CN113435064B - Silicon oil damper service life prediction method and vehicle - Google Patents
Silicon oil damper service life prediction method and vehicle Download PDFInfo
- Publication number
- CN113435064B CN113435064B CN202110858671.1A CN202110858671A CN113435064B CN 113435064 B CN113435064 B CN 113435064B CN 202110858671 A CN202110858671 A CN 202110858671A CN 113435064 B CN113435064 B CN 113435064B
- Authority
- CN
- China
- Prior art keywords
- silicone oil
- amplitude value
- real
- time
- oil damper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/16—Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/0047—Measuring, indicating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/24—Detecting or preventing malfunction, e.g. fail safe
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及车辆技术领域,尤其涉及一种硅油减振器寿命预测方法及车辆。The invention relates to the technical field of vehicles, in particular to a method for predicting the life of a silicone oil shock absorber and a vehicle.
背景技术Background technique
硅油减振器为车辆的关键零部件,其安装在发动机的曲轴,对于保持车辆运行的安全和稳定至关重要。Silicone oil shock absorber is a key component of the vehicle. It is installed on the crankshaft of the engine and is essential to keep the vehicle running safely and stably.
现有技术中,要预测硅油减振器剩余寿命时,通常需要将硅油减振器安装于试验台,在加载一定次数使硅油减振器失效后,统计硅油减振器的最大加载次数。但是,硅油减振器安装在车辆上时,则无法有效评估硅油减振器的剩余使用寿命,并且由于硅油减振器在实际的使用过程中,其所处的工况是不断变化的,比如温度和系统共振等因素的变化都会影响硅油减振器的性能,进而导致硅油减振器剩余寿命的衰减程度出现变化,而试验台通常无法全面模拟车辆的各种使用工况,从而,这种预测方法并不准确。In the prior art, when predicting the remaining life of a silicone oil shock absorber, it is usually necessary to install the silicone oil shock absorber on a test bench, and after loading a certain number of times to make the silicone oil shock absorber fail, count the maximum loading times of the silicone oil shock absorber. However, when the silicone oil shock absorber is installed on the vehicle, the remaining service life of the silicone oil shock absorber cannot be effectively evaluated, and because the silicone oil shock absorber is in actual use, its working conditions are constantly changing, such as Changes in factors such as temperature and system resonance will affect the performance of the silicone oil shock absorber, which will lead to changes in the degree of attenuation of the remaining life of the silicone oil shock absorber, and the test bench usually cannot fully simulate various operating conditions of the vehicle. Forecasting methods are not accurate.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于:提供一种硅油减振器寿命预测方法及车辆,以在车辆上即可评估硅油减振器的剩余行驶里程,并且评估结果准确。The purpose of the present invention is to provide a method for predicting the life of a silicone oil shock absorber and a vehicle, so that the remaining mileage of the silicone oil shock absorber can be evaluated on the vehicle, and the evaluation result is accurate.
一方面,本发明提供一种硅油减振器寿命预测方法,硅油减振器安装于车辆的发动机的曲轴,硅油减振器寿命预测方法包括:In one aspect, the present invention provides a method for predicting the life of a silicone oil shock absorber, wherein the silicone oil shock absorber is installed on a crankshaft of an engine of a vehicle, and the method for predicting the life of the silicone oil shock absorber includes:
车辆行驶过程中,实时采集硅油减振器的实时温度、发动机的实时扭矩和发动机的实时转速;During the driving process of the vehicle, the real-time temperature of the silicone oil shock absorber, the real-time torque of the engine and the real-time speed of the engine are collected in real time;
依据所述实时转速获取硅油减振器的实时扭振幅值;Obtain the real-time torsional amplitude value of the silicone oil shock absorber according to the real-time rotational speed;
依据温度、扭矩和扭振幅值的对应关系,将所述实时扭振幅值转换为所述硅油减振器于设定温度、设定扭矩下的标准扭振幅值;Converting the real-time torsional amplitude value to the standard torsional amplitude value of the silicone oil shock absorber at a set temperature and a set torque according to the corresponding relationship between temperature, torque and torsional amplitude value;
依据行驶里程和扭振幅值的裂化量的对应关系,获取所述硅油减振器的第一剩余行驶里程,所述扭振幅值的裂化量为硅油减振器的寿命范围内的任一时刻的标准扭振幅值与硅油减振器首次使用时的标准扭振幅值的差值。According to the corresponding relationship between the mileage and the cracking amount of the torsional amplitude value, the first remaining mileage of the silicone oil shock absorber is obtained, and the cracking amount of the torsional amplitude value is any moment in the life range of the silicone oil shock absorber. The difference between the standard torsional amplitude value and the standard torsional amplitude value when the silicone oil shock absorber is used for the first time.
作为硅油减振器寿命预测方法的优选技术方案,硅油减振器寿命预测方法还包括:As the preferred technical solution for the life prediction method of the silicone oil shock absorber, the life prediction method of the silicone oil shock absorber also includes:
获取硅油减振器的基础硅油粘度;Obtain the base silicone oil viscosity of the silicone oil shock absorber;
依据温度、频率和粘度之间的转换关系,将所述基础硅油粘度转换为所述硅油减振器于设定温度、设定频率下的标准硅油粘度;According to the conversion relationship between temperature, frequency and viscosity, the viscosity of the basic silicone oil is converted into the standard silicone oil viscosity of the silicone oil shock absorber at a set temperature and a set frequency;
依据行驶里程和硅油粘度的裂化率的对应关系,获取所述硅油减振器的第二剩余行驶里程,所述硅油粘度的裂化率为硅油减振器的寿命范围内的任一时刻的标准硅油粘度与硅油减振器首次使用时的标准硅油粘度的比值;According to the corresponding relationship between the mileage and the cracking rate of the viscosity of the silicone oil, the second remaining mileage of the silicone oil shock absorber is obtained, and the cracking rate of the viscosity of the silicone oil is the standard silicone oil at any time within the life range of the silicone oil shock absorber. The ratio of the viscosity to the standard silicone oil viscosity when the silicone oil shock absorber is used for the first time;
以所述第一剩余行驶里程和所述第二剩余行驶里程的最小值作为硅油减振器的剩余寿命。The minimum value of the first remaining mileage and the second remaining mileage is taken as the remaining life of the silicone oil shock absorber.
作为硅油减振器寿命预测方法的优选技术方案,车辆行驶距离Sa的过程中,刚开始时对应的标准硅油粘度为第一标准硅油粘度η1,刚结束时对应的标准硅油粘度为第二标准硅油粘度η2;As a preferred technical solution for the life prediction method of the silicone oil shock absorber, during the vehicle traveling distance Sa , the corresponding standard silicone oil viscosity at the beginning is the first standard silicone oil viscosity η 1 , and the corresponding standard silicone oil viscosity at the end is the second standard silicone oil viscosity η 1 . Standard silicone oil viscosity η 2 ;
行驶里程和硅油粘度的裂化率的对应关系为:The corresponding relationship between the mileage and the cracking rate of silicone oil viscosity is:
Sη=(ηfailure-ηs1)/Vη_rate;S n = (n failure - n s1 )/V n_rate ;
Vη_rate=(ηs1-ηs0)/Sa;V η_rate = (η s1 -η s0 )/S a ;
或者,行驶里程和硅油粘度的裂化率的对应关系为:Alternatively, the corresponding relationship between the mileage and the cracking rate of silicone oil viscosity is:
其中,Sη和均为硅油减振器的剩余行驶里程;ηfailure为硅油减振器失效时的硅油粘度裂化率;ηs1为车辆行驶距离Sa的过程中刚结束时的硅油粘度裂化率,ηS0为车辆行驶距离Sa的过程中刚开始时的硅油粘度裂化率,Vη_rate为车辆行驶距离Sa的过程中硅油减振器的硅油粘度裂化率的变化率;η0为硅油减振器首次使用时于设定温度、设定扭矩下的标准硅油粘度;ηn为预设的硅油减振器后失效时于设定温度、设定扭矩下的标准硅油粘度;为硅油减振器在寿命期间内的硅油粘度裂化率的平均变化率且为常数。in, S η and are the remaining mileage of the silicone oil shock absorber; η failure is the silicone oil viscosity cracking rate when the silicone oil shock absorber fails; η s1 is the silicone oil viscosity cracking rate at the end of the vehicle travel distance Sa , η S0 is the vehicle The viscosity cracking rate of silicone oil at the beginning of the process of driving distance Sa, V η_rate is the change rate of the silicone oil viscosity cracking rate of the silicone oil shock absorber in the process of the vehicle driving distance Sa ; η 0 is when the silicone oil shock absorber is used for the first time Standard silicone oil viscosity at set temperature and set torque; η n is the standard silicone oil viscosity at set temperature and set torque when the preset silicone oil shock absorber fails after failure; is the average change rate of the silicone oil viscosity cracking rate during the life of the silicone oil shock absorber and is a constant.
作为硅油减振器寿命预测方法的优选技术方案,硅油减振器包括外壳和设置于所述外壳内的惯性环,获取硅油减振器的基础硅油粘度的公式为:As a preferred technical solution for the life prediction method of the silicone oil shock absorber, the silicone oil shock absorber includes a casing and an inertia ring arranged in the casing, and the formula for obtaining the basic silicone oil viscosity of the silicone oil shock absorber is:
其中,η为基础硅油粘度;ζ为阻尼比;CtC为临界阻尼系数;nc为硅油的流动指数;R1为惯性环的外径;R2为惯性环的内径;B为惯性环的厚度;δc为外壳与惯性环的间隙;Q为硅油的品质因数,且为常数。Among them, η is the viscosity of the base silicone oil; ζ is the damping ratio; C tC is the critical damping coefficient; nc is the flow index of the silicone oil; R 1 is the outer diameter of the inertia ring; R 2 is the inner diameter of the inertia ring; B is the thickness of the inertia ring ; δ c is the gap between the shell and the inertia ring; Q is the quality factor of the silicone oil, and is a constant.
作为硅油减振器寿命预测方法的优选技术方案,温度、频率和粘度之间的转换关系为:As the preferred technical solution for the life prediction method of silicone oil shock absorbers, the conversion relationship between temperature, frequency and viscosity is:
η(tequil,ωq)=V(tequil-t,ωq)+η;η(t equil , ω q )=V(t equil -t, ω q )+η;
其中,tequil为设定温度,t为实时温度;ωq为设定频率,η(tequil,ωq)为硅油减振器于设定温度、设定频率下的标准硅油粘度;V(tequil-t,ωq)为硅油粘度关于实时温度和设定温度的差值的修正量。Among them, t equil is the set temperature, t is the real-time temperature; ω q is the set frequency, η(t equil , ω q ) is the standard silicone oil viscosity of the silicone oil shock absorber at the set temperature and set frequency; V ( t equil -t,ω q ) is the correction amount of the silicone oil viscosity with respect to the difference between the real-time temperature and the set temperature.
作为硅油减振器寿命预测方法的优选技术方案,判断所述硅油减振器的剩余寿命的大小;As a preferred technical solution of the method for predicting the life of the silicone oil shock absorber, determine the size of the remaining life of the silicone oil shock absorber;
当所述硅油减振器的剩余寿命小于Z1时,限制车辆的扭矩位于设定扭矩范围内,限制车辆的速度位于设定速度范围内;When the remaining life of the silicone oil shock absorber is less than Z1, the torque of the vehicle is limited to be within the set torque range, and the speed of the vehicle is limited to be within the set speed range;
当所述硅油减振器的剩余寿命大于或等于Z1且小于Z2时,发出需要进行保养的提示;When the remaining life of the silicone oil shock absorber is greater than or equal to Z 1 and less than Z 2 , a prompt for maintenance is issued;
当所述硅油减振器的剩余寿命大于或等于Z3时,发出硅油减振器正常的提示;When the remaining life of the silicone oil shock absorber is greater than or equal to Z 3 , a reminder that the silicone oil shock absorber is normal is issued;
其中,Z1<Z2<Z3。Here, Z 1 <Z 2 <Z 3 .
作为硅油减振器寿命预测方法的优选技术方案,As the preferred technical solution for the life prediction method of silicone oil shock absorbers,
车辆行驶距离Sb的过程中,刚开始时对应的标准扭振幅值为第一标准扭振幅值T1,刚结束时对应的标准扭振幅值为第二标准扭振幅值T2;In the process of the vehicle traveling the distance S b , the corresponding standard torsional amplitude value at the beginning is the first standard torsional amplitude value T 1 , and the corresponding standard torsional amplitude value at the just end is the second standard torsional amplitude value T 2 ;
行驶里程和扭振幅值的裂化量的对应关系为:The corresponding relationship between the mileage and the cracking amount of the torsional amplitude value is:
ST=(Tfailure-Ts1)/VT_rate;S T =(T failure -T s1 )/V T_rate ;
VT_rate=(Ts1-Ts0)/Sb;V T_rate = (T s1 -T s0 )/S b ;
或者,行驶里程和扭振幅值的裂化量的对应关系为:Alternatively, the corresponding relationship between the mileage and the cracking amount of the torsional amplitude value is:
其中,Tfailure=Tn-T0,Ts1=T2-T0,Ts0=T1-T0;ST和均为硅油减振器的剩余行驶里程;Tfailure为硅油减振器失效时的扭振幅值的裂化量;Ts1为车辆行驶距离Sb的过程中刚结束时的扭振幅值的裂化量,TS0为车辆行驶距离Sb的过程中刚开始时的扭振幅值的裂化量,VT_rate为车辆行驶距离Sb的过程中硅油减振器的扭振幅值的裂化量的变化率;T0为预设的硅油减振器首次使用时于设定温度、设定扭矩下的标准扭振幅值;Tn为预设的硅油减振器失效时于设定温度、设定扭矩下的标准扭振幅值;为硅油减振器的寿命内的扭振幅值的裂化量的平均变化率且为常数。Wherein, T failure =T n -T 0 , T s1 =T 2 -T 0 , T s0 =T 1 -T 0 ; S T and are the remaining mileage of the silicone oil shock absorber; T failure is the cracking amount of the torsional amplitude value when the silicone oil shock absorber fails; T s1 is the cracking amount of the torsional amplitude value at the end of the process of the vehicle traveling distance S b , T S0 is the cracking amount of the torsional amplitude value at the beginning of the process of the vehicle traveling distance S b , V T_rate is the change rate of the cracking amount of the torsional amplitude value of the silicone oil shock absorber in the process of the vehicle traveling distance S b ; T 0 It is the standard torque amplitude value at the set temperature and the set torque when the preset silicone oil shock absorber is used for the first time; T n is the standard torque value at the set temperature and the set torque when the preset silicone oil shock absorber fails. Amplitude value; It is the average change rate of the cracking amount of the torsional amplitude value in the life of the silicone oil damper and is a constant.
作为硅油减振器寿命预测方法的优选技术方案,曲轴设置有转速信号盘,转速传感器用于采集所述转速信号盘转过的角度,依据所述实时转速获取硅油减振器的实时扭振幅值的公式为:As a preferred technical solution of the method for predicting the life of a silicone oil shock absorber, the crankshaft is provided with a rotational speed signal plate, and a rotational speed sensor is used to collect the rotation angle of the rotational speed signal plate, and obtain the real-time torsional amplitude value of the silicone oil shock absorber according to the real-time rotational speed. The formula is:
其中,tn为时间;θ(tn)为扭转角位移;ωp为瞬时角速度;tc为信号盘转一圈的时间;N为转速信号盘的总齿数;n为tn时刻所经历过的转速信号盘的齿数;为平均扭转角位移,且为常数;k的取值为0.5的整数倍;θk为第k谐次的实时扭振幅值;δk为第k谐次的扭振初始相位,且为常数。Among them, t n is the time; θ(t n ) is the torsional angular displacement; ω p is the instantaneous angular velocity; t c is the time for the signal disc to make one revolution; The number of teeth of the passing speed signal disc; is the average torsional angular displacement and is a constant; k is an integer multiple of 0.5; θ k is the real-time torsional amplitude value of the k-th harmonic; δ k is the initial phase of the torsional vibration of the k-th harmonic, and is a constant.
作为硅油减振器寿命预测方法的优选技术方案,温度、扭矩和扭振幅值的对应关系为:As the preferred technical solution for the life prediction method of the silicone oil shock absorber, the corresponding relationship between temperature, torque and torsional amplitude value is:
T(tequil,loadfull)=U(tequil-t)+L(loadfull-load)+T(t,load);T(t equil , load full )=U(t equil -t)+L(load full -load)+T(t, load);
其中,tequil为设定温度,loadfull为设定扭矩,t为实时温度,load为实时扭矩,T(tequil,loadfull)为硅油减振器于设定温度、设定扭矩下的标准扭振幅值;U(tequil-t)为扭振幅值关于实时温度和设定温度的差值的修正量,L(loadfull-load)为扭振幅值关于实时扭矩和设定扭矩的差值的修正量;T(t,load)=θk。Among them, t equil is the set temperature, load full is the set torque, t is the real-time temperature, load is the real-time torque, and T(t equil , load full ) is the standard of the silicone oil shock absorber at the set temperature and set torque Torsion amplitude value; U(t equil -t) is the correction amount of the torque amplitude value with respect to the difference between the real-time temperature and the set temperature, L(load full -load) is the difference between the torque amplitude value with respect to the real-time torque and the set torque The correction amount of ; T(t, load)=θ k .
作为硅油减振器寿命预测方法的优选技术方案,获取实时扭振幅值后,判断所述实时扭振幅值是否位于第一设定扭振幅值范围内,当所述实时扭振幅值位于或超出所述第一设定扭振幅值范围时,均执行将所述实时扭振幅值转换为所述硅油减振器于设定温度、设定扭矩下的标准扭振幅值,且当所述实时扭振幅值超出所述第一设定扭振幅值范围时,发出报警提示。As a preferred technical solution of the method for predicting the life of a silicone oil shock absorber, after obtaining the real-time torsional amplitude value, it is judged whether the real-time torsional amplitude value is within the range of the first set torsional amplitude value, and when the real-time torsional amplitude value is within or beyond the range of the first set torsional amplitude value In the first set torsional amplitude value range, the real-time torsional amplitude value is converted into the standard torsional amplitude value of the silicone oil shock absorber at the set temperature and the set torque, and when the real-time torsional amplitude value is When the value exceeds the range of the first set torque amplitude value, an alarm prompt is issued.
作为硅油减振器寿命预测方法的优选技术方案,获取标准扭振幅值后,判断所述标准扭振幅值是否位于设定标准扭振幅值范围内,若所述标准扭振幅值位于设定扭振幅值范围内,执行所述获取所述硅油减振器的第一剩余行驶里程。As a preferred technical solution of the life prediction method for silicone oil shock absorbers, after obtaining the standard torsional amplitude value, it is judged whether the standard torsional amplitude value is within the range of the set standard torsional amplitude value, if the standard torsional amplitude value is within the set torsional amplitude value Within the value range, execute the obtaining of the first remaining mileage of the silicone oil shock absorber.
作为硅油减振器寿命预测方法的优选技术方案,还包括位于车辆行驶过程中,实时采集硅油减振器的实时温度和发动机的实时扭矩之前的:As the preferred technical solution of the method for predicting the life of the silicone oil shock absorber, it also includes: before the real-time temperature of the silicone oil shock absorber and the real-time torque of the engine are collected in real time during the driving process of the vehicle:
确认符合硅油减振器寿命的触发条件。Confirm that the trigger conditions for the life of the silicone oil shock absorber are met.
作为硅油减振器寿命预测方法的优选技术方案,确认符合硅油减振器寿命的触发条件包括:As the preferred technical solution for the life prediction method of the silicone oil shock absorber, the triggering conditions to confirm the life of the silicone oil shock absorber include:
获取上一次硅油减振器寿命预测结束后车辆的行驶里程;Obtain the mileage of the vehicle after the last prediction of the life of the silicone oil shock absorber;
判断并确认行驶里程位于设定里程范围内;Judging and confirming that the mileage is within the set mileage range;
获取发动机的转速;Get the speed of the engine;
获取发动机的实时扭矩;Get the real-time torque of the engine;
获取硅油减振器的温度;Get the temperature of the silicone oil shock absorber;
判断并确认发动机的转速位于设定转速范围内、发动机的实时扭矩位于设定扭矩范围内、且硅油减振器的温度位于设定温度范围内,则确认符合硅油减振器寿命的触发条件。Judging and confirming that the engine speed is within the set speed range, the engine's real-time torque is within the set torque range, and the temperature of the silicone oil shock absorber is within the set temperature range, then it is confirmed that the trigger conditions for the life of the silicone oil shock absorber are met.
本实施例还提供一种车辆,该车辆包括:This embodiment also provides a vehicle, the vehicle comprising:
发动机;engine;
整车控制器,能够采集所述发动机输出的实时扭矩;A vehicle controller capable of collecting the real-time torque output by the engine;
硅油减振器,设置于所述发动机的曲轴;a silicone oil shock absorber, arranged on the crankshaft of the engine;
温度传感器,用于采集所述硅油减振器的温度,a temperature sensor for collecting the temperature of the silicone oil shock absorber,
转速信号盘,设置于所述发动机的曲轴;a speed signal disc, arranged on the crankshaft of the engine;
转速传感器,用于采集所述转速信号盘转过的角度;a rotational speed sensor, which is used to collect the angle rotated by the rotational speed signal disc;
控制器,与所述温度传感器连接以采集所述硅油减振器的实时温度;与所述转速传感器连接,以采集所述发动机的实时转速;用于和所述整车控制器交互以获取所述实时扭矩,所述控制器用于执行任一上述方案所述的硅油减振器寿命预测方法。a controller, connected with the temperature sensor to collect the real-time temperature of the silicone oil shock absorber; connected with the rotational speed sensor to collect the real-time rotational speed of the engine; used to interact with the vehicle controller to obtain all the the real-time torque, and the controller is configured to execute the method for predicting the life of a silicone oil shock absorber described in any one of the above solutions.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明提供一种硅油减振器寿命预测方法,该硅油减振器寿命预测方法包括:车辆行驶过程中,实时采集硅油减振器的实时温度、发动机的实时扭矩和发动机的实时转速;依据实时转速获取硅油减振器的实时扭振幅值;依据温度、扭矩和扭振幅值的对应关系,将实时扭振幅值转换为硅油减振器于设定温度、设定扭矩下的标准扭振幅值;依据行驶里程和扭振幅值的裂化量的对应关系,获取硅油减振器的第一剩余行驶里程。通过将硅油减振器的实时扭振幅值换算为设定温度和设定扭矩下的标准扭振幅值,并通过该标准扭振幅值对硅油减振器的剩余行驶里程进行评估,能够避免实时工况的不同对扭振幅值的影响,确保评估结果的准确性。The invention provides a method for predicting the life of a silicone oil shock absorber. The method for predicting the life of a silicone oil shock absorber includes: during the driving process of the vehicle, real-time acquisition of the real-time temperature of the silicone oil shock absorber, the real-time torque of the engine and the real-time speed of the engine; The real-time torsional amplitude value of the silicone oil shock absorber is obtained from the rotational speed; according to the corresponding relationship between temperature, torque and torsional amplitude value, the real-time torsional amplitude value is converted into the standard torsional amplitude value of the silicone oil shock absorber at the set temperature and torque; According to the corresponding relationship between the mileage and the cracking amount of the torsional amplitude value, the first remaining mileage of the silicone oil shock absorber is obtained. By converting the real-time torsional amplitude value of the silicone oil shock absorber into the standard torsional amplitude value under the set temperature and the set torque, and using the standard torsional amplitude value to evaluate the remaining mileage of the silicone oil shock absorber, real-time work can be avoided. The influence of different conditions on the torsional amplitude value ensures the accuracy of the evaluation results.
本发明还提供一种车辆,该车辆包括发动机、整车控制器、硅油减振器、温度传感器、转速信号盘、转速传感器和控制器。其中,整车控制器可通过扭矩传感器等采集发动机输出的实时扭矩;控制器用于和整车控制器交互以获取该实时扭矩。硅油减振器设置于发动机的曲轴。温度传感器用于采集硅油减振器的温度并发送给控制器;转速信号盘设置于发动机的曲轴且能够随曲轴的转动而转动,转速传感器用于采集转速信号盘转过的角度并发送给控制器,控制器用于执行上述硅油减振器寿命预测方法。该车辆,在行车过程中即可对硅油减振器的剩余寿命进行评估,无需在试验台单独测试。The present invention also provides a vehicle, which includes an engine, a vehicle controller, a silicone oil shock absorber, a temperature sensor, a rotational speed signal plate, a rotational speed sensor and a controller. Among them, the vehicle controller can collect the real-time torque output by the engine through a torque sensor or the like; the controller is used to interact with the vehicle controller to obtain the real-time torque. The silicone oil damper is installed on the crankshaft of the engine. The temperature sensor is used to collect the temperature of the silicone oil shock absorber and send it to the controller; the speed signal disc is set on the crankshaft of the engine and can rotate with the rotation of the crankshaft, and the speed sensor is used to collect the rotation angle of the speed signal disc and send it to the controller The controller is used to execute the above-mentioned method for predicting the life of the silicone oil shock absorber. For this vehicle, the remaining life of the silicone oil shock absorber can be evaluated during the driving process, without the need for a separate test on the test bench.
附图说明Description of drawings
图1为本发明实施例中车辆的结构示意图;1 is a schematic structural diagram of a vehicle in an embodiment of the present invention;
图2为本发明实施例中硅油减振器寿命预测方法的流程图一;2 is a
图3为本发明实施例中硅油减振器寿命预测方法的流程图二;3 is a second flowchart of a method for predicting the life of a silicone oil shock absorber according to an embodiment of the present invention;
图4为本发明实施例中硅油减振器的结构示意图;4 is a schematic structural diagram of a silicone oil shock absorber in an embodiment of the present invention;
图5为本发明实施例中硅油粘度关于实时温度和设定温度的差值的修正量的关系图;Fig. 5 is the relation diagram of the correction amount of the difference value of the silicone oil viscosity with respect to the real-time temperature and the set temperature in the embodiment of the present invention;
图6为本发明实施例中硅油减振器寿命预测方法的流程图三。FIG. 6 is a third flowchart of a method for predicting the life of a silicone oil shock absorber according to an embodiment of the present invention.
图中:In the picture:
1、发动机;2、整车控制器;3、硅油减振器;31、外壳;32、惯性环;4、温度传感器;5、转速信号盘;6、转速传感器;7、控制器;71、扭振处理器;72、发动机电控单元;8、显示装置。1. Engine; 2. Vehicle controller; 3. Silicon oil shock absorber; 31. Housing; 32. Inertia ring; 4. Temperature sensor; 5. Speed signal plate; 6. Speed sensor; 7. Controller; 71. Torsional vibration processor; 72. Engine electronic control unit; 8. Display device.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置,而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention. Furthermore, the terms "first" and "second" are used for descriptive purposes only and should not be construed to indicate or imply relative importance. Wherein, the terms "first position" and "second position" are two different positions, and the first feature being "above", "over" and "above" the second feature includes the first feature being "over" the second feature Directly above and diagonally above, or simply means that the first feature is level higher than the second feature. The first feature is "below", "below" and "below" the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
实施例一Example 1
如图1所示,本实施例提供一种车辆,该车辆包括发动机1、整车控制器2、硅油减振器3、温度传感器4、转速信号盘5、转速传感器6和控制器7。其中,整车控制器2可通过扭矩传感器等采集发动机1输出的实时扭矩;控制器7用于和整车控制器2交互以获取该实时扭矩。硅油减振器3设置于发动机1的曲轴。温度传感器4用于采集硅油减振器3的温度并发送给控制器7;转速信号盘5设置于发动机1的曲轴且能够随曲轴的转动而转动,转速传感器6用于采集转速信号盘5转过的角度并发送给控制器7,具体地,转速信号盘5具有多个齿,每个齿经过转速传感器6时,均会导致转速传感器6在高电平和低电平之间进行切换,控制器7通过采集转速传感器6电平切换的次数,并结合转速信号盘5的齿数和经过的时间获取转速信号盘5转过的角度和实时转速。As shown in FIG. 1 , this embodiment provides a vehicle, which includes an
控制器7还能够依据实时转速获取硅油减振器3的实时扭振幅值,依据温度、扭矩和扭振幅值的对应关系,将实时扭振幅值转换为硅油减振器3于设定温度、设定扭矩下的标准扭振幅值;依据行驶里程和扭振幅值的裂化量的对应关系,获取硅油减振器3的第一剩余行驶里程。其中,扭振幅值的裂化量为硅油减振器3的寿命范围内的任一时刻的标准扭振幅值与硅油减振器3首次使用时的标准扭振幅值的差值,扭振幅值的裂化量可用于表征硅油减振器3的扭振幅值的裂化程度。The
本实施例提供的车辆,在行车过程中即可对硅油减振器3的剩余寿命进行评估,无需在试验台单独测试,并且通过将硅油减振器3的实时扭振幅值换算为设定温度和设定扭矩下的标准扭振幅值,并通过该标准扭振幅值对硅油减振器3的剩余行驶里程进行评估,能够避免实时工况的不同对扭振幅值的影响,确保评估结果的准确性。With the vehicle provided in this embodiment, the remaining life of the silicone
需要注意的是,本实施例控制器7包括扭振处理器71和发动机电控单元72,扭振处理器71依据实时转速获取硅油减振器3的实时扭振幅值。发动机电控单元72和扭振处理器71交互获取该实时扭振幅值,并依据温度、扭矩和扭振幅值的对应关系,将实时扭振幅值转换为硅油减振器3于设定温度、设定扭矩下的标准扭振幅值,进而依据行驶里程和扭振幅值的裂化量的对应关系,获取硅油减振器3的第一剩余行驶里程。It should be noted that the
可选地,车辆还包括显示装置8,显示装置8和发动机电控单元72,用于显示硅油减振器3剩余寿命。Optionally, the vehicle further includes a
实施例二
如图2所示,本实施例提供一种能够由实施例一种的车辆实施的硅油减振器寿命预测方法,该硅油减振器寿命预测方法包括以下步骤。As shown in FIG. 2 , this embodiment provides a method for predicting the life of a silicone oil shock absorber that can be implemented by the vehicle of the first embodiment. The method for predicting the life of a silicone oil shock absorber includes the following steps.
S100:车辆行驶过程中,实时采集硅油减振器3的实时温度、发动机1的实时扭矩和发动机1的实时转速。S100: During the running of the vehicle, the real-time temperature of the silicone
具体地,控制器7可通过温度传感器4采集硅油减振器3的实时温度,通过与整车控制器2交互获取发动机1的实时扭矩,通过转速传感器6获取发动机1的实时转速。Specifically, the
S110:依据实时转速获取硅油减振器3的实时扭振幅值。S110: Acquire a real-time torsional amplitude value of the silicone
具体地,依据实时转速获取硅油减振器3的实时扭振幅值的公式为:Specifically, the formula for obtaining the real-time torsional amplitude value of the silicone
其中,按照傅里叶三角级数的展开式。公式中,tn为时间;θ(tn)为扭转角位移;ωp为瞬时角速度,可通过发动机1的实时转速以及硅油减振器3的外径通过现有公式计算得到;tc为信号盘转一圈的时间;N为转速信号盘5的总齿数;n为tn时刻所经历过的转速信号盘5的齿数;为平均扭转角位移,且为常数;k的取值为0.5的整数倍;θk为第k谐次的实时扭振幅值;δk为第k谐次的扭振初始相位,且为常数。in, According to the expansion of the Fourier triangular series. In the formula, t n is the time; θ(t n ) is the torsional angular displacement; ω p is the instantaneous angular velocity, which can be calculated from the real-time rotational speed of the
S120:依据温度、扭矩和扭振幅值的对应关系,将实时扭振幅值转换为硅油减振器3于设定温度、设定扭矩下的标准扭振幅值。S120: Convert the real-time torsional amplitude value to the standard torsional amplitude value of the silicone
温度、扭矩和扭振幅值的对应关系可通过前期的大量试验获取,并将温度、扭矩和扭振幅值的对应关系预存于控制器7中。设定温度优选为平衡温度,设定扭矩优选为车辆满负荷状态下的扭矩。可以理解的是,硅油减振器3的扭振幅值的大小受温度和车辆负荷的影响,在一定范围内随着温度的变化以及扭矩的变化,硅油减振器3的扭振幅值会逐渐变化,但温度达到平衡温度以及扭矩达到使车辆满负荷时,硅油减振器3的扭振幅值将趋于稳定。当然,设定温度和设定扭矩也可根据实际需要进行设置。The corresponding relationship between temperature, torque and torsional amplitude value can be obtained through a large number of experiments in the early stage, and the corresponding relationship between temperature, torque and torsional amplitude value is pre-stored in the
需要注意的是,车辆在不同的工况下,比如空载、轻载和重载工况下,其设定温度和设定扭矩是不同的,可以通过大量前期的试验,以获取车辆在不同工况下的设定温度和设定扭矩,并根据工况的不同,分别制作温度、扭矩和扭振幅值的对应关系。当车辆行驶过程中,整车控制器2会判断车辆所处的工况,控制器7通过与整车控制器2交互,可获取对应的工况,可依据与该工况匹配的温度、扭矩和扭振幅值的对应关系将实时扭振幅值转换为标准扭振幅值。It should be noted that the set temperature and set torque of the vehicle are different under different working conditions, such as no-load, light-load and heavy-load conditions. The set temperature and set torque under the working conditions, and according to the different working conditions, the corresponding relationship of temperature, torque and torsional amplitude value is made respectively. When the vehicle is running, the
本实施例中,温度、扭矩和扭振幅值的对应关系为:In this embodiment, the corresponding relationship between temperature, torque and torsional amplitude value is:
T(tequil,loadfull)=U(tequil-t)+L(loadfull-load)+T(t,load)。T(t equil , load full )=U(t equil -t)+L(load full -load)+T(t, load).
其中,tequil为设定温度,loadfull为设定扭矩,t为实时温度,load为实时扭矩,T(tequil,loadfull)为硅油减振器3于设定温度、设定扭矩下的标准扭振幅值;U(tequil-t)为扭振幅值关于实时温度和设定温度的差值的修正量,L(loadfull-load)为扭振幅值关于实时扭矩和设定扭矩的差值的修正量;T(t,load)=θk。本实施例中的U(tequil-t)可通过前期的大量试验获取在设定扭矩下,实时温度和设定温度的差值与标准扭振幅值的关系图并预存于控制器7内,同理,L(loadfull-load),可通过前期的大量试验获取在设定温度下,实时扭矩和设定扭矩的差值与标准扭振幅值的关系图并预存于控制器7内,并且亦可根据需要设置U(tequil-t)、L(loadfull-load)和T(t,load)之间的权重。Among them, t equil is the set temperature, load full is the set torque, t is the real-time temperature, load is the real-time torque, and T(t equil , load full ) is the silicone
S130:依据行驶里程和扭振幅值的裂化量的对应关系,获取硅油减振器3的第一剩余行驶里程。S130: Obtain the first remaining mileage of the silicone
其中,扭振幅值的裂化量为硅油减振器3的寿命范围内的任一时刻的标准扭振幅值与硅油减振器3首次使用时的标准扭振幅值的差值。行驶里程和扭振幅值的裂化量的对应关系可通过前期的大量试验获得,并将行驶里程和扭振幅值的裂化量的对应关系预存于控制器7内。具体地,本实施例中,行驶里程和扭振幅值的裂化量的对应关系为:The cracking amount of the torsional amplitude value is the difference between the standard torsional amplitude value at any time within the life span of the silicone
ST=(Tfailure-Ts1)/VT_rate;S T =(T failure -T s1 )/V T_rate ;
VT_rate=(Ts1-Ts0)/Sb;V T_rate = (T s1 -T s0 )/S b ;
其中,车辆行驶距离Sb的过程中,刚开始时对应的标准扭振幅值为第一标准扭振幅值T1,刚结束时对应的标准扭振幅值为第二标准扭振幅值T2;Tfailure=Tn-T0,Ts1=T2-T0,Ts0=T1-T0;ST为硅油减振器3的剩余行驶里程;Tfailure为硅油减振器3失效时的扭振幅值的裂化量;Ts1为车辆行驶距离Sb的过程中刚结束时的扭振幅值的裂化量,TS0为车辆行驶距离Sb的过程中刚开始时的扭振幅值的裂化量,VT_rate为车辆行驶距离Sb的过程中硅油减振器3的扭振幅值的裂化量的变化率;T0为预设的硅油减振器3首次使用时于设定温度、设定扭矩下的标准扭振幅值;Tn为预设的硅油减振器3失效时于设定温度、设定扭矩下的标准扭振幅值。T0和Tn均可通过前期大量试验对硅油减振器3在预设温度和预设扭矩下进行测试获得。Wherein, in the process of the vehicle traveling the distance S b , the corresponding standard torsional amplitude value at the beginning is the first standard torsional amplitude value T 1 , and the corresponding standard torsional amplitude value at the just end is the second standard torsional amplitude value T 2 ; T failure =T n -T 0 , T s1 =T 2 -T 0 , T s0 =T 1 -T 0 ; S T is the remaining mileage of the silicone
在公式ST=(Tfailure-Ts1)/VT_rate和VT_rate=(Ts1-Ts0)/Sb中,VT_rate能够体现硅油减振器3的扭振幅值的裂化量的变化率实时变化。In the formulas S T =(T failure -T s1 )/V T_rate and V T_rate =(T s1 -T s0 )/S b , V T_rate can reflect the change rate of the cracking amount of the torsional amplitude value of the
作为其中的一种可替代方案,行驶里程和扭振幅值的裂化量的对应关系还可以为:As an alternative solution, the corresponding relationship between the mileage and the cracking amount of the torsional amplitude value can also be:
其中,为硅油减振器3的寿命期间内的扭振幅值的裂化量的平均变化率,其为常数;可通过前期大量试验对硅油减振器3在预设温度和预设扭矩下进行测试获得。为硅油减振器3的剩余行驶里程,具体地,为基于扭振幅值的裂化量的平均变化率在车辆行驶距离Sb后的剩余行驶里程。in, is the average change rate of the cracking amount of the torsional amplitude value during the life of the silicone
该硅油减振器寿命预测方法,通过将硅油减振器3的实时扭振幅值换算为设定温度和设定扭矩下的标准扭振幅值,并通过该标准扭振幅值对硅油减振器3的剩余行驶里程进行评估,能够避免实时工况的不同对扭振幅值的影响,确保评估结果的准确性。The method for predicting the life of a silicone oil shock absorber converts the real-time torsional amplitude value of the silicone
实施例三
如图3所示,考虑到能够体现硅油减振器3寿命的参数,除了硅油减振器3的扭振幅值之外,还有硅油粘度,而硅油粘度和硅油减振器3的扭振幅值并不会同步裂化,这就导致,扭振幅值和硅油粘度中的一个能够满足使用要求的情况下,另一个已无法满足使用要求,这样的硅油减振器3同样无法使用。因此,本实施例提供一种硅油减振器寿命预测方法,该硅油减振器寿命预测方法在上述实施例二的基础上,还依据硅油粘度对硅油减振器3的剩余寿命进行评估,以进一步确保评估结果的准确性。As shown in Figure 3, considering the parameters that can reflect the life of the silicone
具体地,该硅油减振器寿命预测方法包括以下步骤。Specifically, the method for predicting the life of a silicone oil shock absorber includes the following steps.
S200:车辆行驶过程中,实时采集硅油减振器3的实时温度、发动机1的实时扭矩和发动机1的实时转速。S200: During the running of the vehicle, the real-time temperature of the silicone
S210:依据实时转速获取硅油减振器3的实时扭振幅值。S210: Acquire a real-time torsional amplitude value of the silicone
S220:依据温度、扭矩和扭振幅值的对应关系,将实时扭振幅值转换为硅油减振器3于设定温度、设定扭矩下的标准扭振幅值。S220: Convert the real-time torsional amplitude value to the standard torsional amplitude value of the silicone
S230:依据行驶里程和扭振幅值的裂化量的对应关系,获取硅油减振器3的第一剩余行驶里程。S230: Obtain the first remaining mileage of the silicone
S240:获取硅油减振器3的基础硅油粘度。S240 : Obtain the viscosity of the base silicone oil of the silicone
硅油减振器3的具体结构如图4所示,硅油减振器3包括外壳31和设置于外壳31内的惯性环32,外壳31和惯性环32同轴设置,且外壳31内周面和惯性环32的外周面之间具有间隙。获取硅油减振器3的基础硅油粘度的公式为:The specific structure of the silicone
其中,η为基础硅油粘度;ζ为阻尼比;CtC为临界阻尼系数;nc为硅油的流动指数;R1为惯性环32的外径;R2为惯性环32的内径;B为惯性环32的厚度;δc为外壳31与惯性环32的间隙;Q为硅油的品质因数,且为常数。Wherein, η is the viscosity of the base silicone oil; ζ is the damping ratio; C tC is the critical damping coefficient; nc is the flow index of the silicone oil; R 1 is the outer diameter of the
S250:依据温度、频率和粘度之间的转换关系,将基础硅油粘度转换为硅油减振器3于设定温度、设定频率下的标准硅油粘度。S250: According to the conversion relationship between temperature, frequency and viscosity, convert the viscosity of the basic silicone oil to the standard silicone oil viscosity of the silicone
温度、频率和粘度的对应关系可通过前期的大量试验获取,并将温度、频率和粘度的对应关系预存于控制器7中。其中,温度、频率和粘度之间的转换关系为:The corresponding relationship between temperature, frequency and viscosity can be obtained through a large number of experiments in the early stage, and the corresponding relationship between temperature, frequency and viscosity is pre-stored in the
η(tequil,ωq)=V(tequil-t,ωq)+η;η(t equil , ω q )=V(t equil -t, ω q )+η;
其中,tequil为设定温度;t为实时温度;ωq为设定频率,具体为发动机1的曲轴的转动频率,可通过发动机1的转速通过现有公式计算得到;η(tequil,ωq)为硅油减振器3于设定温度、设定频率下的标准硅油粘度;V(tequil-t,ωq)为硅油粘度关于实时温度和设定温度的差值的修正量。V(tequil-t,ωq)可通过前期的大量试验获取在设定频率下,实时温度和设定温度的差值与标准扭振幅值的关系图并预存于控制器7内。如图5所示,本实施例中示例性地给出了V(tequil-t,ωq)=p02*ωq 2+p01*ωq+p10*(tequil-t)+p11*ωq(tequil-t)+p00,p00、p01、p02、p10和p11均为常数。Wherein, t equil is the set temperature; t is the real-time temperature; ω q is the set frequency, specifically the rotational frequency of the crankshaft of the
S260:依据行驶里程和硅油粘度的裂化率的对应关系,获取硅油减振器3的第二剩余行驶里程。S260: Obtain the second remaining mileage of the silicone
其中,硅油粘度的裂化率为硅油减振器3的寿命范围内的任一时刻的标准硅油粘度与硅油减振器3首次使用时的标准硅油粘度的比值。行驶里程和硅油粘度的裂化率的对应关系可通过前期的大量试验获得,并将硅油粘度的裂化率的对应关系预存于控制器7内。Wherein, the cracking rate of the silicone oil viscosity is the ratio of the standard silicone oil viscosity at any time within the life span of the silicone
本实施例中,行驶里程和硅油粘度的裂化率的对应关系为:In this embodiment, the corresponding relationship between the mileage and the cracking rate of the silicone oil viscosity is:
Sη=(ηfailure-ηs1)/Vη_rate;S n = (n failure - n s1 )/V n_rate ;
Vη_rate=(ηs1-ηs0)/Sa;V η_rate = (η s1 -η s0 )/S a ;
其中,Sη为硅油减振器3的剩余行驶里程;ηfailure为硅油减振器3失效时的硅油粘度裂化率;ηs1为车辆行驶距离Sa的过程中刚结束时的硅油粘度裂化率,ηS0为车辆行驶距离Sa的过程中刚开始时的硅油粘度裂化率,Vη_rate为车辆行驶距离Sa的过程中硅油减振器3的硅油粘度裂化率的变化率;η0为硅油减振器3首次使用时于设定温度、设定扭矩下的标准硅油粘度;ηn为预设的硅油减振器3后失效时于设定温度、设定扭矩下的标准硅油粘度。in, S η is the remaining mileage of the silicone
在公式Sη=(ηfailure-ηs1)/Vη_rate和Vη_rate=(ηs1-ηs0)/Sa中,Vη_rate能够体现硅油减振器3的扭振幅值的裂化量的变化率实时变化。In the formulas S η =(η failure - η s1 )/V η_rate and V η_rate =(η s1 -η s0 )/ Sa, V η_rate can reflect the change rate of the cracking amount of the torsional amplitude value of the
作为其中的一种可替代方案,行驶里程和硅油粘度的裂化率的对应关系还可为:As an alternative solution, the corresponding relationship between the mileage and the cracking rate of silicone oil viscosity can also be:
为硅油减振器3寿命期间内的硅油粘度裂化率的平均变化率,为硅油减振器3的剩余行驶里程,具体地,为基于硅油粘度的裂化率的平均变化率在车辆行驶距离Sa后的剩余行驶里程。可通过前期大量试验对硅油减振器3在预设温度和预设频率下进行测试获得。 is the average change rate of the silicone oil viscosity cracking rate during the life of the silicone
S270:以第一剩余行驶里程和第二剩余行驶里程的最小值作为硅油减振器3的剩余寿命。S270 : Take the minimum value of the first remaining mileage and the second remaining mileage as the remaining life of the silicone
该硅油减振器寿命预测方法,通过将硅油减振器3的实时扭振幅值换算为设定温度和设定扭矩下的标准扭振幅值,并通过该标准扭振幅值对硅油减振器3的第一剩余行驶里程进行评估,通过将硅油减振器3的基础硅油粘度换算为设定温度和设定频率下的标准硅油粘度,并通过该标准硅油粘度对硅油减振器3的第二剩余行驶里程进行评估,能够避免实时工况的不同对扭振幅值的影响,确保评估结果的准确性。并且,通过比较第一剩余行驶里程和第二剩余行驶里程,以最小值作为硅油减振器3的剩余寿命,充分保证硅油减振器3的安全性。The method for predicting the life of a silicone oil shock absorber converts the real-time torsional amplitude value of the silicone
实施例四
如图6所示,本实施例提供一种硅油减振器寿命预测方法,该硅油减振器3的寿命预测方法包括以下步骤。As shown in FIG. 6 , this embodiment provides a method for predicting the life of a silicone oil shock absorber, and the method for predicting the life of the silicone
S300:确认符合硅油减振器3寿命的触发条件。S300: Confirm that the trigger conditions for the life of the silicone
具体地,确认是否符合硅油减振器3寿命的触发条件包括:Specifically, the trigger conditions for confirming whether the life of the silicone
S301:获取上一次硅油减振器3寿命预测结束后车辆的行驶里程。S301: Obtain the mileage of the vehicle after the last prediction of the life of the silicone
控制器7可通过与整车控制器2交互获取存储于整车控制器2内的上次硅油减振器3寿命预测结束后车辆的行驶里程。The
S302:判断行驶里程位于设定里程范围内。S302: It is judged that the driving mileage is within the set mileage range.
若行驶里程位于设定里程范围内则执行S303,若行驶里程位于设定里程范围外,则重新确认是否符合硅油减振器3寿命的触发条件。If the mileage is within the set mileage range, execute S303 , and if the mileage is outside the set mileage range, re-confirm whether the trigger condition for the life of the silicone
S303:获取发动机1的转速,发动机1的实时扭矩及硅油减振器3的温度。S303 : Acquire the rotational speed of the
S304:判断发动机1的转速是否位于设定转速范围内、发动机1的实时扭矩是否位于设定扭矩范围内,以及硅油减振器3的温度是否位于设定温度范围内。S304: Determine whether the rotational speed of the
若发动机1的转速位于设定转速范围内、发动机1的实时扭矩位于设定扭矩范围内、且硅油减振器3的温度位于设定温度范围内,则确认符合硅油减振器3寿命的触发条件;若发动机1的转速位于设定转速范围外,和/或发动机1的实时扭矩位于设定扭矩范围外,和/或硅油减振器3的温度位于设定温度范围外,则重新确认是否符合硅油减振器3寿命的触发条件。If the rotational speed of the
需要注意的是,设定里程范围、设定转速范围、设定扭矩范围,以及设定温度范围预先存储于控制器7内,且设定里程范围、设定转速范围、设定扭矩范围,以及设定温度范围可根据需要进行设定。本实施例中,示例性地给出了设定里程范围不小于0.3万公里,设定转速范围为车辆的最大扭矩下的最低转速至最高空车转速之间;设定扭矩范围为大于车辆的最大扭矩的70%;设定温度范围为至少55℃,且在60s内温度保持在±2℃内波动。It should be noted that the set mileage range, set speed range, set torque range, and set temperature range are pre-stored in the
S310:车辆行驶过程中,实时采集硅油减振器3的实时温度、发动机1的实时扭矩和发动机1的实时转速。S310: During the running process of the vehicle, real-time temperature of the silicone
S320:依据实时转速获取硅油减振器3的实时扭振幅值。S320: Acquire a real-time torsional amplitude value of the silicone
S330:判断实时扭振幅值是否位于第一设定扭振幅值范围内,当实时扭振幅值位于或超出第一设定扭振幅值范围时,均执行S340,当实时扭振幅值超出第一设定扭振幅值范围时,执行S350。S330: Determine whether the real-time torsional amplitude value is within the first set torsional amplitude value range, when the real-time torsional amplitude value is within or beyond the first set torsional amplitude value range, perform S340, and when the real-time torsional amplitude value exceeds the first set torsional amplitude value When the torque amplitude value range is fixed, execute S350.
S340:发出报警提示。S340: Issue an alarm prompt.
具体地,可通过语音或显示器发出声光报警。Specifically, sound and light alarms can be issued through voice or display.
S350:依据温度、扭矩和扭振幅值的对应关系,将实时扭振幅值转换为硅油减振器3于设定温度、设定扭矩下的标准扭振幅值。S350: Convert the real-time torsional amplitude value to the standard torsional amplitude value of the silicone
S360:判断标准扭振幅值是否位于设定标准扭振幅值范围内,若标准扭振幅值位于设定扭振幅值范围内,执行S370;若标准扭振幅值位于设定扭振幅值范围外,则执行S300。S360: Determine whether the standard torsional amplitude value is within the range of the set standard torsional amplitude value, if the standard torsional amplitude value is within the set torsional amplitude value range, execute S370; if the standard torsional amplitude value is outside the set torsional amplitude value range, then Execute S300.
S370:依据行驶里程和扭振幅值的裂化量的对应关系,获取硅油减振器3的第一剩余行驶里程。S370: Obtain the first remaining mileage of the silicone
S380:获取硅油减振器3的基础硅油粘度。S380: Obtain the basic silicone oil viscosity of the silicone
S390:依据温度、频率和粘度之间的转换关系,将基础硅油粘度转换为硅油减振器3于设定温度、设定频率下的标准硅油粘度。S390: According to the conversion relationship between temperature, frequency and viscosity, convert the viscosity of the basic silicone oil into the standard silicone oil viscosity of the silicone
S400:依据行驶里程和硅油粘度的裂化率的对应关系,获取硅油减振器3的第二剩余行驶里程。S400: Obtain the second remaining mileage of the silicone
S410:以第一剩余行驶里程和第二剩余行驶里程的最小值作为硅油减振器3的剩余寿命,并将硅油减振器3的剩余寿命通过显示装置8显示。S410 : take the minimum value of the first remaining mileage and the second remaining mileage as the remaining life of the silicone
S420:判断硅油减振器3的剩余寿命的大小。S420 : Determine the size of the remaining life of the silicone
当硅油减振器3的剩余寿命小于Z1时,则执行S430;当硅油减振器3的剩余寿命大于或等于Z1且小于Z2时,则执行S440;当硅油减振器3的剩余寿命大于或等于Z3时,则执行S450;其中,Z1<Z2<Z3。When the remaining life of the silicone
S430:限制车辆的扭矩位于设定扭矩范围内,限制车辆的速度位于设定速度范围内;S430: The torque of the limited vehicle is within the set torque range, and the speed of the limited vehicle is within the set speed range;
S440:发出需要进行保养的提示。S440: A reminder that maintenance is required is issued.
S450:发出硅油减振器3正常的提示。S450: Issue a prompt that the silicone
需要注意的是,本实施例中,Z1、Z2和Z3的具体数值可根据实际需要进行设置。比如Z1为50公里,Z2为10000公里,Z3为50000公里It should be noted that, in this embodiment, the specific values of Z 1 , Z 2 and Z 3 can be set according to actual needs. For example, Z 1 is 50 kilometers, Z 2 is 10,000 kilometers, and Z 3 is 50,000 kilometers.
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110858671.1A CN113435064B (en) | 2021-07-28 | 2021-07-28 | Silicon oil damper service life prediction method and vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110858671.1A CN113435064B (en) | 2021-07-28 | 2021-07-28 | Silicon oil damper service life prediction method and vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113435064A CN113435064A (en) | 2021-09-24 |
CN113435064B true CN113435064B (en) | 2022-09-23 |
Family
ID=77762100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110858671.1A Active CN113435064B (en) | 2021-07-28 | 2021-07-28 | Silicon oil damper service life prediction method and vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113435064B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114264466B (en) * | 2021-12-23 | 2024-03-19 | 潍柴动力股份有限公司 | Method and device for predicting service life of shock absorber |
CN115221682B (en) * | 2022-06-10 | 2023-10-24 | 广州汽车集团股份有限公司 | Method and device for calculating service life of engine oil of vehicle, readable medium and electronic equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201487129U (en) * | 2009-05-11 | 2010-05-26 | 奇瑞汽车股份有限公司 | Silicone oil damper for diesel engine |
CN108153955A (en) * | 2017-12-20 | 2018-06-12 | 湖州师范学院 | Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm |
CN109578511A (en) * | 2018-11-06 | 2019-04-05 | 宁波赛德森减振系统有限公司 | A kind of silicone oil for internal combustion engine torsional vibration damper |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7835875B2 (en) * | 2009-03-27 | 2010-11-16 | Gm Global Technology Operations, Inc. | Determination of end of life of oil by electrical means |
US9773251B2 (en) * | 2014-06-03 | 2017-09-26 | Ford Global Technologies, Llc | Apparatus and system for generating vehicle usage model |
US9476719B2 (en) * | 2014-08-29 | 2016-10-25 | Ford Global Technologies, Llc | Route-based distance to empty calculation for a vehicle |
CN104819729B (en) * | 2015-04-20 | 2018-11-13 | 陕西航天导航设备有限公司 | Liquid floated gyroscope system and its damping ratio compensation test method |
US10253734B2 (en) * | 2017-01-18 | 2019-04-09 | Ford Global Technologies, Llc | Method for monitoring component life |
CN110630356B (en) * | 2019-09-30 | 2021-11-19 | 潍柴动力股份有限公司 | Regeneration control method and regeneration control device for diesel engine aftertreatment system |
CN112798469B (en) * | 2021-01-19 | 2023-05-23 | 潍柴动力股份有限公司 | Engine oil viscosity detection method and engine |
-
2021
- 2021-07-28 CN CN202110858671.1A patent/CN113435064B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201487129U (en) * | 2009-05-11 | 2010-05-26 | 奇瑞汽车股份有限公司 | Silicone oil damper for diesel engine |
CN108153955A (en) * | 2017-12-20 | 2018-06-12 | 湖州师范学院 | Silicone oil damper for diesel engine multiple target dynamic matching method based on genetic algorithm |
CN109578511A (en) * | 2018-11-06 | 2019-04-05 | 宁波赛德森减振系统有限公司 | A kind of silicone oil for internal combustion engine torsional vibration damper |
Also Published As
Publication number | Publication date |
---|---|
CN113435064A (en) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113435064B (en) | Silicon oil damper service life prediction method and vehicle | |
US9250157B2 (en) | Method and device for recognizing rotational speed / torque fluctuations in a drive device | |
JP4656169B2 (en) | Engine misfire diagnostic device and misfire diagnostic method | |
KR101818041B1 (en) | Diagnostic method for a torsional vibration damper in a drive train of a vehicle | |
CN114264466B (en) | Method and device for predicting service life of shock absorber | |
EP2351660A2 (en) | Active vibration isolating support apparatus and method for controlling the same | |
CN101233398A (en) | Method for determining cylinder-individual rotational characteristic variables of a shaft of an internal combustion engine | |
JPH09503270A (en) | Acceleration-based misfire detection system and method with improved signal fidelity | |
CN107570692B (en) | A kind of casting technique time data analysis method and its monitoring system of application | |
CN112555033A (en) | Method and device for determining working point of range extender | |
EP2411649B1 (en) | Monitoring of a coupling in a rotating system of an internal combustion engine | |
CN113252068A (en) | Method for determining dynamic characteristics of inertial measurement unit | |
CN108760118B (en) | Device and method for measuring mass unbalance moment of platform body of inertia platform | |
US20200271538A1 (en) | Device and method for reproducible measurement of imbalance on rotating components with variable imbalances | |
Kubozuka et al. | Analytical study on engine noise caused by vibration of the cylinder block and crankshaft | |
CN113107840B (en) | Structure and method for vibration control of screw pump | |
CN115730383A (en) | Method for selecting parameters of dynamic vibration absorber of driving shaft | |
JP2006240541A (en) | Battery state detection device and battery state management method | |
JP4786245B2 (en) | Battery state detection device | |
CN112881025A (en) | Method for vibration control and energy collection of aircraft engine | |
JP4019711B2 (en) | Shaft spring constant measurement method for engine bench system | |
US20230304562A1 (en) | Vibration damper | |
CN111398619B (en) | Attitude-sensing wireless speed sensor and speed measurement method thereof | |
CN119935586A (en) | Life prediction method, device and medium for silicone oil shock absorber of vehicle and engine | |
JPH11117989A (en) | Torque fluctuation control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |