacgagctcatctcctggtcaaccccctttgaaactgtgcgatctggcggcttcgagcacggcgacgtggcctggttccccgagggccagctcaacgcctcctacaactgtgtggatcgacacgcctttgccaaccccgacaagcccgccatcatttttgaggccgatgagccgggccagggccgaatcgtcacctacggcgaactgctgcgacaggtgtctcaggtcgcagccaccctgcgatccttcggcgtccagaagggcgatactgtggccgtctacctgcccatgatccccgaggccattgtcactctgctggccatcacccgaattggcgctgtccactcggtcatcttcgccggcttctcctccggttctctgcgagaccgaatcaacgacgccaagtccaaggttgtcgtcaccaccgacgcctccatgcgaggaggcaagaccatcgacaccaagaagattgtcgatgaagccttgcgagactgcccctctgttacccacaccctggtcttccgacgagcaggtgtcgagaacctggcctggactgagggccgggacttctggtggcacgaggaggtcgtcaagcaccgaccctaccttgcccccgtccccgttgcctccgaggaccccatcttcctgctttacacctctggatccaccggcacccccaagggtctggcccacgctaccggtggctacctgcttggtgctgccctgaccgccaagtacgtgtttgacatccacggagacgacaagctgttcaccgctggagacgttggctggatcaccggccacacctacgtgctctacggtcctctgatgctcggagccaccactgttgtgttcgagggaacccctgcctacccctccttctcgcgatactgggacattgtcgacgaccacaagatcacccacttctacgtggctcccaccgccctgcgtctcctgaagcgggccggcacccatcacattaagcacgacctgtcgtctctgcgaaccctcggctctgtgggtgagcccattgcccccgacgtgtggcagtggtacaacgacaacattggccgaggcaaggcccacatctgtgacacctactggcagaccgagactggctcgcatatcattgcccccatggccggcgtgacccccaccaagcccggttctgcttccctgcctgtctttggaattgatcccgttatcattgatcccgtgtctggcgaggagctcaagggtaacaacgttgagggtgttcttgccctgcgatctccctggccctccatggcccgaaccgtgtggaacacccacgagcgatacatggagacctacctgcggccctaccccggctactacttcaccggtgatggtgctgcccgagacaatgacggcttttactggatccgaggccgagtcgacgacgttgtcaacgtttctggccaccgtctttccaccgccgagattgaggctgctctcattgagcacgctcaggtgtctgagtctgccgttgttggtgtccatgacgatctgactggccaggccgtcaacgcctttgtggctctcaagaaccccgtcgaggatgtggacgctctgcgaaaggagcttgttgtgcaggtgcgaaagaccattggaccctttgctgctcccaagaatgtcatcatcgtggacgatctgcccaagactcggtctggcaagatcatgcgacgaattctgcgaaaggtgcttgctggcgaggaggaccagctcggagacatttccactcttgctaaccccgacgttgtccagaccatcattgaggttgttcactcgttgaaaaagtaa
SEQ ID NO.3
909 bp
Atggattccaagattcagaccaacgtccctctgcccaaggctcctctgactcagaaggcccgaggtaagcgaaccaaaggtattcccgctctggtggctggtgcttgtgctggtgccgtggagatctccatcacctacccctttgagtccgccaagacccgagcccagctgaagcgacgaaaccacgacgtcgctgctatccgacccggcattcgaggttggtacgctggttacggtgccactctggtcggcaccactctgaaggcctccgtccagttcgcctccttcaacatctatcgatccgccctcgccggtcccaacggtgaaatctctaccggcgcttctatgctggccggtttcggtgctggtgtcaccgaggctgtgctcgctgtcactcccgctgaggccatcaagaccaagatcatcgacgcccgaaaggtcggtaacgccgagctgtctaccaccttcggtgccatcgccggcattctccgagatcgaggccccctcggtttcttctctgccgtgggccccactattctccgacagtcctctaacgccgccgtcaagttcaccgtgtacaacgagctgatcggtctggcccgaaagtactcccacaacggtgaggacgtccatcctctggcctctactctggtgggttctgtcaccggtgtctgttgcgcttggtccacccagcctctcgacgtcatcaagacccgaatgcagtctctgcaagcccgacagctgtacggcaacacctttaactgcgtgaagactctgctccgatccgagggcatcggtgtgttctggtccggtgtctggttccgaaccggtagactgtctctgacctccgccatcatgttccccgtctacgagaaggtctacaagttcctcacccagcctaactaa
SEQ ID NO 4
1470 bp
acaaaacagagcgccgatagcaatgccaagagcggtgtgaccagcgaaatctgccactgggccagtaatctggccaccgacgatatccctagtgacgttctggagcgtgccaagtatctgattttagatggtattgcttgtgcttgggttggtgcccgtgtgccttggagcgaaaagtacgtgcaagctaccatgagctttgaaccgccgggcgcatgccgcgtgattggttatggtcagaaactgggcccggttgccgcagcaatgaccaacagcgccttcatccaagctaccgagctggatgactatcatagcgaagccccgctgcatagcgccagtattgttctgccggcagtgttcgcagccagcgaagttctggccgaacaaggtaaaaccatcagcggcattgatgttattctggccgccattgtgggcttcgaaagtggtccgcgcatcggtaaggcaatctatggcagcgatttactgaacaatggctggcactgtggtgcagtttacggtgcccccgctggtgccttagcaactggtaagctgctgggtttaacacccgatagcatggaagatgctttaggcatcgcatgcacccaagcatgtggtctgatgagcgcccagtacggtggcatggttaagcgcgttcagcatggtttcgccgcacgcaacggcttactgggtggcttactggcacatggtggttacgaggcaatgaagggcgttctggaacgcagctatggcggctttctgaaaatgttcaccaaaggcaatggccgcgaacctccgtataaagaagaagaggtggtggccggtctgggcagcttttggcacaccttcaccatccgcattaaactgtatgcttgttgtggtttagtgcatggtccggtggaagccatcgagaatttacaaggtcgctatccggagctgctgaaccgtgcaaatctgagtaacatccgccatgtgcacgtgcagctgagcacagccagcaatagccattgcggctggattcccgaagaacgtccgattagtagcattgctggtcagatgagcgttgcatatattttagccgtgcagctggtggatcagcagtgtttactgagccagttcagcgagtttgatgacaatttagaacgcccggaggtttgggacttagcccgtaaagtgacaagcagtcagagcgaggagtttgatcaagatggcaactgtctgagcgctggtcgtgttcgcattgagttcaacgatggcagcagcatcaccgaaagcgttgaaaagccgctgggcgttaaggaaccgatgccgaacgaacgcattttacataagtatcgcactttagccggcagcgttacagacgaaagccgcgtgaaggagattgaggatttagtgctgggcttagaccgtttaaccgatattagcccgctgttagagctgctgaattgcccggttaagagtccgctggtgtga
SEQ ID NO 5
14015 bp
cgatgcttttcgtagataatggaatacaaatggatatccagagtatacacatggatagtatacactgacacgacaattctgtatctctttatgttaactactgtgaggcgttaaatagagcttgatatataaaatgttacatttcacagtctgaacttttgcagattacctaatttggtaagatattaattatgaactgaaagttgatggcatccctaaatttgatgaaagcctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcagatttctgctattcgtcccgccgttcgatcttccgttcgtgttgcccctatggccaacaccgccttccgggcctactctacccaggatgtgagtatttcttttctttcatcaattggttgctgtgcgacggatttcgttgcgtcagcctgattgcaacagccttaggccccattttcgacctgttcttgcctcggcaaaagtttttccgaatgcatgtgacacgtcgaatgtggtgctttcaagcagcagcagcagcataaaatatggaatgtgttgtgtgcagaagtcgacattacataaccccgcggcaaccatacgagatggcagtcataacaattgcaattgagcaatacaaaccacactgcaacccactaaaaagaaacacgactaacaaatagggtcttaaggagcgattcgccgagctcatccccgagaacgtcgagaagatcaagaagctccgaaaggagaagggtaacaccgtcatcggcgaggtcatcctcgaccaggcttacggtggtatgcgaggtattaagggtctcgtctgggagggatccgtcctcgaccccgaggagggtatccgattccgaggtctgactatccccgacctccagaagcagctcccccacgcccctggcggaaaggagcctctccccgagggtcttttctggctcctgctcaccggcgagatccccactgatgctcaggtcaagggtctgtccgctgactgggcctctcgagccgagatccccaagcatgttgaggagctcatcgaccgatgcccccccaccctccaccccatggctcagctcggtattgccgtcaacgctctggagtccgagtctcagttcaccaaggcttacgagaagggtgttaacaagaaggagtactggcagtacacctacgaggattccatgaacctcattgccaagctccccgtcattgcttctcgaatctaccgaaaccttttcaaggacggaaagattgttggctccattgacaactctcttgactactctgctaacttcgcctctctgctcggctttggcgacaacaaggagttcattgagcttctgcgactctacctcaccatccacgctgaccacgagggaggtaacgtctctgcccacaccaccaagcttgttggttctgctctctcctctcccttcctctctctgtccgctggtctcaacggtcttgccggtcctctccacggccgagctaaccaggaggtccttgagtggattctcgagatgaagtccaagattggctctgatgtcaccaaggaggacattgagaagtacctctgggatacccttaaggccggtcgagtcgtccccggttacggacacgccgttctccgaaagaccgatcctcgatacaccgcccagcgagagttcgccctcgagcacatgcccgactacgacctcttccacctcgtttccaccatctacgaggttgcccccaaggttctcaccgagcacggcaagaccaagaacccctggcccaatgtggactcccactccggtgtcctcctccagtactacggtctcactgagcagtcttactacactgttctcttcggtgtttcccgagctatcggtgtcctgccccagctcatcatggaccgagcttacggtgctcccatcgagcgacccaagtccttctctaccgagaagtacgctgagctcgttggcctcaagctctaaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcagtctgaagaccacccagccatccacccaccctccgagttcaaggacaaccacccccacttcggaggcccccacctcgactgtctgcaggactaccaccagctgcacaaggagtccattgaggaccccaaggccttctggaagaagatggccaacgagctcatctcctggtcaaccccctttgaaactgtgcgatctggcggcttcgagcacggcgacgtggcctggttccccgagggccagctcaacgcctcctacaactgtgtggatcgacacgcctttgccaaccccgacaagcccgccatcatttttgaggccgatgagccgggccagggccgaatcgtcacctacggcgaactgctgcgacaggtgtctcaggtcgcagccaccctgcgatccttcggcgtccagaagggcgatactgtggccgtctacctgcccatgatccccgaggccattgtcactctgctggccatcacccgaattggcgctgtccactcggtcatcttcgccggcttctcctccggttctctgcgagaccgaatcaacgacgccaagtccaaggttgtcgtcaccaccgacgcctccatgcgaggaggcaagaccatcgacaccaagaagattgtcgatgaagccttgcgagactgcccctctgttacccacaccctggtcttccgacgagcaggtgtcgagaacctggcctggactgagggccgggacttctggtggcacgaggaggtcgtcaagcaccgaccctaccttgcccccgtccccgttgcctccgaggaccccatcttcctgctttacacctctggatccaccggcacccccaagggtctggcccacgctaccggtggctacctgcttggtgctgccctgaccgccaagtacgtgtttgacatccacggagacgacaagctgttcaccgctggagacgttggctggatcaccggccacacctacgtgctctacggtcctctgatgctcggagccaccactgttgtgttcgagggaacccctgcctacccctccttctcgcgatactgggacattgtcgacgaccacaagatcacccacttctacgtggctcccaccgccctgcgtctcctgaagcgggccggcacccatcacattaagcacgacctgtcgtctctgcgaaccctcggctctgtgggtgagcccattgcccccgacgtgtggcagtggtacaacgacaacattggccgaggcaaggcccacatctgtgacacctactggcagaccgagactggctcgcatatcattgcccccatggccggcgtgacccccaccaagcccggttctgcttccctgcctgtctttggaattgatcccgttatcattgatcccgtgtctggcgaggagctcaagggtaacaacgttgagggtgttcttgccctgcgatctccctggccctccatggcccgaaccgtgtggaacacccacgagcgatacatggagacctacctgcggccctaccccggctactacttcaccggtgatggtgctgcccgagacaatgacggcttttactggatccgaggccgagtcgacgacgttgtcaacgtttctggccaccgtctttccaccgccgagattgaggctgctctcattgagcacgctcaggtgtctgagtctgccgttgttggtgtccatgacgatctgactggccaggccgtcaacgcctttgtggctctcaagaaccccgtcgaggatgtggacgctctgcgaaaggagcttgttgtgcaggtgcgaaagaccattggaccctttgctgctcccaagaatgtcatcatcgtggacgatctgcccaagactcggtctggcaagatcatgcgacgaattctgcgaaaggtgcttgctggcgaggaggaccagctcggagacatttccactcttgctaaccccgacgttgtccagaccatcattgaggttgttcactcgttgaaaaagtaaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcaggattccaagattcagaccaacgtccctctgcccaaggctcctctgactcagaaggcccgaggtaagcgaaccaaaggtattcccgctctggtggctggtgcttgtgctggtgccgtggagatctccatcacctacccctttgagtccgccaagacccgagcccagctgaagcgacgaaaccacgacgtcgctgctatccgacccggcattcgaggttggtacgctggttacggtgccactctggtcggcaccactctgaaggcctccgtccagttcgcctccttcaacatctatcgatccgccctcgccggtcccaacggtgaaatctctaccggcgcttctatgctggccggtttcggtgctggtgtcaccgaggctgtgctcgctgtcactcccgctgaggccatcaagaccaagatcatcgacgcccgaaaggtcggtaacgccgagctgtctaccaccttcggtgccatcgccggcattctccgagatcgaggccccctcggtttcttctctgccgtgggccccactattctccgacagtcctctaacgccgccgtcaagttcaccgtgtacaacgagctgatcggtctggcccgaaagtactcccacaacggtgaggacgtccatcctctggcctctactctggtgggttctgtcaccggtgtctgttgcgcttggtccacccagcctctcgacgtcatcaagacccgaatgcagtctctgcaagcccgacagctgtacggcaacacctttaactgcgtgaagactctgctccgatccgagggcatcggtgtgttctggtccggtgtctggttccgaaccggtagactgtctctgacctccgccatcatgttccccgtctacgagaaggtctacaagttcctcacccagcctaactaaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagcgagacaataacggaggagtcgactatgtctgataaaaggatgtaacataggcaagctgctcgtgagtgttgagtacgaaccttagatccaaatcacccgcacccacggatatacttgcttgaatatacagtagtatgctcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctctgggtcattttcggcgaggaccgctttcgctggagcgcgacgatgatcggcctgtcgcttgcggtattcggaatcttgcacgccctcgctcaagccttcgtcactggtcccgccaccaaacgtttcggcgagaagcaggccattatcgccggcatggcggccgacgcgctgggctacgtcttgctggcgttcgcgacgcgaggctggatggccttccccattatgattcttctcgcttccggcggcatcgggatgcccgcgttgcaggccatgctgtccaggcaggtagatgacgaccatcagggacagcttcaaggatcgctcgcggctcttaccagcctaacttcgatcactggaccgctgatcgtcacggcgatttatgccgcctcggcgagcacatggaacgggttggcatggattgtaggcgccgccctataccttgtctgcctccccgcgttgcgtcgcggtgcatggagccgggccacctcgacctgaatggaagccggcggcacctcgctaacggattcaccactccaagaattggagccaatcaattcttgcggagaactgtgaatgcgcaaaccaacccttggcagaacatatccatcgcgtccgccatctccagcagccgcacgcggcgcatctcgggcagcgttgggtcctggccacgggtgcgcatgatcgtgctcctgtcgttgaggacccggctaggctggcggggttgccttactggttagcagaatgaatcaccgatacgcgagcgaacgtgaagcgactgctgctgcaaaacgtctgcgacctgagcaacaacatgaatggtcttcggtttccgtgtttcgtaaagtctggaaacgcggaagtcagcgccctgcaccattatgttccggatctgcatcgcaggatgctgctggctaccctgtggaacacctacatctgtattaacgaagcgctggcattgaccctgagtgatttttctctggtcccgccgcatccataccgccagttgtttaccctcacaacgttccagtaaccgggcatgttcatcatcagtaacccgtatcgtgagcatcctctctcgtttcatcggtatcattacccccatgaacagaaatcccccttacacggaggcatcagtgaccaaacaggaaaaaaccgcccttaacatggcccgctttatcagaagccagacattaacgcttctggagaaactcaacgagctggacgcggatgaacaggcagacatctgtgaatcgcttcacgaccacgctgatgagctttaccgcagcagatccgcggccgcataggccaatagtggatctgctgcctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggcgcagccatgacccagtcacgtagcgatagcggagtgtatactggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctgcaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaacacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtcttcaagaattcatgtcacacaaaccgatcttcgcctcaaggaaacctaattctacatccgagagactgccgagatctgttcggaaatcaacggatgctcaaccgatttcgacagtaataatttgaatcgaatcggagcctaaaatgaacccgagtatatctcataaaattctcggtgagaggtctgtgactgtcagtacaaggtgccttcattatgccctcaaccttaccatacctcactgaatgtagtgtacctctaaaaatgaaatacagtgccaaaagccatggcactgagctcgtctaacggacttgatatacaaccaattaaaacaaatgaaaagaaatacagttctttgtatcatttgtaacaattaccctgtacaaactaaggtattgaaatcccacaatattcccaaagtccacccctttccaaattgtcatgcctacaactcatataccaagcactaacctaccaaacaccactaaaaccccacaaaatatatcttaccgaatatacagtaacaagctaccaccacactcgttgggtgcagtcgccagcttaaagatatctatccacatcagccacaactcccttcctttaataaaccgactacacccttggctattgaggttatgagtgaatatactgtagacaagacactttcaagaagactgtttccaaaacgtaccactgtcctccactacaaacacacccaatctgcttcttctagtcaaggttgctacaccggtaaattataaatcatcatttcattagcagggcagggccctttttatagagtcttatacactagcggaccctgccggtagaccaacccgcaggcgcgtcagtttgctccttccatcaatgcgtcgtagaaacgacttactccttcttgagcagctccttgaccttgttggcaacaagtctccgacctcggaggtggaggaagagcctccgatatcggcggtagtgataccagcctcgacggactccttgacggcagcctcaacagcgtcaccggcgggcttcatgttaagagagaacttgagcatcatggcggcagacagaatggtggcaatggggttgaccttctgcttgccgagatcgggggcagatccgtgacagggctcgtacagaccgaacgcctcgttggtgtcgggcagagaagccagagaggcggagggcagcagacccagagaaccggggatgacggaggcctcgtcggagatgatatcgccaaacatgttggtggtgatgatgataccattcatcttggagggctgcttgatgaggatcatggcggccgagtcgatcagctggtggttgagctcgagctgggggaattcgtccttgaggactcgagtgacagtctttcgccaaagtcgagaggaggccagcacgttggccttgtcaagagaccacacgggaagaggggggttgtgctgaagggccaggaaggcggccattcgggcaattcgctcaacctcaggaacggagtaggtctcggtgtcggaagcgacgccagatccgtcatcctcctttcgctctccaaagtagatacctccgacgagctctcggacaatgatgaagtcggtgccctcaacgtttcggatgggggagagatcggcgagcttgggcgacagcagctggcagggtcgcaggttggcgtacaggttcaggtcctttcgcagcttgaggagaccctgctcgggtcgcacgtcggttcgtccgtcgggagtggtccatacggtgttggcagcgcctccgacagcaccgagcataatagagtcagcctttcggcagatgtcgagagtagcgtcggtgatgggctcgccctccttctcaatggcagctcctccaatgagtcggtcctcgaacacaaactcggtgccggaggcctcagcaacagacttgagcaccttgacggcctcggcaatcacctcggggccacagaagtcgccgccgagaagaacaatcttcttggagtcagtcttggtcttcttagtttcgggttccattgtggatgtgtgtggttgtatgtgtgatgtggtgtgtggagtgaaaatctgtggctggcaaacgctcttgtatatatacgcacttttgcccgtgctatgtggaagactaaacctccgaagattgtgactcaggtagtgcggtatcggctagggacccaaaccttgtcgatgccgatagcgctatcgaacgtacccagccggccgggagtatgtcggaggggacatacgagatcgtcaagggtttgtggccaactggtaaataaatgatgactcaggcgacgacggaattctcatgtttgacagcttatcat
SEQ ID NO 6
16483 bp
cgatgcttttcgtagataatggaatacaaatggatatccagagtatacacatggatagtatacactgacacgacaattctgtatctctttatgttaactactgtgaggcgttaaatagagcttgatatataaaatgttacatttcacagtctgaacttttgcagattacctaatttggtaagatattaattatgaactgaaagttgatggcatccctaaatttgatgaaagcctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcagatttctgctattcgtcccgccgttcgatcttccgttcgtgttgcccctatggccaacaccgccttccgggcctactctacccaggatgtgagtatttcttttctttcatcaattggttgctgtgcgacggatttcgttgcgtcagcctgattgcaacagccttaggccccattttcgacctgttcttgcctcggcaaaagtttttccgaatgcatgtgacacgtcgaatgtggtgctttcaagcagcagcagcagcataaaatatggaatgtgttgtgtgcagaagtcgacattacataaccccgcggcaaccatacgagatggcagtcataacaattgcaattgagcaatacaaaccacactgcaacccactaaaaagaaacacgactaacaaatagggtcttaaggagcgattcgccgagctcatccccgagaacgtcgagaagatcaagaagctccgaaaggagaagggtaacaccgtcatcggcgaggtcatcctcgaccaggcttacggtggtatgcgaggtattaagggtctcgtctgggagggatccgtcctcgaccccgaggagggtatccgattccgaggtctgactatccccgacctccagaagcagctcccccacgcccctggcggaaaggagcctctccccgagggtcttttctggctcctgctcaccggcgagatccccactgatgctcaggtcaagggtctgtccgctgactgggcctctcgagccgagatccccaagcatgttgaggagctcatcgaccgatgcccccccaccctccaccccatggctcagctcggtattgccgtcaacgctctggagtccgagtctcagttcaccaaggcttacgagaagggtgttaacaagaaggagtactggcagtacacctacgaggattccatgaacctcattgccaagctccccgtcattgcttctcgaatctaccgaaaccttttcaaggacggaaagattgttggctccattgacaactctcttgactactctgctaacttcgcctctctgctcggctttggcgacaacaaggagttcattgagcttctgcgactctacctcaccatccacgctgaccacgagggaggtaacgtctctgcccacaccaccaagcttgttggttctgctctctcctctcccttcctctctctgtccgctggtctcaacggtcttgccggtcctctccacggccgagctaaccaggaggtccttgagtggattctcgagatgaagtccaagattggctctgatgtcaccaaggaggacattgagaagtacctctgggatacccttaaggccggtcgagtcgtccccggttacggacacgccgttctccgaaagaccgatcctcgatacaccgcccagcgagagttcgccctcgagcacatgcccgactacgacctcttccacctcgtttccaccatctacgaggttgcccccaaggttctcaccgagcacggcaagaccaagaacccctggcccaatgtggactcccactccggtgtcctcctccagtactacggtctcactgagcagtcttactacactgttctcttcggtgtttcccgagctatcggtgtcctgccccagctcatcatggaccgagcttacggtgctcccatcgagcgacccaagtccttctctaccgagaagtacgctgagctcgttggcctcaagctctaaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcagtctgaagaccacccagccatccacccaccctccgagttcaaggacaaccacccccacttcggaggcccccacctcgactgtctgcaggactaccaccagctgcacaaggagtccattgaggaccccaaggccttctggaagaagatggccaacgagctcatctcctggtcaaccccctttgaaactgtgcgatctggcggcttcgagcacggcgacgtggcctggttccccgagggccagctcaacgcctcctacaactgtgtggatcgacacgcctttgccaaccccgacaagcccgccatcatttttgaggccgatgagccgggccagggccgaatcgtcacctacggcgaactgctgcgacaggtgtctcaggtcgcagccaccctgcgatccttcggcgtccagaagggcgatactgtggccgtctacctgcccatgatccccgaggccattgtcactctgctggccatcacccgaattggcgctgtccactcggtcatcttcgccggcttctcctccggttctctgcgagaccgaatcaacgacgccaagtccaaggttgtcgtcaccaccgacgcctccatgcgaggaggcaagaccatcgacaccaagaagattgtcgatgaagccttgcgagactgcccctctgttacccacaccctggtcttccgacgagcaggtgtcgagaacctggcctggactgagggccgggacttctggtggcacgaggaggtcgtcaagcaccgaccctaccttgcccccgtccccgttgcctccgaggaccccatcttcctgctttacacctctggatccaccggcacccccaagggtctggcccacgctaccggtggctacctgcttggtgctgccctgaccgccaagtacgtgtttgacatccacggagacgacaagctgttcaccgctggagacgttggctggatcaccggccacacctacgtgctctacggtcctctgatgctcggagccaccactgttgtgttcgagggaacccctgcctacccctccttctcgcgatactgggacattgtcgacgaccacaagatcacccacttctacgtggctcccaccgccctgcgtctcctgaagcgggccggcacccatcacattaagcacgacctgtcgtctctgcgaaccctcggctctgtgggtgagcccattgcccccgacgtgtggcagtggtacaacgacaacattggccgaggcaaggcccacatctgtgacacctactggcagaccgagactggctcgcatatcattgcccccatggccggcgtgacccccaccaagcccggttctgcttccctgcctgtctttggaattgatcccgttatcattgatcccgtgtctggcgaggagctcaagggtaacaacgttgagggtgttcttgccctgcgatctccctggccctccatggcccgaaccgtgtggaacacccacgagcgatacatggagacctacctgcggccctaccccggctactacttcaccggtgatggtgctgcccgagacaatgacggcttttactggatccgaggccgagtcgacgacgttgtcaacgtttctggccaccgtctttccaccgccgagattgaggctgctctcattgagcacgctcaggtgtctgagtctgccgttgttggtgtccatgacgatctgactggccaggccgtcaacgcctttgtggctctcaagaaccccgtcgaggatgtggacgctctgcgaaaggagcttgttgtgcaggtgcgaaagaccattggaccctttgctgctcccaagaatgtcatcatcgtggacgatctgcccaagactcggtctggcaagatcatgcgacgaattctgcgaaaggtgcttgctggcgaggaggaccagctcggagacatttccactcttgctaaccccgacgttgtccagaccatcattgaggttgttcactcgttgaaaaagtaaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcaggattccaagattcagaccaacgtccctctgcccaaggctcctctgactcagaaggcccgaggtaagcgaaccaaaggtattcccgctctggtggctggtgcttgtgctggtgccgtggagatctccatcacctacccctttgagtccgccaagacccgagcccagctgaagcgacgaaaccacgacgtcgctgctatccgacccggcattcgaggttggtacgctggttacggtgccactctggtcggcaccactctgaaggcctccgtccagttcgcctccttcaacatctatcgatccgccctcgccggtcccaacggtgaaatctctaccggcgcttctatgctggccggtttcggtgctggtgtcaccgaggctgtgctcgctgtcactcccgctgaggccatcaagaccaagatcatcgacgcccgaaaggtcggtaacgccgagctgtctaccaccttcggtgccatcgccggcattctccgagatcgaggccccctcggtttcttctctgccgtgggccccactattctccgacagtcctctaacgccgccgtcaagttcaccgtgtacaacgagctgatcggtctggcccgaaagtactcccacaacggtgaggacgtccatcctctggcctctactctggtgggttctgtcaccggtgtctgttgcgcttggtccacccagcctctcgacgtcatcaagacccgaatgcagtctctgcaagcccgacagctgtacggcaacacctttaactgcgtgaagactctgctccgatccgagggcatcggtgtgttctggtccggtgtctggttccgaaccggtagactgtctctgacctccgccatcatgttccccgtctacgagaaggtctacaagttcctcacccagcctaactaaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagggacgacagagaccgggttggcggcgcatttgtgtcccaaaaaacagccccaattgccccaattgaccccaaattgacccagtagcgggcccaaccccggcgagagcccccttctccccacatatcaaacctcccccggttcccacacttgccgttaagggcgtagggtactgcagtctggaatctacgcttgttcagactttgtacttgtttctttgtctggccatccgggtaacccatgccggacgcaaaatagactactgaaaatttttttgctttgtggttgggactttagccaagggtataaaagaccaccgtccccgaattacctttcctcttcttttctctctctccttgtcaactcacacccgaaatcgttaagcatttccttctgagtataagaatcattcaaatctagaatggtgagtttcagaggcagcagcaattgccacgggctttgagcacacggccgggtgtggtcccattcccatcgacacaagacgccacgtcatccgaccagcactttttgcagtactaaccgcagacaaaacagagcgccgatagcaatgccaagagcggtgtgaccagcgaaatctgccactgggccagtaatctggccaccgacgatatccctagtgacgttctggagcgtgccaagtatctgattttagatggtattgcttgtgcttgggttggtgcccgtgtgccttggagcgaaaagtacgtgcaagctaccatgagctttgaaccgccgggcgcatgccgcgtgattggttatggtcagaaactgggcccggttgccgcagcaatgaccaacagcgccttcatccaagctaccgagctggatgactatcatagcgaagccccgctgcatagcgccagtattgttctgccggcagtgttcgcagccagcgaagttctggccgaacaaggtaaaaccatcagcggcattgatgttattctggccgccattgtgggcttcgaaagtggtccgcgcatcggtaaggcaatctatggcagcgatttactgaacaatggctggcactgtggtgcagtttacggtgcccccgctggtgccttagcaactggtaagctgctgggtttaacacccgatagcatggaagatgctttaggcatcgcatgcacccaagcatgtggtctgatgagcgcccagtacggtggcatggttaagcgcgttcagcatggtttcgccgcacgcaacggcttactgggtggcttactggcacatggtggttacgaggcaatgaagggcgttctggaacgcagctatggcggctttctgaaaatgttcaccaaaggcaatggccgcgaacctccgtataaagaagaagaggtggtggccggtctgggcagcttttggcacaccttcaccatccgcattaaactgtatgcttgttgtggtttagtgcatggtccggtggaagccatcgagaatttacaaggtcgctatccggagctgctgaaccgtgcaaatctgagtaacatccgccatgtgcacgtgcagctgagcacagccagcaatagccattgcggctggattcccgaagaacgtccgattagtagcattgctggtcagatgagcgttgcatatattttagccgtgcagctggtggatcagcagtgtttactgagccagttcagcgagtttgatgacaatttagaacgcccggaggtttgggacttagcccgtaaagtgacaagcagtcagagcgaggagtttgatcaagatggcaactgtctgagcgctggtcgtgttcgcattgagttcaacgatggcagcagcatcaccgaaagcgttgaaaagccgctgggcgttaaggaaccgatgccgaacgaacgcattttacataagtatcgcactttagccggcagcgttacagacgaaagccgcgtgaaggagattgaggatttagtgctgggcttagaccgtttaaccgatattagcccgctgttagagctgctgaattgcccggttaagagtccgctggtgtgaggtaccgactagttccatggcctgtccccacgttgccggtcttgcctcctactacctgtccatcaatgacgaggttctcacccctgcccaggtcgaggctcttattactgagtccaacaccggtgttcttcccaccaccaacctcaagggctctcccaacgctgttgcctacaacggtgttggcatttaggcaattaacagatagtttgccggtgataattctcttaacctcccacactcctttgacataacgatttatgtaacgaaactgaaatttgaccagatattgttgtaaatagaaaatctggcttgtaggtggcaaaatgcggcgtctttgttcatcaattccctctgtgactactcgtcatccctttatgttcgactgtcgtatttcttattttccatacatatgcaagtgagatgcccgtgtccgttatcaaatctagttagctagcgagacaataacggaggagtcgactatgtctgataaaaggatgtaacataggcaagctgctcgtgagtgttgagtacgaaccttagatccaaatcacccgcacccacggatatacttgcttgaatatacagtagtatgctcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctctgggtcattttcggcgaggaccgctttcgctggagcgcgacgatgatcggcctgtcgcttgcggtattcggaatcttgcacgccctcgctcaagccttcgtcactggtcccgccaccaaacgtttcggcgagaagcaggccattatcgccggcatggcggccgacgcgctgggctacgtcttgctggcgttcgcgacgcgaggctggatggccttccccattatgattcttctcgcttccggcggcatcgggatgcccgcgttgcaggccatgctgtccaggcaggtagatgacgaccatcagggacagcttcaaggatcgctcgcggctcttaccagcctaacttcgatcactggaccgctgatcgtcacggcgatttatgccgcctcggcgagcacatggaacgggttggcatggattgtaggcgccgccctataccttgtctgcctccccgcgttgcgtcgcggtgcatggagccgggccacctcgacctgaatggaagccggcggcacctcgctaacggattcaccactccaagaattggagccaatcaattcttgcggagaactgtgaatgcgcaaaccaacccttggcagaacatatccatcgcgtccgccatctccagcagccgcacgcggcgcatctcgggcagcgttgggtcctggccacgggtgcgcatgatcgtgctcctgtcgttgaggacccggctaggctggcggggttgccttactggttagcagaatgaatcaccgatacgcgagcgaacgtgaagcgactgctgctgcaaaacgtctgcgacctgagcaacaacatgaatggtcttcggtttccgtgtttcgtaaagtctggaaacgcggaagtcagcgccctgcaccattatgttccggatctgcatcgcaggatgctgctggctaccctgtggaacacctacatctgtattaacgaagcgctggcattgaccctgagtgatttttctctggtcccgccgcatccataccgccagttgtttaccctcacaacgttccagtaaccgggcatgttcatcatcagtaacccgtatcgtgagcatcctctctcgtttcatcggtatcattacccccatgaacagaaatcccccttacacggaggcatcagtgaccaaacaggaaaaaaccgcccttaacatggcccgctttatcagaagccagacattaacgcttctggagaaactcaacgagctggacgcggatgaacaggcagacatctgtgaatcgcttcacgaccacgctgatgagctttaccgcagcagatccgcggccgcataggccaatagtggatctgctgcctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggcgcagccatgacccagtcacgtagcgatagcggagtgtatactggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctgcaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaacacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtcttcaagaattcatgtcacacaaaccgatcttcgcctcaaggaaacctaattctacatccgagagactgccgagatctgttcggaaatcaacggatgctcaaccgatttcgacagtaataatttgaatcgaatcggagcctaaaatgaacccgagtatatctcataaaattctcggtgagaggtctgtgactgtcagtacaaggtgccttcattatgccctcaaccttaccatacctcactgaatgtagtgtacctctaaaaatgaaatacagtgccaaaagccatggcactgagctcgtctaacggacttgatatacaaccaattaaaacaaatgaaaagaaatacagttctttgtatcatttgtaacaattaccctgtacaaactaaggtattgaaatcccacaatattcccaaagtccacccctttccaaattgtcatgcctacaactcatataccaagcactaacctaccaaacaccactaaaaccccacaaaatatatcttaccgaatatacagtaacaagctaccaccacactcgttgggtgcagtcgccagcttaaagatatctatccacatcagccacaactcccttcctttaataaaccgactacacccttggctattgaggttatgagtgaatatactgtagacaagacactttcaagaagactgtttccaaaacgtaccactgtcctccactacaaacacacccaatctgcttcttctagtcaaggttgctacaccggtaaattataaatcatcatttcattagcagggcagggccctttttatagagtcttatacactagcggaccctgccggtagaccaacccgcaggcgcgtcagtttgctccttccatcaatgcgtcgtagaaacgacttactccttcttgagcagctccttgaccttgttggcaacaagtctccgacctcggaggtggaggaagagcctccgatatcggcggtagtgataccagcctcgacggactccttgacggcagcctcaacagcgtcaccggcgggcttcatgttaagagagaacttgagcatcatggcggcagacagaatggtggcaatggggttgaccttctgcttgccgagatcgggggcagatccgtgacagggctcgtacagaccgaacgcctcgttggtgtcgggcagagaagccagagaggcggagggcagcagacccagagaaccggggatgacggaggcctcgtcggagatgatatcgccaaacatgttggtggtgatgatgataccattcatcttggagggctgcttgatgaggatcatggcggccgagtcgatcagctggtggttgagctcgagctgggggaattcgtccttgaggactcgagtgacagtctttcgccaaagtcgagaggaggccagcacgttggccttgtcaagagaccacacgggaagaggggggttgtgctgaagggccaggaaggcggccattcgggcaattcgctcaacctcaggaacggagtaggtctcggtgtcggaagcgacgccagatccgtcatcctcctttcgctctccaaagtagatacctccgacgagctctcggacaatgatgaagtcggtgccctcaacgtttcggatgggggagagatcggcgagcttgggcgacagcagctggcagggtcgcaggttggcgtacaggttcaggtcctttcgcagcttgaggagaccctgctcgggtcgcacgtcggttcgtccgtcgggagtggtccatacggtgttggcagcgcctccgacagcaccgagcataatagagtcagcctttcggcagatgtcgagagtagcgtcggtgatgggctcgccctccttctcaatggcagctcctccaatgagtcggtcctcgaacacaaactcggtgccggaggcctcagcaacagacttgagcaccttgacggcctcggcaatcacctcggggccacagaagtcgccgccgagaagaacaatcttcttggagtcagtcttggtcttcttagtttcgggttccattgtggatgtgtgtggttgtatgtgtgatgtggtgtgtggagtgaaaatctgtggctggcaaacgctcttgtatatatacgcacttttgcccgtgctatgtggaagactaaacctccgaagattgtgactcaggtagtgcggtatcggctagggacccaaaccttgtcgatgccgatagcgctatcgaacgtacccagccggccgggagtatgtcggaggggacatacgagatcgtcaagggtttgtggccaactggtaaataaatgatgactcaggcgacgacggaattctcatgtttgacagcttatcat

Claims (4)

1. A yarrowia lipolytica genetically engineered bacterium producing citric acid is characterized in that a citric acid synthase gene CAS, an acetyl coenzyme A synthase gene ACS and a mitochondrial carboxylic acid transporter gene MTT derived from Aspergillus terreus which are endogenous in yarrowia lipolytica are expressed in vivo to construct a yarrowia lipolytica genetically engineered bacterium YLA01 capable of metabolically producing citric acid,
the nucleotide sequence of the citrate synthase gene CAS is shown as SEQ ID NO.1, the nucleotide sequence of the acetyl coenzyme A synthase gene ACS is shown as SEQ ID NO.2, and the nucleotide sequence of the mitochondrial carboxylic acid transporter gene MTT is shown as SEQ ID NO. 3.
2. A yarrowia lipolytica genetically engineered bacterium producing itaconic acid, characterized in that a citric acid synthase gene CAS and an acetyl coenzyme A synthase gene ACS derived from yarrowia lipolytica endogenesis, a mitochondrial carboxylic acid transporter gene MTT and a aconitic acid decarboxylase gene CADA derived from aspergillus terreus are expressed in yarrowia lipolytica to construct a yarrowia lipolytica genetically engineered bacterium YLA02 capable of metabolically producing citric acid,
the nucleotide sequence of the citrate synthase gene CAS is shown as SEQ ID No.1, the nucleotide sequence of the acetyl coenzyme A synthase gene ACS is shown as SEQ ID No.2, the nucleotide sequence of the mitochondrial carboxylic acid transporter gene MTT is shown as SEQ ID No.3, and the nucleotide sequence of the aconitate decarboxylase gene CADA is shown as SEQ ID No. 4.
3. The method for constructing yarrowia lipolytica genetically engineered bacterium that produces citric acid or itaconic acid of claim 1 or 2, comprising the steps of:
step one, connecting three genes of a citrate synthase gene CAS, an acetyl coenzyme A synthase gene ACS and a mitochondrial carboxylic acid transporter gene MTT to an expression plasmid PYLXP 'in sequence by means of homologous recombination and T4 connection to obtain a recombinant plasmid PYcam, and connecting the citrate synthase gene CAS, the acetyl coenzyme A synthase gene ACS, the mitochondrial carboxylic acid transporter gene MTT and an aconitate decarboxylase gene CADA to the expression plasmid PYLXP' by means of homologous recombination and T4 connection to obtain a recombinant plasmid PYcama;
step two, introducing the recombinant plasmid into yarrowia lipolytica to construct strains YLA01(PYcam) and YLA02 (PYcam); the nucleotide sequence of the recombinant plasmid PYcam is shown as SEQ ID NO.5, and the nucleotide sequence of the recombinant plasmid PYcama is shown as SEQ ID NO. 6.
4. The use of yarrowia lipolytica genetically engineered strain producing citric acid or itaconic acid of claim 1 or 2 for the production of citric acid or itaconic acid using acetic acid or acetate directly as carbon source.
CN202110548580.8A 2021-05-20 2021-05-20 Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid Pending CN113462588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110548580.8A CN113462588A (en) 2021-05-20 2021-05-20 Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110548580.8A CN113462588A (en) 2021-05-20 2021-05-20 Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid

Publications (1)

Publication Number Publication Date
CN113462588A true CN113462588A (en) 2021-10-01

Family

ID=77870985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110548580.8A Pending CN113462588A (en) 2021-05-20 2021-05-20 Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid

Country Status (1)

Country Link
CN (1) CN113462588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107081A (en) * 2021-11-30 2022-03-01 南京工业大学 Recombinant yarrowia lipolytica genetic engineering bacterium utilizing methanol biotransformation and construction method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993899A (en) * 2009-08-25 2011-03-30 财团法人工业技术研究院 Producing itaconic acid in yeast using glycerol as the substrate
CN107058144A (en) * 2017-02-15 2017-08-18 江南大学 A kind of restructuring yeast strains for producing itaconic acid and its construction method and application
CN108795789A (en) * 2018-07-02 2018-11-13 山东省食品发酵工业研究设计院 A kind of high-yield itaconic acid Yarrowia lipolytica engineered strain and its construction method, zymotechnique and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993899A (en) * 2009-08-25 2011-03-30 财团法人工业技术研究院 Producing itaconic acid in yeast using glycerol as the substrate
CN107058144A (en) * 2017-02-15 2017-08-18 江南大学 A kind of restructuring yeast strains for producing itaconic acid and its construction method and application
CN108795789A (en) * 2018-07-02 2018-11-13 山东省食品发酵工业研究设计院 A kind of high-yield itaconic acid Yarrowia lipolytica engineered strain and its construction method, zymotechnique and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN ZHAO等: "Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT", 《APPLIED MICROBIOLOGY AND BIOTECHNOLOGY》 *
HUAN LIU等: "Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica", 《METABOLIC ENGINEERING》 *
PATRICK FICKERS等: "Sugar Alcohols and Organic Acids Synthesis in Yarrowia lipolytica: Where Are We?", 《MICROORGANISMS》 *
PENG XU等: "Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals", 《PNAS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107081A (en) * 2021-11-30 2022-03-01 南京工业大学 Recombinant yarrowia lipolytica genetic engineering bacterium utilizing methanol biotransformation and construction method and application thereof
CN114107081B (en) * 2021-11-30 2023-05-05 南京工业大学 Recombinant yarrowia lipolytica genetically engineered bacterium utilizing methanol bioconversion and construction method and application thereof

Similar Documents

Publication Publication Date Title
Martinez et al. Lactic acid properties, applications and production: A review
CN102329765B (en) XZ-A26 bacterial strain for producing L-alanine with high yield as well as construction method and application of XZ-A26 bacterial strain
CN103881954B (en) Gamma-polyglutamic acid-genetic engineering bacterium and high yield gamma-polyglutamic acid-method thereof are produced in one strain
CN109207373B (en) Microbial strain for high yield of citric acid and method for producing citric acid by fermenting starch sugar through microbial strain
CA2726054A1 (en) Method of producing yeast biomass
Zhao et al. $\small {D} $-Lactic Acid Production by Sporolactobacillus inulinus Y2-8 Immobilized in Fibrous Bed Bioreactor Using Corn Flour Hydrolyzate
CN101173308A (en) Method for ferment for producing adenomethionine with genetic engineering bacterium
UA127433C2 (en) Method for producing lactic acid
CN101255454B (en) Method for biosynthesis of glutathione by using yeast
CN113462588A (en) Construction method of yarrowia lipolytica genetic engineering bacteria for producing citric acid or itaconic acid by using acetic acid
WO2012109375A2 (en) Methods for improved mixed trophic algal culture
CN113072599A (en) Method for preparing natural hesperidin by biological fermentation and extraction
CN106893682B (en) Method for expanding culture of saccharomycetes by using liquefied mash and application of saccharomycetes and method for fermenting ethanol
CN101469318B (en) Synthesis of (R)-styrene glycol by coupling acceleration of (R)-carbonyl reduction enzyme and formic dehydrogenase
EP3041943B1 (en) A process for microbial fermentation of sugary substrates (wort) by using hydrogen
CN112626134B (en) Method for preparing malic acid by using citric acid fermentation tail gas
CN115851569A (en) Zymomonas mobilis for co-production of lactic acid and ethanol by utilizing non-grain biomass and application
CN104830744A (en) Method for preparing (R)-phenylglycol from SD-AS sequence coupled (R)-carbonyl reductase and glucose dehydrogenase
CN111304138B (en) Recombinant escherichia coli for producing beta-carotene and construction method and application thereof
CN109161570B (en) Method for improving fermentation production of N-acetylneuraminic acid and fermentation liquor
KR20130037608A (en) Recombinant microorganism for use in producing caproic acid and method of producing caproic acid using the same
CN104789489A (en) Arginine deiminase high-yielding Bacillus cereus and application thereof
CN110106098A (en) A kind of saccharomyces cerevisiae engineered yeast strain of high yield pyruvic acid and its fermentation process
CA2362926A1 (en) Method for producing l-sorbose
CN115093977B (en) Brevibacterium pullulans strain EP01 for producing fumaric acid and use method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211001