CN113431658B - Oil drainage type fully-variable pump control system - Google Patents

Oil drainage type fully-variable pump control system Download PDF

Info

Publication number
CN113431658B
CN113431658B CN202110820071.6A CN202110820071A CN113431658B CN 113431658 B CN113431658 B CN 113431658B CN 202110820071 A CN202110820071 A CN 202110820071A CN 113431658 B CN113431658 B CN 113431658B
Authority
CN
China
Prior art keywords
port
variable
communicated
oil
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110820071.6A
Other languages
Chinese (zh)
Other versions
CN113431658A (en
Inventor
汤晓磊
许仲秋
刘光明
佘笑梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Oil Pump Co Ltd
Original Assignee
Hunan Oil Pump Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Oil Pump Co Ltd filed Critical Hunan Oil Pump Co Ltd
Priority to CN202110820071.6A priority Critical patent/CN113431658B/en
Publication of CN113431658A publication Critical patent/CN113431658A/en
Application granted granted Critical
Publication of CN113431658B publication Critical patent/CN113431658B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N23/00Special adaptations of check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0238Rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0246Adjustable pumps

Abstract

The invention provides an oil drainage type fully variable pump control system, which comprises a variable pump, a pump outlet, a main oil gallery, an oil pan and a proportional valve, wherein the variable pump is connected with the pump outlet; the variable pump comprises a pump body, a rotating pin, a variable slider and a variable spring, wherein a balance cavity and a feedback cavity which are not communicated with each other are arranged between the peripheral surface of the variable slider and the inner wall surface of a cavity of the pump body, the balance cavity and the feedback cavity are respectively arranged on the left side and the right side of the rotating pin, and the balance cavity and the variable spring are positioned on the same side of the variable slider; the proportional valve is provided with a port P, a port T, a port A1 and a port A2, wherein the port P is communicated with a pump outlet or a main oil gallery through an oil way, the port T is communicated with an oil pan through an oil way, the port A1 is communicated with a balance cavity of the variable pump through an oil way, and the port A2 is communicated with a feedback cavity of the variable pump through an oil way; in the non-variable stage, the P port of the ECU controlled proportional valve is communicated with the A1 port, the A2 port is communicated with the T port, in the variable stage, the P port of the ECU controlled proportional valve is communicated with the A2 port, and the A1 port is communicated with the T port. The technical scheme can avoid the advance variable of the oil pump.

Description

Oil drainage type fully-variable pump control system
Technical Field
The invention relates to a lubricating system of an internal combustion engine, in particular to a control system based on a variable displacement pump.
Background
The existing control system based on the variable displacement pump generally adopts a single-cavity feedback oil pump, because the oil pressure in a rotor cavity is easy to leak into the feedback cavity through the end surface of a variable slider, the oil pump is easy to carry out variable in advance, and the traditional solution is to arrange an oil guide groove to introduce the leaked oil pressure into an oil inlet cavity.
Disclosure of Invention
The invention aims to provide an oil drainage type fully variable pump control system, which avoids advanced variation of an oil pump.
In order to solve the technical problems, the technical scheme of the invention is as follows: an oil drainage type fully variable pump control system comprises a variable pump, a pump outlet, a main oil gallery, an oil pan and a proportional valve; the variable pump comprises a pump body, a rotating pin, a variable slider and a variable spring, wherein the variable slider is arranged in a cavity of the pump body and can swing left and right around the rotating pin; the proportional valve is provided with a port P, a port T, a port A1 and a port A2, wherein the port P is communicated with a pump outlet or a main oil gallery through an oil way, the port T is communicated with an oil pan through an oil way, the port A1 is communicated with a balance cavity of the variable pump through an oil way, and the port A2 is communicated with a feedback cavity of the variable pump through an oil way; in the non-variable stage, the P port of the ECU controlled proportional valve is communicated with the A1 port, the A2 port is communicated with the T port, in the variable stage, the P port of the ECU controlled proportional valve is communicated with the A2 port, and the A1 port is communicated with the T port.
In the technical scheme, the port P of the proportional valve is communicated with the pump outlet or the main oil passage through an oil passage, the port T is communicated with the oil pan through the oil passage, the port A1 is communicated with a balance cavity of the variable pump through the oil passage, and the port A2 is communicated with a feedback cavity of the variable pump through the oil passage; therefore, in the non-variable stage, the pressure oil of the main oil passage flows into the balance cavity through the P port and the A1 port, the pressure oil in the feedback cavity is discharged to the oil pan through the A2 port and the T port, and the pressure in the feedback cavity is always zero, so that the problem of variable advance is not caused at all; in the variable stage, pressure oil in the balance cavity is drained to the oil sump through the port A1 and the port T, and pressure oil in the main oil gallery flows into the feedback cavity through the port P and the port A2 to push the variable slider to deflect towards the variable spring side, so that the displacement of the oil pump is reduced.
In one embodiment, the proportional valve comprises a valve body, a plunger, a spring and a screw plug, a valve hole for accommodating the plunger and the spring is arranged in the valve body, the T port, the A1 port and the A2 port are arranged on the valve body and communicated with the valve hole, and the P port is arranged on the screw plug; the outer peripheral surface of the plunger is provided with a first annular oil groove and a second annular oil groove, the plunger is further provided with a radial hole communicated with the second annular oil groove, and the middle of the plunger is further provided with an axial hole communicated with the radial hole; in the non-variable stage, the P port of the proportional valve is communicated with the A1 port through the valve hole, and the A2 port is communicated with the T port through the first annular oil groove of the plunger; in the variable stage, the port P of the proportional valve is communicated with the port A2 through the axial hole, the radial hole and the second annular oil groove of the plunger in sequence, and the port A1 is communicated with the port T through the first annular oil groove of the plunger.
In one embodiment, the outer periphery of the plunger is of equal proportion design.
In one embodiment, two annular grooves are formed in the periphery of the valve body among three oil ports of the T port, the A1 port and the A2 port, and a sealing ring is arranged in each annular groove and used for separating different oil ports.
Drawings
FIG. 1 is a schematic diagram of the overall structure of a control system according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of a variable displacement pump according to an embodiment of the present invention;
FIG. 3 is a schematic diagram of a proportional valve in an embodiment of the present invention in an undeformed state;
FIG. 4 is a schematic diagram of a proportional valve in an embodiment of the present invention in a variable state;
the reference signs are:
1-variable pump 2-pump outlet 3-main oil gallery
4-oil bottom shell 5-proportional valve 11-pump body
12-rotating pin 13-variable slide block 14-variable spring
15-balance chamber 16-feedback chamber 51-valve body
52-plunger 53-spring 54-screw plug
55-first annular oil groove 56-second annular oil groove 57-radial hole
58-axial hole 59-sealing ring.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be described in detail with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not limiting of the invention.
In the description of the present invention, it is to be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", etc. indicate orientations or positional relationships based on those shown in the drawings, and are only for convenience of description and simplicity of description, but do not indicate or imply that the device or element being referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, should not be considered as limiting the present invention.
As shown in fig. 1 to 4, the preferred embodiment of the present invention is: an oil drainage type fully variable pump control system comprises a variable pump 1, a pump outlet 2, a main oil gallery 3, an oil pan 4 and a proportional valve 5; the variable pump comprises a pump body 11, a rotating pin 12, a variable slider 13 and a variable spring 14, wherein the variable slider 13 is arranged in a cavity of the pump body 11 and can swing left and right around the rotating pin 12, a rotor cavity for accommodating a rotor and a blade is arranged in the middle of the variable slider 13, a balance cavity 15 and a feedback cavity 16 which are not communicated with each other are arranged between the peripheral surface of the variable slider 13 and the inner wall surface of the cavity of the pump body 11, the balance cavity 15 and the feedback cavity 16 are respectively arranged at the left side and the right side of the rotating pin 12, and the balance cavity 15 and the variable spring 14 are positioned at the same side of the variable slider 13; the proportional valve 5 is provided with a port P, a port T, a port A1 and a port A2, wherein the port P is communicated with a pump outlet 2 or a main oil gallery 3 through an oil path, the port T is communicated with an oil pan 4 through an oil path, the port A1 is communicated with a balance cavity 15 of the variable pump through an oil path, and the port A2 is communicated with a feedback cavity 16 of the variable pump through an oil path; in the non-variable stage, the port P of the ECU controlled proportional valve 5 is communicated with the port A1, the port A2 is communicated with the port T, in the variable stage, the port P of the ECU controlled proportional valve 5 is communicated with the port A2, and the port A1 is communicated with the port T.
As shown in fig. 3 and 4, the proportional valve 5 comprises a valve body 51, a plunger 52, a spring 53 and a screw plug 54, wherein a valve hole for accommodating the plunger 52 and the spring 53 is arranged in the valve body 51, the periphery of the plunger 52 is designed in equal proportion, the T port, the a1 port and the a2 port are arranged on the valve body 51 and communicated with the valve hole, and the P port is arranged on the screw plug 53; the outer peripheral surface of the plunger 52 is provided with a first annular oil groove 55 and a second annular oil groove 56, the plunger 52 is also provided with a radial hole 57 communicated with the second annular oil groove 56, and the middle of the plunger 52 is also provided with an axial hole 58 communicated with the radial hole 57; in the non-variable stage, the port P of the proportional valve 5 is communicated with the port A1 through a valve hole, and the port A2 is communicated with the port T through the first annular oil groove 55 of the plunger 52; in the variable stage, the port P of the proportional valve 5 is communicated with the port A2 through the axial hole 58, the radial hole 57 and the second annular oil groove 56 of the plunger in sequence, and the port A1 is communicated with the port T through the first annular oil groove 55 of the plunger; two annular grooves are formed in the periphery of the valve body 51 among the three oil ports of the T port, the A1 port and the A2 port, a sealing ring 59 is arranged in each annular groove, and the sealing rings 59 are used for separating different oil ports.
Because the port P of the proportional valve 5 is communicated with the pump outlet 2 or the main oil gallery 3 through an oil path, the port T is communicated with the oil pan 4 through an oil path, the port A1 is communicated with the balance cavity 15 of the variable pump through an oil path, and the port A2 is communicated with the feedback cavity 16 of the variable pump through an oil path; in this way, in the non-variable stage, the pressure oil in the main oil gallery 3 flows into the balance cavity 15 through the port P and the port A1, the pressure oil in the feedback cavity 16 leaks to the oil pan 4 through the port A2 and the port T, and the pressure in the feedback cavity is always zero, so that the problem of variable advance does not exist at all; in the variable stage, the pressure oil in the balance cavity 15 is discharged to the oil pan 4 through the port a1 and the port T, and the pressure oil in the main oil gallery 3 flows into the feedback cavity 16 through the port P and the port a2, so that the variable slider 13 is pushed to deflect towards the variable spring 14 side, and the displacement of the oil pump is reduced.
The above-described embodiments are preferred implementations of the present invention, and the present invention may be implemented in other ways without departing from the spirit and scope of the present invention.
Some of the drawings and descriptions of the present invention have been simplified to facilitate the understanding of the improvements over the prior art by those skilled in the art, and some other elements have been omitted from this document for the sake of clarity, and it should be appreciated by those skilled in the art that such omitted elements may also constitute the subject matter of the present invention.

Claims (4)

1. The utility model provides a full variable pump control system of draining formula which characterized in that: comprises a variable pump (1), a pump outlet (2), a main oil gallery (3), an oil pan (4) and a proportional valve (5); the variable pump comprises a pump body (11), a rotating pin (12), a variable slider (13) and a variable spring (14), wherein the variable slider (13) is arranged in a cavity of the pump body (11) and can swing left and right around the rotating pin (12), a rotor cavity for accommodating a rotor and a blade is arranged in the middle of the variable slider (13), a balance cavity (15) and a feedback cavity (16) which are not communicated with each other are arranged between the peripheral surface of the variable slider (13) and the inner wall surface of the cavity of the pump body (11), the balance cavity (15) and the feedback cavity (16) are respectively arranged on the left side and the right side of the rotating pin (12), and the balance cavity (15) and the variable spring (14) are positioned on the same side of the variable slider (13); the proportional valve is provided with a port P, a port T, a port A1 and a port A2, wherein the port P is communicated with a pump outlet (2) or a main oil gallery (3) through an oil way, the port T is communicated with an oil pan (4) through an oil way, the port A1 is communicated with a balance cavity (15) of the variable pump through an oil way, and the port A2 is communicated with a feedback cavity (16) of the variable pump through an oil way; in the non-variable stage, the P port of the ECU controlled proportional valve is communicated with the A1 port, the A2 port is communicated with the T port, in the variable stage, the P port of the ECU controlled proportional valve is communicated with the A2 port, and the A1 port is communicated with the T port.
2. The oil drainage type fully variable pump control system according to claim 1, characterized in that: the proportional valve (5) comprises a valve body (51), a plunger (52), a spring (53) and a screw plug (54), a valve hole for accommodating the plunger (52) and the spring (53) is formed in the valve body (51), the T port, the A1 port and the A2 port are formed in the valve body (51) and communicated with the valve hole, and the P port is formed in the screw plug (54); a first annular oil groove (55) and a second annular oil groove (56) are formed in the outer peripheral surface of the plunger (52), a radial hole (57) communicated with the second annular oil groove (56) is further formed in the plunger (52), and an axial hole (58) communicated with the radial hole (57) is further formed in the middle of the plunger (52); in the non-variable stage, the P port of the proportional valve (5) is communicated with the A1 port through a valve hole, and the A2 port is communicated with the T port through a first annular oil groove (55) of the plunger; in the variable stage, the P port of the proportional valve (5) is communicated with the port A2 through an axial hole (58), a radial hole (57) and a second annular oil groove (56) of the plunger in sequence, and the port A1 is communicated with the port T through a first annular oil groove (55) of the plunger.
3. The oil drainage type fully variable pump control system according to claim 2, characterized in that: the periphery of the plunger (52) is designed in equal proportion.
4. The oil drainage type fully variable pump control system according to claim 2, characterized in that: the periphery of valve body (51) is equipped with two annular grooves between three hydraulic fluid ports of T mouth, A1 mouth and A2 mouth, is equipped with sealing washer (59) in every annular groove, sealing washer (59) are used for cutting off between the hydraulic fluid port of difference.
CN202110820071.6A 2021-07-20 2021-07-20 Oil drainage type fully-variable pump control system Active CN113431658B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110820071.6A CN113431658B (en) 2021-07-20 2021-07-20 Oil drainage type fully-variable pump control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110820071.6A CN113431658B (en) 2021-07-20 2021-07-20 Oil drainage type fully-variable pump control system

Publications (2)

Publication Number Publication Date
CN113431658A CN113431658A (en) 2021-09-24
CN113431658B true CN113431658B (en) 2022-04-22

Family

ID=77761238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110820071.6A Active CN113431658B (en) 2021-07-20 2021-07-20 Oil drainage type fully-variable pump control system

Country Status (1)

Country Link
CN (1) CN113431658B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900668A (en) * 2011-07-26 2013-01-30 日立汽车系统株式会社 Variable displacement pump
JP2013204517A (en) * 2012-03-28 2013-10-07 Yamada Seisakusho Co Ltd Engine with variable flow rate oil pump
CN111911796A (en) * 2020-08-03 2020-11-10 富奥汽车零部件股份有限公司 Valve member and displacement regulating system
CN213478418U (en) * 2020-09-07 2021-06-18 比亚迪股份有限公司 Oil pump of vehicle and engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535848B2 (en) * 2010-09-16 2014-07-02 本田技研工業株式会社 Engine with variable flow oil pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900668A (en) * 2011-07-26 2013-01-30 日立汽车系统株式会社 Variable displacement pump
JP2013204517A (en) * 2012-03-28 2013-10-07 Yamada Seisakusho Co Ltd Engine with variable flow rate oil pump
CN111911796A (en) * 2020-08-03 2020-11-10 富奥汽车零部件股份有限公司 Valve member and displacement regulating system
CN213478418U (en) * 2020-09-07 2021-06-18 比亚迪股份有限公司 Oil pump of vehicle and engine

Also Published As

Publication number Publication date
CN113431658A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US10876439B2 (en) Internal combustion engine, lubrication system, and engine oil strainer
CN104912619B (en) System for controlling oil drainage type single-cavity two-stage variable displacement blade pump
CN113431658B (en) Oil drainage type fully-variable pump control system
US3137235A (en) Vane-type variable delivery pump
CN204024754U (en) The control system of a kind of solenoid valve control single-acting chamber feedback variable displacement vane pump
CN200985813Y (en) Engine oil pressure-limiting oilchannel
CN110469503B (en) Two-stage variable control system based on variable displacement pump
CN210239848U (en) Supercharger oil-gas separation system and ventilation tank thereof
CN101581301A (en) Vane pump/motor
CN210317738U (en) Melt gear pump and melt processing production line using same
CN105401998B (en) A kind of control system of two grades of variable-displacement pumps of multi-functional mechanical valve control
CN204024753U (en) The control system of a kind of single-acting chamber pump discharge feedback variable displacement vane pump
CN208534658U (en) A kind of oil transfer pump of the automatically controlled injection diesel of single cylinder
CN110486610A (en) A kind of lubricating oil pump that can improve degree of regulation
CN202597469U (en) Internal-leakage type gear motor shaft sleeve
CN201734547U (en) Water adding device
CN213598032U (en) Plunger type pressure limiting valve
CN215719473U (en) Pump body with good heat dissipation performance and internal gear pump
CN110821824A (en) Internal gear type hydraulic motor pump with integrated cartridge valve at outlet
CN104564338A (en) Structure for highly integrating oil, water, gas and pressurizer installing surfaces
CN220770245U (en) Pressure balancing device for overflow valve
CN218780395U (en) Self-balancing pressure limiting valve core
CN214037020U (en) Hydraulic pressure reducing valve
CN204060952U (en) Engine cylinder-body
CN217501974U (en) Gear pump

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant