CN113435110B - 一种面向装配过程的低压转子多工序不平衡量预测方法 - Google Patents

一种面向装配过程的低压转子多工序不平衡量预测方法 Download PDF

Info

Publication number
CN113435110B
CN113435110B CN202110629422.5A CN202110629422A CN113435110B CN 113435110 B CN113435110 B CN 113435110B CN 202110629422 A CN202110629422 A CN 202110629422A CN 113435110 B CN113435110 B CN 113435110B
Authority
CN
China
Prior art keywords
unbalance
low
influence factors
key influence
assembly process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110629422.5A
Other languages
English (en)
Other versions
CN113435110A (zh
Inventor
王明微
刘磊
周竞涛
张惠斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110629422.5A priority Critical patent/CN113435110B/zh
Publication of CN113435110A publication Critical patent/CN113435110A/zh
Application granted granted Critical
Publication of CN113435110B publication Critical patent/CN113435110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Molecular Biology (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本发明公开了一种面向装配过程的低压转子多工序不平衡量预测方法,用于解决低压转子初始不平衡量波动大,一次成功率低的问题。该发明的技术方案是通过对低压转子的结构以及装配工艺分析,从零部件加工质量、装配工艺、装配质量中确定各工序不平衡量的影响因素构建关键影响因素备选集,然后利用复杂网络对关键影响因素进行识别;其次在此基础上,针对每一装配工序建立基于双向LSTM网络的不平衡量预测模型;最后以所建立的不平衡量预测模型为基础构建低压转子半实物仿真模型实现装配过程中不平衡量的预测。

Description

一种面向装配过程的低压转子多工序不平衡量预测方法
技术领域
本发明属于航空发动机制造领域,涉及一种面向装配过程的低压转子多工序不平衡量预测方法。
背景技术
不平衡量是引起低压转子振动的主要原因,严重时会影响到航空发动机的运转可靠性与使用寿命。然而低压转子不平衡量受零件加工质量、装配工艺、装配质量等多因素协同影响,使得其在装配过程中的预测面临影响因素多、互相耦合且作用机理不明确等问题,这导致装配过程中不平衡量难以预测。文献“航空发动机转子同轴度和不平衡量双目标优化装配方法”提出了一种基于神经网络的转子不平衡量预测方法。该方法在根据多级转子结构特点及堆叠装配工艺明确不平衡量的误差源的基础上,建立了基于BP神经网络的多级转子不平衡量预测网络,实现了转子初始不平衡量的识别。但是该方法是在转子装配前对转子不平衡量进行预测,仅仅考虑了零件加工质量和部分装配工艺,忽略了装配过程中各因素对不平衡的影响,预测精确度较低,具有一定的局限性。
发明目的
为解决目前低压转子初始不平衡量波动大,一次成功率低的问题,本发明提出了面向装配过程的不平衡量半实物仿真模型,主要解决以下两个问题:
(1)各工序不平衡量关键影响因素识别。针对各工序初始不平衡量影响因素众多、影响关系黑箱且强耦合的问题,提出基于复杂网络的不平衡量关键影响因素识别方法,采用复杂网络对各工序不平衡量影响因素的关联关系建模,然后基于所建立的关联关系模型采用熵权-TOPSIS模型对其中的关键影响因素进行识别。
(2)面向装配过程的不平衡量预测。针对低压转子不平衡量与其关键影响因素复杂耦合以及双向时序作用关系,本发明在对各装配工序不平衡量关键影响因素识别的基础上,构建以双向LSTM网络为预测模型的半实物仿真模型,实现装配过程中低压转子各工序不平衡量的预测。
发明内容
为实现装配过程中对不平衡量的预测,本发明提出了一种面向装配过程的低压转子多工序不平衡量预测模型,通过对低压转子结构和装配工艺分析形成不平衡量关键影响因素备选,然后利用复杂网络构建因素间的关联关系模型对各工序不平衡量的关键影响因素进行识别,以所识别关键影响因素为输入,利用双向LSTM构建低压转子不平衡量预测模型对各工序不平衡量进行预测,最后建立低压转子半实物仿真模型实现装配过程中不平衡的预测。由于是在综合考虑了不平衡量形成过程中的各种因素的基础上对关键影响因素进行的识别,并且利用虚实融合的方式解决了装配过程中后序工步未进行所导致的输入数据不完备的问题,因此实现了装配过程中对不平衡量的预测并保证了其预测精度。
本发明解决其技术问题所采用的技术方案:一种面向装配过程的低压转子多工序不平衡量预测方法,其特点是包括以下步骤:
步骤一、通过分析低压转子的结构以及装配工艺形成各工序不平衡量关键影响因素备选集,用公式:
factorsi={proQuai,assTeci,assQuai} (1)
式中,factorsi表示第i个工序不平衡量关键影响因素备选集,proQuai是第i个工序所涉及到的零件加工质量,assTeci是第i个工序所涉及到的装配工艺,assQuai是第i个工序所涉及到的装配质量;
步骤二、根据工序不平衡量关键影响因素备选集中各影响因素间的相互作用关系利用复杂网络构建影响因素关联关系模型Gi(factorsi,Ef);
步骤三、根据关联关系模型Gi(factorsi,Ef)计算各因素的度中心性、聚集系数、介数中心性、接近度中心性、离心度中心性、特征向量中心性、平均邻居度七个因素重要度指标形成属性原始矩阵X。上述各指标计算公式如下:
度中心性:
Figure BDA0003100483620000031
聚集系数:
Figure BDA0003100483620000032
介数中心性:
Figure BDA0003100483620000033
接近度中心性:
Figure BDA0003100483620000034
离心度中心性:EC(i)=maxdij(6)
特征向量中心性:
Figure BDA0003100483620000035
平均邻居度:
Figure BDA0003100483620000036
步骤四、根据形成属性原始矩阵X进行标准化得到矩阵,然后采用熵权-TIOPSIS模型计算各因素重要度,并根据重要度变化趋势确定阈值,实现各工序不平衡量关键影响因素识别。
各指标的权重计算公式如下式:
Figure BDA0003100483620000037
Figure BDA0003100483620000038
其中,
Figure BDA0003100483620000039
如果pij=0,则定义
Figure BDA00031004836200000310
各因素重要度计算公式如下:
Figure BDA00031004836200000311
其中:
Figure BDA00031004836200000312
Figure BDA0003100483620000041
步骤五、根据关键影响因素随工步的变化情况分为随工序变化和随工步变化两类的关键影响因素,以工序所包含的工步数为时间步,每一时间步的输入识别出的关键影响因素中由随工序变化和随工步变化两部分组成,构建基于双向LSTM的不平衡量预测模型。
步骤六、构建以不平衡量预测模型为核心的不平衡量半实物仿真模型。该模型输入是将各工步以虚实结合的方式输入,即将已进行工步的实测数据与未进行的工步的理论数据相结合输入到训练好的网络中即可得到该工序不平衡量的预测值。其输入如下式:
Figure BDA0003100483620000042
其中,Xi为半实物仿真模型的输入,每一工步的输入
Figure BDA0003100483620000043
是由从加工质量、装配质量、装配工艺识别出关键影响因素组成,Xt中当前工步
Figure BDA0003100483620000044
前为实测值,之后的为理论值。
本发明的有益效果
在关键影响因素识别阶段,综合考虑了不平衡量识别过程中所涉及到的各类因素,并且采用了一种客观定量的方法,避免了人为主观因素的影响;在预测模型建立阶段,利用双向LSTM在处理双向时序上的优势建立不平衡量预测模型,挖掘了装配过程中的双向时序上的关系,提供了不平衡量预测的准确率;在利用半实物仿真模型预测不平衡量预测模型时,输入采用了虚实结合的方式,解决了装配过程中后序工步未进行导致的输入数据缺失的问题。
附图说明
图1实现预测过程
图2双向LSTM的不平衡量预测模型
图3半实物仿真模型
具体实施方式
首先分析低压转子的结构特征以及装配工艺,形成了各工序不平衡量关键影响因素的备选集,如下式:
盘鼓装配阶段:
proQua1=(iubi pd perpi asi atri csri tsri rcyi rsri rphi rhsi) (14)
式中:
proQua1——盘鼓装配工序不平衡量加工质量影响因素;
iubi——第i级盘鼓初始不平衡量;
pd——第i级盘鼓上下止口配合端面平行度;
prepi——第i级盘鼓配合止口处端面相对于旋转轴的端面跳动度;
asi——第i级盘鼓配合止口处柱面实际尺寸;
atri——第i级盘鼓配合止口处柱面全跳动度;
csri——第i级盘鼓配合止口处柱面表面粗糙度;
tsri——第i级盘鼓配合止口处端面表面粗糙度;
rcyi——第i级盘鼓配合轴承安装处转轴的圆柱度;
rsri——第i级盘鼓配合轴承安装处转轴的表面粗糙度;
rhpi——第i级盘鼓配合轴承安装处转轴端面的平面度;
rhsi——第i级盘鼓配合轴承安装处转轴端面的表面粗糙度。
Figure BDA0003100483620000051
式中:
assTec1——低压转子不平衡量盘鼓安装工序不平衡量装配工艺影响因素集;
iphi——第i级盘鼓安装相位;
htei——盘鼓加热温度;
etei——装配环境温度;
Figure BDA0003100483620000052
——第i级盘鼓装配中第j个螺栓拧紧力矩;
Figure BDA0003100483620000053
——第i级盘鼓装配中第j个螺栓拧紧顺序。
assQua1=(raca dca cspl dim) (16)
式中:
assTua1——低压转子不平衡量盘鼓安装工序不平衡量装配质量影响因素集;
raca——旋转轴的同轴度;
dca——盘鼓间的同心度;
cspl——盘鼓止口接触面不平行度;
dim——盘鼓过盈配合的过盈量。
叶片装配阶段:
Figure BDA0003100483620000061
式中:
proQua2,3——第i级叶片安装工序不平衡量加工质量影响因素;
Figure BDA0003100483620000062
——盘鼓装配完成后形成的不平衡量;
Figure BDA0003100483620000063
——第i级盘鼓第j个叶片重量矩;
Figure BDA0003100483620000064
——第i级盘鼓第j个叶片弯矩;
Figure BDA0003100483620000065
——第i级盘鼓第j个叶片扭矩;
Figure BDA0003100483620000066
——第i级盘鼓第j个叶片实际尺寸;
bsri j——第i级盘鼓第j个榫头表面粗糙度;
Figure BDA0003100483620000067
——第i级盘鼓第j个榫头直线度;
Figure BDA0003100483620000068
——第i级盘鼓第j个榫槽实际尺寸;
dsri j——第i级盘鼓第j个榫槽表面粗糙度;
Figure BDA0003100483620000069
——第i级盘鼓第j个榫槽直线度。
pubi——第i级叶片组不平衡量。
Figure BDA00031004836200000610
式中:
assTec2,3——低压转子不平衡量叶片安装工序不平衡量装配工艺影响因素集;
Figure BDA00031004836200000611
——第i级盘鼓第j个叶片安装顺序;
binfi j——第i级盘鼓第j个叶片安装力。
Figure BDA00031004836200000612
式中:
assTua2,3——低压转子不平衡量叶片安装工序不平衡量装配质量影响因素集;
pcli——第i级盘鼓第j个叶片的装配间隙。
不平衡量校正正阶段:
Figure BDA00031004836200000613
式中:
proQua4——低压转子不平衡量校正工序不平衡量加工质量影响因素;
Figure BDA0003100483620000071
——低压转子平衡前的初始不平衡量。
assTec4=(bsn bswi bspi) (21)
式中:
assTec4——低压转子不平衡量校正工序装配工艺影响因素集;
bsn——平衡螺钉的数量;
bswi——第i个平衡螺钉的质量
bspi——第i个平衡螺钉的安装位置。
然后根据各因素间的相互作用关系利用复杂网络建立因素间的关联关系模型,并计算各因素在复杂网络里的固有属性,形成固有属性原始矩阵X。
根据矩阵X利用熵权-TOPSIS模型计算各因素综合重要度。首先根据矩阵X利用熵权法计算出各属性占综合重要度的权重,同时利用TOPSIS方法计算各因素的属性与理想值的距离,然后根据计算的权重以及与理性值距离计算获得各因素的综合重要度。最后根据重要度的变化趋势获得各工序不平衡量的关键影响因素,部分结果如下表:
表1二级叶片装配工序不平衡量关键影响因素重要性排序结果
Figure BDA0003100483620000072
以二级叶片装配为例介绍建立不平衡量预测模型过程。其中盘鼓初始不平衡量、二级叶片组不平衡量为随工序改变的关键影响因素,叶片重量矩、安装位置、装配间隙为随工步改变的影响因素,因此该工序预测模型的输入
Figure BDA0003100483620000073
如下式。此外由于二级叶片有60片,因此该双向LSTM网络的时间步为60。然后对该网络进行训练获得不平衡量预测模型。
Figure BDA0003100483620000074
其中UB1代表盘鼓初始不平衡量,ulg2是二级叶片组不平衡量,
Figure BDA0003100483620000075
Figure BDA0003100483620000081
分别是叶片重量矩、安装位置、装配间隙。
以训练所获得的预测模型为核心构建不平衡量半实物仿真模型。由于参装零件在装配前已经确定,因此装配过程中预测不平衡量时加工质量的数据均为实际值xpq;在第t个工步进行时采集相应的装配工艺数据
Figure BDA0003100483620000082
当工步完成后采集装配质量数据
Figure BDA0003100483620000083
形成该工步的输入数据
Figure BDA0003100483620000084
将该工步之前的实际数据与之后的理论数据相融合,形成输入数据Xi={X1,X2,…,XN};将融合后的数据输入到所建立的该工序不平衡量预测模型中预测第t个工步完成后该工序的不平衡量
Figure BDA0003100483620000085
本发明综合考虑了不平衡量各类影响影响因素,并利用双向LSTM在挖掘双向时序非线性关系的优势来构建半实物仿真模型,最后采用了虚实结合的方式实现了装配过程中不平衡量的预测,能够为低压转子的装配提供一定的指导,提高一次装配成功率。

Claims (1)

1.一种面向装配过程的低压转子多工序不平衡量预测方法,其包含以下内容:
1), 通过分析低压转子的结构以及装配工艺形成各工序不平衡量关键影响因素备选集;
2), 根据工序不平衡量关键影响因素备选集中各影响因素间的相互作用关系利用复杂网络构建影响因素关联关系模型;
3), 根据关联关系模型计算各因素的度中心性、聚集系数、介数中心性、接近度中心性、离心度中心性、特征向量中心性、平均邻居度七个因素重要度指标形成属性原始矩阵;
4), 根据形成属性原始矩阵进行标准化得到矩阵,然后采用熵权-TIOPSIS模型计算各因素重要度,并根据重要度变化趋势确定阈值,实现各工序不平衡量关键影响因素识别;
5), 根据关键影响因素随工步的变化情况分为随工序变化和随工步变化两类的关键影响因素,以工序所包含的工步数为时间步,每一时间步的输入识别出的关键影响因素中由随工序变化和随工步变化两部分组成,构建基于双向LSTM的不平衡量预测模型;
6), 构建以不平衡量预测模型为核心的不平衡量半实物仿真模型, 该模型输入是将各工步以虚实结合的方式输入,即将已进行工步的实测数据与未进行的工步的理论数据相结合输入到训练好的网络中即可得到该工序不平衡量的预测值。
CN202110629422.5A 2021-06-04 2021-06-04 一种面向装配过程的低压转子多工序不平衡量预测方法 Active CN113435110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110629422.5A CN113435110B (zh) 2021-06-04 2021-06-04 一种面向装配过程的低压转子多工序不平衡量预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110629422.5A CN113435110B (zh) 2021-06-04 2021-06-04 一种面向装配过程的低压转子多工序不平衡量预测方法

Publications (2)

Publication Number Publication Date
CN113435110A CN113435110A (zh) 2021-09-24
CN113435110B true CN113435110B (zh) 2022-06-21

Family

ID=77803998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110629422.5A Active CN113435110B (zh) 2021-06-04 2021-06-04 一种面向装配过程的低压转子多工序不平衡量预测方法

Country Status (1)

Country Link
CN (1) CN113435110B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271524A (ja) * 2006-03-31 2007-10-18 Toshiba Corp タービンロータのアンバランス評価方法およびタービンロータのアンバランス評価装置
CN109871947A (zh) * 2019-03-21 2019-06-11 哈尔滨工业大学 基于卷积神经网络的大型高速回转装备多级零部件初始不平衡量逐级堆叠方法和装置
CN110595689A (zh) * 2018-10-22 2019-12-20 哈尔滨工业大学 一种大型高速回转装备多级零部件不平衡量预测方法及零部件装配装置
CN111413031A (zh) * 2019-01-07 2020-07-14 哈尔滨工业大学 基于动力学振动响应特性的大型高速回转装备深度学习调控与装配方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595690B (zh) * 2019-01-07 2020-11-13 哈尔滨工业大学 基于形心质心重心惯性中心矢量极小化的大型高速回转装备测量与智能学习装配方法和装置
US11460003B2 (en) * 2019-09-18 2022-10-04 Inventus Holdings, Llc Wind turbine damage detection system using machine learning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271524A (ja) * 2006-03-31 2007-10-18 Toshiba Corp タービンロータのアンバランス評価方法およびタービンロータのアンバランス評価装置
CN110595689A (zh) * 2018-10-22 2019-12-20 哈尔滨工业大学 一种大型高速回转装备多级零部件不平衡量预测方法及零部件装配装置
CN111413031A (zh) * 2019-01-07 2020-07-14 哈尔滨工业大学 基于动力学振动响应特性的大型高速回转装备深度学习调控与装配方法和装置
CN109871947A (zh) * 2019-03-21 2019-06-11 哈尔滨工业大学 基于卷积神经网络的大型高速回转装备多级零部件初始不平衡量逐级堆叠方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Novel optimization technique for variation propagation control in an aero-engine assembly;Yang Z,Hussain T,Popov A A,et al.;《Journal of Engineering Manufacture》;20111231;全文 *
基于转子跳动和初始不平衡量优化的多级盘转子结构装配工艺;琚奕鹏等;《航空发动机》;20181212(第06期);全文 *

Also Published As

Publication number Publication date
CN113435110A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
Zhang et al. Equipment energy consumption management in digital twin shop-floor: A framework and potential applications
CN111695734A (zh) 一种基于数字孪生及深度学习的多工艺规划综合评估系统及方法
Jiang et al. Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes
Ma et al. Engineering‐driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process
Galar et al. Integration of disparate data sources to perform maintenance prognosis and optimal decision making
CN116992399B (zh) 一种基于电力数据分析的电力设备运维评估方法
KR20180131246A (ko) 빅데이터 분석을 통한 공정 관리 방법
He et al. Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models
Luo et al. Adaptive Fisher‐Based Deep Convolutional Neural Network and Its Application to Recognition of Rolling Element Bearing Fault Patterns and Sizes
CN113435110B (zh) 一种面向装配过程的低压转子多工序不平衡量预测方法
Chen et al. Fuzzy testing model for the lifetime performance of products under consideration with exponential distribution
Liu et al. Sensor data anomaly detection and correction for improving the life prediction of cutting tools in the slot milling process
Wang et al. Component-oriented reassembly in remanufacturing systems: Managing uncertainty and satisfying customer needs
Wen et al. A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques
Wang et al. A data-driven method for performance analysis and improvement in production systems with quality inspection
CN116538092B (zh) 一种压缩机在线监测及诊断方法、装置、设备及存储介质
Zhou et al. Model and application of product conflict problem with integrated TRIZ and Extenics for low-carbon design
CN104081298A (zh) 用于自动化和/或电气工程项目中的工作流程的自动化操控的系统和方法
Cheng et al. Reliability allocation method based on maximum entropy ordered weighted average and hesitant fuzzy Linguistic term set
CN114970049B (zh) 一种轴承预紧力可变的电主轴热误差预测方法
Nemani et al. Health index construction with feature fusion optimization for predictive maintenance of physical systems
Zhang et al. Identification of key factors and mining of association relations in complex product assembly process
CN104850711A (zh) 一种机电产品设计标准选择方法
Kiling et al. An energy-related products compliant eco-design method with durability-embedded economic and environmental assessments
Li et al. Operating performance assessment for transition state of industrial processes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant